SOME INVARIANT σ -ALGEBRAS FOR MEASURE-PRESERVING TRANSFORMATIONS

BY PETER WALTERS

Abstract. For an invertible measure-preserving transformation T of a Lebesgue measure space (X, \mathcal{B}, m) and a sequence N of integers, a T-invariant partition $\alpha_N(T)$ of (X, \mathcal{B}, m) is defined. The relationship of these partitions to spectral properties of T and entropy theory is discussed and the behaviour of the partitions $\alpha_N(T)$ under group extensions is investigated. Several examples are discussed.

0. Introduction. For an invertible measure-preserving transformation T of a Lebesgue space (X, \mathcal{B}, m) and a sequence $N = \{n_i\}_{i=1}^{\infty}$ of integers we define a σ algebra by $\mathcal{A}_N(T) = \{A \in \mathcal{B} \mid m(T^{n_i} A \Delta A) \to 0\}$. Our aim is to study these σ -algebras. In §1 we evaluate those elements of $L^2(X, \mathcal{B}, m)$ which are measurable with respect to $\mathcal{A}_{N}(T)$. The connections the algebras $\mathcal{A}_{N}(T)$ have with discrete spectrum and entropy theory are discussed in §2. Every ergodic T with discrete spectrum has $\mathcal{A}_N(T) = \mathcal{B}$ for some sequence N and every T with $\mathcal{A}_N(T) = \mathcal{B}$ for some sequence N has zero entropy. It turns out that the algebras $\mathcal{A}_N(T)$ have properties in common with the σ -algebra generated by the eigenfunctions of T and also properties in common with the σ-algebra generated by all the finite algebras having zero entropy relative to T. Some of these properties are noted in §3 which also contains remarks on the relationship of the σ -algebras $\mathcal{A}_N(T)$ to mixing properties of T. The behaviour of the σ -algebras $\mathcal{A}_N(T)$ under group extensions is discussed in §4 and in §5 we use Gaussian processes to give examples of weak mixing transformations with $\mathcal{A}_N = \mathcal{B}$ for some sequence N. §6 is devoted to a discussion of further properties of the algebras $\mathcal{A}_N(T)$.

Throughout T will denote an invertible measure-preserving transformation of a Lebesgue space (X, \mathcal{B}, m) [14]. \mathcal{N} will denote the trivial σ -algebra consisting of those members of \mathcal{B} with measure 0 or 1. ν will denote the trivial partition and ε will denote the partition into points of any Lebesgue space. Greek letters ξ , η , ζ etc. will be used to denote measurable partitions. We shall use partitions and their associated σ -algebras interchangeably. The factor space of X by ζ will be denoted by X/ζ and if $T\zeta = \zeta$ the factor transformation induced by T on X/ζ will be denoted by T_{ζ} . If \mathcal{A} denotes the σ -algebra generated by the members of ζ then $L^{2}(\zeta)$ and $L^{2}(\mathcal{A})$ will both denote the collection of all elements of $L^{2}(X, \mathcal{B}, m)$ measurable

Received by the editors November 6, 1970.

AMS 1970 subject classifications. Primary 28A65, 47A35.

Key words and phrases. Measure-preserving transformation, ergodic, partition, σ -algebra, entropy, mixing, spectral measure, group extension, Gaussian process.

with respect to \mathscr{A} . In particular $L^2(\varepsilon)$ and $L^2(\mathscr{B})$ will stand for $L^2(X,\mathscr{B},m)$. U_T will denote the unitary operator of $L^2(\mathscr{B})$ defined by $f \to f \circ T$ and $\|\cdot\|_2$ will denote the norm on an L^2 -space. We shall repeatedly use the spectral theorem which implies that for each $f \in L^2(\mathscr{B})$ there is a Borel measure σ_f on the unit circle K with $(U^n f, f) = \int_K \lambda^n \, d\sigma_f(\lambda) \, \forall n \in Z$. K will always denote the unit circle. σ_f is called the spectral measure of f.

I would like to thank W. Parry for valuable discussions.

1. The σ -algebras $\mathscr{A}_N(T)$. For a sequence $N = \{n_i\}$ of integers let $\mathscr{A}_N(T) = \{A \in \mathscr{B} \mid m(T^{n_i}A\Delta A) \to 0\}$. We show below that $\mathscr{A}_N(T)$ is a σ -algebra. The corresponding partition will be denoted by $\alpha_N(T)$. Let $\mathscr{A}(T) = \bigvee_N \mathscr{A}_N(T)$ (the refinement is taken over all sequences N of integers) and let $\alpha(T)$ denote the corresponding partition. We have $T\mathscr{A}_N(T) = \mathscr{A}_N(T)$, $T\alpha_N(T) = \alpha_N(T)$, $T\mathscr{A}(T) = \mathscr{A}(T)$ and $T\alpha(T) = \alpha(T)$. When T is understood we shall write \mathscr{A}_N , \mathscr{A}_N , \mathscr{A}_N and α .

THEOREM 1. $\mathcal{A}_{N}(T)$ is a σ -algebra.

Proof. Clearly $\emptyset \in \mathscr{A}_N$. Since $T^{n_i}(X \setminus A)\Delta(X \setminus A) = T^{n_i}A\Delta A$ \mathscr{A}_N is closed under complementation. \mathscr{A}_N is finitely additive since if $A_1, A_2 \in \mathscr{A}_N$ then

$$T^{n_i}(A_1 \cup A_2)\Delta(A_1 \cup A_2) \subseteq (T^{n_i}A_1\Delta A_1) \cup (T^{n_i}A_2\Delta A_2)$$

implies $A_1 \cup A_2 \in \mathscr{A}_N$. It remains to show that if $A_j \in \mathscr{A}_N$ $(j \ge 1)$ and $A_1 \subset A_2 \subset A_3 \subset \cdots$ then $A = \bigcup_{j=1}^{\infty} A_j \in \mathscr{A}_N$. Let $\varepsilon > 0$ be given. Choose j_0 so that $m(A \setminus A_{j_0}) < \varepsilon$. Choose I so that $i > I \Rightarrow m(T^{n_i}A_{j_0}\Delta A_{j_0}) < \varepsilon$. Then

$$i > I \Rightarrow m(T^{n_i}A\Delta A) \leq m(T^{n_i}A\Delta T^{n_i}A_{j_0}) + m(T^{n_i}A_{j_0}\Delta A_{j_0}) + m(A_{j_0}\Delta A) < 3\varepsilon.$$

Therefore $A \in \mathcal{A}_N$ and \mathcal{A}_N is countably additive. $| \ |$ Our next aim is to show $L^2(\mathcal{A}_N(T)) = \{ f \in L^2(\mathcal{B}) \mid ||U_T^{n_i}f - f||_2 \to 0 \}$.

LEMMA 1. Let $f \in L^2(\mathcal{B})$ be real valued and nonconstant. Let $N = \{n_i\}$ be a sequence of integers. If $||U^{n_i}f - f||_2 \to 0$ then $f^{-1}(\mathcal{C}) \subset \mathcal{A}_N(T)$, where \mathcal{C} denotes the σ -algebra of Borel subsets of R.

Proof. Let $b \in R$. Put $B = \{x \mid f(x) \leq b\}$ and $B_{\varepsilon} = \{x \mid f(x) \leq b + \varepsilon\}$. Let $\delta > 0$ be given. On $T^{-n_i}B \setminus B_{\varepsilon}$ we have $|f(T^{n_i}x) - f(x)| \geq \varepsilon$ and therefore $m(T^{n_i}B \setminus B_{\varepsilon}) \to 0$ as $i \to \infty$. Since $B_{\varepsilon} \setminus B$ decreases with ε and $\bigcap_{\varepsilon > 0} (B_{\varepsilon} \setminus B) = \emptyset$, choose ε_0 so that $m(B_{\varepsilon_0} \setminus B) < \delta$. Choose i_0 so that $i > i_0$ implies $m(T^{-n_i}B \setminus B_{\varepsilon_0}) < \delta$. Then $m(T^{-n_i}B \setminus B) \leq m(T^{-n_i}B \setminus B_{\varepsilon_0}) + m(B_{\varepsilon_0} \setminus B) < 2\delta$ if $i > i_0$. Therefore $m(T^{n_i}B \setminus B) \to 0$. We have shown $f^{-1}(-\infty, b] \in \mathscr{A}_N(T)$ and by Theorem $1 f^{-1}(\mathscr{C}) \subset \mathscr{A}_N(T)$.

THEOREM 2.
$$L^2(\mathcal{A}_N(T)) = \{ f \in L^2(\mathcal{B}) \mid ||U_T^{n_i} f - f||_2 \to 0 \}.$$

Proof. Let \mathscr{H} denote the right-hand side. Certainly $L^2(\mathscr{A}_N(T)) \subset \mathscr{H}$. Suppose $f \in \mathscr{H} \backslash L^2(\mathscr{A}_N(T))$. We can assume f is real valued since either the real or imaginary part of f does not belong to $L^2(\mathscr{A}_N(T))$ but belongs to \mathscr{H} . By Lemma 1 $f^{-1}(\mathscr{C}) \subset \mathscr{A}_N(T)$ (where $\mathscr{C} =$ Borel subsets of R) and hence $f \in L^2(\mathscr{A}_N(T))$, a contradiction.

Our aim is to study the algebras $\mathscr{A}_N(T)$. Of particular interest are those transformations with $\mathscr{A}_N(T) = \mathscr{B}$ ($\alpha_N(T) = \varepsilon$) for some sequence N, those with $\mathscr{A}(T) = \mathscr{B}$ ($\alpha(T) = \varepsilon$) and those with $\mathscr{A}(T) = \mathscr{N}$ ($\alpha(T) = \nu$). The condition $\mathscr{A}_N(T) = \mathscr{B}$ means T^{n_i} converges to the identity in the space of invertible measure-preserving transformations of (X, \mathscr{B}, m) with the weak topology [6] or equivalently $U^{n_i}_T$ converges to I in the space of unitary operators of $L^2(\mathscr{B})$ with the weak (or strong) topology. The following result relates the property $\mathscr{A}_N(T) = \mathscr{B}$ to the maximal spectral type of T. For the theory of spectral measures and types see [13].

THEOREM 3. $\mathscr{A}_N(T) = \mathscr{B} \Leftrightarrow \int_K |\lambda^{n_i} - 1|^2 d\sigma(\lambda) \to 0$ where σ denotes a finite measure on $K = \{z \mid |z| = 1\}$ whose type is the maximal spectral type of T.

Proof. Suppose the right-hand side holds and $h \in L^1(\sigma)$. We shall show $\int_K |\lambda^{n_i} - 1|^2 h(\lambda) d\sigma(\lambda) \to 0$. Let $\delta > 0$ be given and choose h_1 , h_2 so that $h = h_1 + h_2$, h_1 is bounded $(|h_1(\lambda)| \le c_{\delta}$ say) and $\int |h_2(\lambda)| d\sigma(\lambda) < \delta$.

$$\left| \int |\lambda^{n_i} - 1|^2 h(\lambda) \, d\sigma(\lambda) \, \right| \le \int |\lambda^{n_i} - 1|^2 |h_1(\lambda)| \, d\sigma(\lambda) + \int |\lambda^{n_i} - 1|^2 |h_2(\lambda)| \, d\sigma(\lambda)$$

$$< c_{\delta} \int |\lambda^{n_i} - 1|^2 \, d\sigma(\lambda) + 4\delta < 5\delta$$

if $i>i_0$ and i_0 is chosen so that $i>i_0$ implies $\int |\lambda^{n_i}-1|^2 d\sigma(\lambda) < \delta/c_\delta$. Hence $\int |\lambda^{n_i}-1|^2 h(\lambda) d\sigma(\lambda) \to 0$. If $f\in L^2(\mathcal{B})$ the spectral measure σ_f of f is absolutely continuous with respect to σ and by the above $\|U^{n_i}f-f\|_2^2=\int |\lambda^{n_i}-1|^2 d\sigma_f(\lambda) \to 0$. Hence $f\in L^2(\mathcal{A}_N(T))$ and $\mathcal{A}_N(T)=\mathcal{B}$.

Conversely if $\mathcal{A}_N(T) = \mathcal{B}$ then choosing $f \in L^2(\mathcal{B})$ with spectral measure σ_f of maximal type we have $\int |\lambda^{n_i} - 1|^2 d\sigma_f(\lambda) = ||U^{n_i}f - f||_2^2 \to 0$. By the above, if σ is any measure whose type is the maximal spectral type of T then $\int |\lambda^{n_i} - 1|^2 d\sigma(\lambda) \to 0$.

2. Some properties of $\mathcal{A}_N(T)$. The simplest examples of transformations with $\mathcal{A}_N = \mathcal{B}$ are given by

THEOREM 4. If T is ergodic with discrete spectrum there exists a sequence $N = \{n_i\}$ with $\mathcal{A}_N(T) = \mathcal{B}$.

Proof. We can suppose T is an ergodic rotation Tx = ax on a compact abelian group G [6, p. 48]. Choose $N = \{n_i\}$ so that $a^{n_i} \to e$ the identity element of G. If γ is a character of $G \parallel U_T^{n_i}\gamma - \gamma \parallel_2^2 = |\gamma(a^{n_i}) - 1|^2 \to 0$. Since the characters generate $L^2(G)$ we have $\mathcal{A}_N(T) = \mathcal{B}$.

Later we shall give more examples of transformations with $\mathcal{A}_N = \mathcal{B}$.

The algebras $\mathcal{A}_N(T)$ are related to the work of Katok and Stepin [7] and Chacon and Schwartzbauer [1] on approximation by periodic transformations. It is easily checked that if T admits an approximation of the second kind by periodic transformations (a.p.t.II) with speed o(1/n) in the sense of Katok and Stepin [7, p. 78] then $\mathcal{A}_{(p_n)}(T) = \mathcal{B}$. Also if T admits an approximation by periodic automorphisms in Chacon and Schwartzbauer's sense [1] then $\mathcal{A}_{(q_n)}(T) = \mathcal{B}$.

Now we discuss the relationship of the partitions $\alpha_N(T)$ to entropy theory. The notations for entropy are from [15]. Let $\mathscr L$ denote the set of partitions with finite entropy. Pinsker [12] has defined the maximum partition with zero entropy for T as $\pi(T) = \bigvee \{\xi \in \mathscr L \mid h(T, \xi) = 0\}$. We have $T\pi(T) = \pi(T)$ and if $\eta \in \mathscr L$ then $\eta \leq \pi(T)$ if and only if $h(T, \eta) = 0$. Using the concept of sequence entropy introduced by Kushnirenko [8], one can define the maximum partition with zero N-entropy for T (for a sequence of integers N) by $\pi_N(T) = \bigvee \{\xi \in \mathscr L \mid h_N(T, \xi) = 0\}$. It is straightforward to check that $T\pi_N(T) = \pi_N(T)$ and if $\eta \in \mathscr L$ then $\eta \leq \pi_N(T)$ if and only if $h_N(T, \eta) = 0$. The main result of Kushnirenko's paper [8] implies $\pi_\infty(T) = \bigwedge_N \pi_N(T)$ is the maximum partition for T such that the associated factor transformation has discrete spectrum. In other words $\pi_\infty(T)$ is the partition generated by the eigenfunctions of T.

THEOREM 5. For every sequence N of integers, $\alpha_N(T) \leq \pi(T)$ and $\alpha_N(T) \leq \pi_N(T)$. Hence $\alpha(T) \leq \pi(T)$.

Proof. We first show $\alpha_N(T) \le \pi_N(T)$. Suppose ξ is a finite partition and $\xi \le \alpha_N(T)$. We have

$$H(T^{n_1}\xi \vee T^{n_2}\xi \vee \cdots \vee T^{n_k}\xi)$$

$$\leq H(T^{n_1}\xi) + H(\xi/T^{n_1-n_2}\xi) + H(\xi/T^{n_2-n_3}\xi) + \cdots + H(\xi/T^{n_{k-1}-n_k}\xi)$$

so if $H(\xi/T^{n_{k-1}-n_k}\xi) \to 0$ then $h_N(T, \xi) = 0$ and $\xi \le \pi_N(T)$. But $\mathscr{A}_{(n_i)}(T) = \mathscr{B}$ implies $\mathscr{A}_{(n_{i-1}-n_i)}(T) = \mathscr{B}$ and this readily implies $H(\xi/T^{n_{i-1}-n_i}\xi) \to 0$. Hence $\alpha_N(T) \le \pi_N(T)$. Similarly $\alpha_N(T) \le \pi(T)$ since if $\xi \le \alpha_N(T)$ is finite $h(T, \xi) = H(\xi/\bigvee_{n=1}^{\infty} T^n \xi)$ $\le \lim_{k \to \infty} H(\xi/T^{n_i}\xi) = 0$.

COROLLARY 5.1.
$$h(T_{\alpha_N(T)}) = 0$$
, $h_N(T_{\alpha_N(T)}) = 0$ and $h(T_{\alpha(T)}) = 0$.

By Theorem 4 we know there exists a sequence N such that $\pi_{\infty}(T) \leq \alpha_N(T)$. This and Theorem 5 indicate that the partitions $\alpha_N(T)$ may inherit some of the properties of $\pi_{\infty}(T)$ and some of the properties of $\pi(T)$. This is shown to be so in the later sections.

THEOREM 6. (a) $\bigcap_N \mathcal{A}_N(T)$ is the σ -algebra of T-invariant members of \mathcal{B} .

(b) The class of invertible measure-preserving transformation with $\mathcal{A}_N = \mathcal{B}$ is closed under (i) factors, (ii) countable direct products, and (iii) inverse limits. In fact (iii) can be strengthened to the property:

if
$$\xi_n \nearrow \xi$$
 and $T\xi_n = \xi_n$, $T\xi = \xi$, then $\alpha_N(T_{\xi_n}) \nearrow \alpha_N(T_{\xi})$.

Proof. (a) Let $A \in \bigcap_N \mathscr{A}_N(T)$. Then $m(TA\Delta A) \leq m(T^{n+1}A\Delta A) + m(A\Delta T^n A) \to 0$. (b) (i) is trivial.

(ii) Let T_i act on $(X_i, \mathcal{B}_i, m_i)$ and let $T_{\infty} = \prod_{i=1}^{\infty} T_i$ acting on (X, \mathcal{B}, m) $= \prod_{i=1}^{\infty} (X_i, \mathcal{B}_i, m_i)$. Assume $\mathcal{A}_N(T_i) = \mathcal{B}_i$ for each *i*. It is easy to show that each measurable rectangle is in $\mathcal{A}_N(T_{\infty})$ and hence $\mathcal{A}_N(T_{\infty}) = \mathcal{B}$.

(iii) It suffices to take $\xi = \varepsilon$. Let $f \in L^2(\alpha_N(T))$ and put $f_n = E(f/\xi_n)$, where $E(f/\xi_n)$ is the conditional expectation of f relative to the σ -algebra generated by ξ_n . Then $\|f-f_n\|_2 \to 0$ and $\|U_{T_{\xi_n}}^{n_i}f_n-f_n\|_2 \le \|U_T^{n_i}f-f\|_2 \to 0$. Hence $f_n \in L^2(\alpha_N(T_{\xi_n}))$ and $\alpha_N(T_{\xi_n}) \to \alpha_N(T_{\xi_n})$.

Let \mathscr{W} denote the class of invertible measure-preserving transformations of (X, \mathscr{B}, m) with the weak topology [6]. \mathscr{W} is a complete metric space and hence has the Baire property that a countable intersection of open dense sets is dense. From Theorem 1.1 of [7] it follows that the collection of all transformations with $\mathscr{A}_N = \mathscr{B}$ for some N contains a dense G_{δ} in the space \mathscr{W} . Since the weak-mixing transformations form a dense G_{δ} in \mathscr{W} ([6]) it follows that the class of all weak-mixing transformations with $\mathscr{A}_N = \mathscr{B}$ for some N contains a dense G_{δ} in \mathscr{W} . It follows from this and the next theorem that the class of weak-mixing transformations which are not strong-mixing contains a dense G_{δ} in \mathscr{W} .

3. Mixing properties. An example of a property of $\alpha_N(T)$ inherited from $\pi_\infty(T)$ is

THEOREM 7. There are no nonconstant mixing functions in $L^2(\mathscr{A}_N(T))$ (i.e. $(U_T^n f, f) \to (f, 1)(1, f)$ for $f \in L^2(\mathscr{A}_N(T))$ implies f = constant).

Proof. If $(U_T^n f, f) \to (f, 1)(1, f)$ and $f \in L^2(\mathscr{A}_N(T))$ then (f, f) = (f, 1)(1, f) and f is constant. $| \cdot |$

COROLLARY 7.1. $T_{\alpha_N(T)}$ has singular spectrum.

Proof. If the spectrum is not singular there exists $f \in L^2(\mathscr{A}_N(T))$ with absolutely continuous spectral measure σ_f . Then $(U_T^n f, f) = \int \lambda^n d\sigma_f(\lambda) \to 0$ by the Riemann-Lebesgue lemma and since $(U_T^n f, f) \to ||f||_2^2$ we have f = 0.

COROLLARY 7.2. If T is totally ergodic with quasi-discrete spectrum then $\alpha_N(T) \leq \pi_{\infty}(T)$ for all sequences N and there exists a sequence N with $\alpha_N(T) = \pi_{\infty}(T)$. Hence $\alpha(T) = \pi_{\infty}(T)$.

Proof. $L^2(\varepsilon) = L^2(\pi_\infty(T)) \oplus \mathscr{H}$ where $U_T\mathscr{H} = \mathscr{H}$ and $U_T|\mathscr{H}$ has Lebesgue spectrum. Let $f \in L^2(\alpha_N(T))$ and $f = f_1 + f_2$, $f_1 \in L^2(\pi_\infty(T))$, $f_2 \in \mathscr{H}$. Then $\|U_T^{n_i}f - f\|_2^2 = \|U_T^{n_i}f_1 - f_1\|_2^2 + \|U_T^{n_i}f_2 - f_2\|_2^2$ implies $f_1 \in L^2(\alpha_N(T))$ and $f_2 \in L^2(\alpha_N(T))$. By Theorem $f_2 = 0$ and hence $\alpha_N(T) \leq \pi_\infty(T)$. The rest of the corollary follows from Theorem 4.

Later we shall give examples of weak-mixing transformations with $\mathcal{A}_N(T) = \mathcal{B}$ for some N. Consideration of $\mathcal{A}(T)$ gives an interesting connection with mixing. We first give a definition.

DEFINITION 1. T is intermixing if whenever m(A) > 0 and m(B) > 0, $A, B \in \mathcal{B}$, we have $\lim \inf_{n \to \infty} m(T^n A \cap B) > 0$.

Friedman and Ornstein [2] give examples of intermixing transformations which are not strong-mixing.

THEOREM 8.

T strong-mixing $\stackrel{\Rightarrow}{\Leftarrow} T$ intermixing $\Rightarrow \mathscr{A}(T) = \mathscr{N} \stackrel{\Rightarrow}{\Leftarrow} T$ weak-mixing.

Proof. T strong-mixing \Rightarrow T intermixing is clear. The example of Friedman and Ornstein mentioned above shows the converse is false. If T is intermixing and 0 < m(A) < 1, $A \in \mathcal{B}$, then $\liminf_{n \to \infty} m(T^n A \cap A^c) > 0$ and so $A \notin \mathcal{A}_N(T)$ for any sequence N. Therefore $\mathcal{A}(T) = \mathcal{N}$. Theorem 4 shows $\mathcal{A}(T) = \mathcal{N} \Rightarrow T$ weak-mixing, and the converse is false by the examples of §5.

We do not know if $\mathcal{A}(T) = \mathcal{N}$ implies T is intermixing. Pinsker [12] has shown that if $T\xi = \xi$ and $\pi(T_{\xi}) = \nu$ then $\pi(T)$ and ξ are independent partitions. We shall show the corresponding result for the partitions $\alpha_N(T)$. Two Borel measures (or types of measures) on the unit circle K will be called singular modulo $\{1\}$ if their restrictions to $K - \{1\}$ are singular.

THEOREM 9. If \mathcal{H} is a U_T -invariant subspace of $L^2(\mathcal{B})$ with $L^2(\mathcal{A}_N(T)) \cap \mathcal{H} = \{0\}$ or the constants, then the maximal spectral types of $U_T | L^2(\mathcal{A}_N(T))$ and $U_T | \mathcal{H}$ are singular modulo $\{1\}$.

Proof. Let σ be a measure with type equal to the maximal spectral type of $T_{\alpha_N(T)}$ and μ a measure with type the maximal spectral type of $U_T|\mathscr{H}$. If σ and μ are not singular modulo $\{1\}$ there exists a measure τ not concentrated on $\{1\}$ with $\tau \leq \sigma$ and $\tau \leq \mu$. As in the proof of Theorem 3, $\int |\lambda^{n_i} - 1|^2 d\tau \to 0$. Let $g \in \mathscr{H}$ have spectral measure τ . g is not constant and $\|U_T^{n_i}g - g\|_2^2 = \int |\lambda^{n_i} - 1|^2 d\tau \to 0$ so $g \in L^2(\mathscr{A}_N(T))$, a contradiction.

The next corollary is the analogue of the result of Pinsker mentioned above.

COROLLARY 9.1. Suppose $T\xi = \xi$ and $\alpha_N(T_{\xi}) = \nu$. Then ξ and $\alpha_N(T)$ are independent partitions.

Proof. By Theorem 9, T_{ξ} and $T_{\alpha_N(T)}$ have singular types mod {1}. Let $f \in L^2(\alpha_N(T))$ and $g \in L^2(\xi)$ both have integral zero. Then f and g have singular spectral types and hence are orthogonal [13, p. 124].

COROLLARY 9.2. If $\alpha_N(T) = \varepsilon$ then T is disjoint from all strong-mixing transformations. (For the definition of disjointness see [3].)

Proof. By Theorem 8 and Corollary 9.1.

This corollary is a strengthening of Theorem 7. The converse to Corollary 9.2 is false since the transformation of the 2-torus $T(z, w) = (e^{2\pi i a}z, zw)$, where a is irrational, is disjoint from all strong-mixing transformations [3] and yet $\alpha(T) \neq \varepsilon$ by Corollary 7.2 since T is totally ergodic with quasi-discrete spectrum.

4. Group extensions. We now investigate how the partitions $\alpha_N(T)$ behave under group extensions.

THEOREM 10. Let G be a compact abelian metric group acting as a group of measure-preserving transformations of (X, \mathcal{B}, m) such that gT = Tg. Let $\xi(G)$ denote the partition of X into orbits of G. If $\alpha_N(T_{\xi(G)}) = \nu$ then $T_{\alpha_N(T)}$ is conjugate to a rotation on a factor group of G. (The triviality of this factor group means $\alpha_N(T) = \nu$ and this will occur if T is weak-mixing.)

Proof. gT = Tg implies $g\alpha_N(T) = \alpha_N(T)$ and so G acts on $X/\alpha_N(T)$. We first show that G acts ergodically on $X/\alpha_N(T)$. Let $\xi(G, N)$ denote the partition of X determined by the partition of the space $X/\alpha_N(T)$ into orbits of G. Then $\xi(G, N) \leq \xi(G)$ and so $\alpha_N(T_{\xi(G,N)}) = \nu$. But $\xi(G, N) \leq \alpha_N(T)$ and therefore $\xi(G, N) = \nu$. That $T_{\alpha_N(T)}$ is conjugate to a rotation on a factor group of G follows from Lemma 3 of [11]. $|\cdot|$ Results of this nature have been proved about $\pi(T)$ by Parry [11] and Thomas [17].

COROLLARY 10.1. Suppose T is totally ergodic and G is a finite group acting as measure-preserving transformations of (X, \mathcal{B}, m) so that gT = Tg for each $g \in G$. If $\alpha_N(T_{\xi(G)}) = \nu$ then $\alpha_N(T) = \nu$.

Proof. By Theorem 10, $X/\alpha_N(T)$ is a finite space and the total ergodicity of T implies it is one point. Hence $\alpha_N(T) = \nu$. $| \ |$

Let G be a compact connected abelian metric group which acts freely as a group of homeomorphisms on a compact metric space X. Let $T: X \to X$ be a homeomorphism with gT = Tg for every $g \in G$. Suppose T and G preserve a measure m defined on the completion of the Borel subsets of X. T induces a homeomorphism $T_G: X/G \to X/G$ of the orbit space and every lift of T_G to X is of the form $X \to \phi(x)T(x)$ where $\phi \in C_0(X,G) = \{\phi: X \to G \mid \phi \text{ is continuous and } \phi(gx) = \phi(x) \forall g \in G, x \in X\}$ [4]. $C_0(X,G)$ becomes a complete metric space when endowed with the metric $D(\phi,\psi) = \sup_{x \in X} d(\phi(x),\psi(x))$ where d is an invariant metric for G. T_G preserves the measure on X/G determined by m and the maps $x \to \phi(x)T(x)$ preserve the measure m. An (unpublished) result of Jones and Parry announced in [4] states that if T_G is weak-mixing the set of ϕ making $x \to \phi(x)Tx$ weak-mixing contains a dense G_{ϕ} in $C_0(X,G)$. From this, Theorem 8 and Theorem 10 we conclude

COROLLARY 10.2. (i) If $\alpha_N(T_G) = \nu$ and T_G is weak-mixing the set of $\phi \in C_0(X, G)$ having the property that $x \to \phi(x)Tx$ has $\alpha_N = \nu$ contains a dense G_δ in $C_0(X, G)$.

(ii) If $\alpha(T_G) = \nu$ the set of $\phi \in C_0(X, G)$ having the property that $x \to \phi(x)T(x)$ has $\alpha = \nu$ contains a dense G_δ in $C_0(X, G)$.

We now consider the problem of extending a transformation with $\alpha_N = \varepsilon$ to obtain one with the same property. We shall consider only extensions by $Z^2 = \{1, -1\}$. The measure on Z^2 is always taken to be the measure giving weight $\frac{1}{2}$ to each point.

THEOREM 11. Let (Y, \mathcal{C}, μ) be a Lebesgue space and let $X = Y \times Z^2$. Define $T: X \to X$ by $T(y, \varepsilon) = (Sy, \phi(y)\varepsilon)$ where $S: Y \to Y$ is measure-preserving and

 $\phi: Y \to Z^2$ is measurable. If $\mathscr{A}_N(S) = \mathscr{C}$ then

$$\mathscr{A}_{N}(T) = \mathscr{B} \Leftrightarrow \mu(\{y \mid \phi(S^{n_{i}-1}y)\phi(S^{n_{i}-2}y)\cdots\phi(y) = -1\}) \to 0.$$

Proof. Suppose $\mathcal{A}_N(T) = \mathcal{B}$ and take $f(y, \varepsilon) = \varepsilon$. Then

$$\int |\phi(S^{n_i-1}y)\cdots\phi(y)-1|^2 d\mu(y) = \|U_T^{n_i}f-f\|_2^2 \to 0 \text{ as } i \to \infty$$

and hence $\mu(\{y | \phi(S^{n_i-1}y) \cdots \phi(y) = -1\}) \to 0$.

Conversely if this condition holds, the above function f belongs to $L^2(\mathscr{A}_N(T))$ and hence $\mathscr{A}_N(T) = \mathscr{B}$. $| \ |$

We use this in the following theorem the proof of which comes from ideas in [7].

THEOREM 12. Let T: $K \times Z^2 \to K \times Z^2$ be defined by $T(z, \varepsilon) = (e^{2\pi i a}z, \phi(z)\varepsilon)$ where

$$\phi(z) = -1 \quad \text{if arg } z \le \gamma 2\pi$$

$$= 1 \quad \text{if arg } z > \gamma 2\pi \qquad (0 < \gamma < 1).$$

Then $\mathcal{A}_N(T) = \mathcal{B}$ if there exist integers p_i and even integers r_i with $(p_i, n_i) = 1$, $|a - p_i/n_i| = o(1/n_i^2)$ and $|\gamma - r_i/n_i| = o(1/n_i)$.

Proof. For the proof we shall consider the circle group K as the additive group [0, 1) with addition modulo 1. Set

$$\phi_i(x) = \phi(x)\phi(a+x)\cdots\phi((n_i-1)a+x)$$

and

$$\phi_i^*(x) = \phi(x)\phi(p_i/n_i + x)\cdots\phi(((n_i - 1)/n_i)p_i + x);$$

$$\{x|\phi_i(x) = -1\} \subset \{x|\phi_i^*(x) = -1\} \cup \{x|\phi_i(x) \neq \phi_i^*(x)\}.$$

Let μ denote Lebesgue measure on [0, 1).

$$\mu(\{x|\phi_i(x) \neq \phi_i^*(x)\}) \leq \sum_{j=0}^{n_i-1} \mu\{x|\phi(ja+x) \neq \phi(jp_i/n_i+x)\}$$

$$\leq \sum_{j=0}^{n_i-1} |ja-jp_i/n_i| \leq (n_i(n_i+1)/2)o(1/n_i^2) \to 0.$$

If $n_i \gamma - r_i \ge 0$ then

$$\phi_i^*(x) = (-1)^{r_i+1} \quad \text{if } \{n_i x\} \le n_i \gamma - r_i, \\ = (-1)^{r_i} \quad \text{if } \{n_i x\} > n_i \gamma - r_i.$$

If $n_i \gamma - r_i < 0$ then

$$\phi_i^*(x) = (-1)^{r_i} \quad \text{if } \{n_i x\} \le 1 + n_i \gamma - r_i,$$

= $(-1)^{r_i - 1} \quad \text{if } \{n_i x\} > 1 + n_i \gamma - r_i.$

Therefore

$$\mu(\{x \mid \phi_i^*(x) = -1\}) = \mu(\{x \mid \{n_i x\} \le n_i \gamma - r_i\}) \cup \{x \mid \{n_i x\} > 1 + n_i \gamma - r_i\})$$

$$\le 2|n_i \gamma - r_i| \to 0 \quad \text{as } i \to \infty.$$

Hence $\mu(\{x \mid \phi_i(x) = -1\}) \to 0$ as $i \to \infty$ and $\mathscr{A}_N(T) = \mathscr{B}$ by Theorem 11. $|\cdot|$

5. Further examples. In this section we shall consider some weak-mixing transformations with $\mathcal{A}_N = \mathcal{B}$ for some N. T will be the shift generated by a stationary Gaussian process. Let $X = \prod_{n=0}^{\infty} R$, \mathcal{C} the product σ -algebra generated by the Borel subsets of R and let p_j denote the jth coordinate function. Hence if $x = \{x_n\}$ then $p_j(x) = x_j$. One assigns a probability measure to (X, \mathcal{C}) by requiring that $\{p_j\}$ be a stationary Gaussian process with covariance sequence R(n) where $R(n) = \int_K \lambda^n d\mu(\lambda)$ and μ is a finite measure on the unit circle K symmetric with respect to the real axis. μ is called the covariance measure of the process. Let \mathcal{B} denote the completion of \mathcal{C} and let the measure on \mathcal{B} be m. T is then defined by $p_{i-1}(x) = p_i(Tx)$, and is an invertible measure-preserving transformation of (X, \mathcal{B}, m) . Hence every symmetric finite Borel measure on K is the covariance measure of a stationary Gaussian process.

THEOREM 13. Let T be the shift on a stationary Gaussian process with covariance measure μ . Then $\mathcal{A}_N(T) = \mathcal{B} \Leftrightarrow \int |\lambda^{n_i} - 1|^2 d\mu(\lambda) \to 0$.

Proof. Suppose $\mathscr{A}_N(T) = \mathscr{B}$. $\int |\lambda^{n_i} - 1|^2 d\mu(\lambda) = ||U_T^{n_i} p_1 - p_1||_2^2 \to 0$. Conversely $\int |\lambda^{n_i} - 1|^2 d\mu(\lambda) \to 0$ implies $p_1 \in L^2(\mathscr{A}_N(T))$ and hence $p_k \in L^2(\mathscr{A}_N(T))$ for each k and hence $L^2(\mathscr{A}_N(T)) = L^2(\mathscr{B})$.

THEOREM 14. Let μ be a continuous symmetric finite measure concentrated on $D \cup D^{-1}$ where D is a Kronecker subset of K. Let T be the shift on the Gaussian process determined by μ . Then T is weak-mixing and $\mathcal{A}_N(T) = \mathcal{B}$ for some sequence N (and hence is not strong-mixing or intermixing).

Proof. The conclusion about mixing is in [10]. We have

$$\int_{D \cup D^{-1}} |\lambda^n - 1|^2 d\mu(\lambda) \le \int_D |\lambda^n - 1|^2 d\mu(\lambda) + \int_{D^{-1}} |\lambda^n - 1|^2 d\mu(\lambda)$$

$$= 2 \int_D |\lambda^n - 1|^2 d\mu(\lambda).$$

Let $\varepsilon_i \to 0$ and for each i choose $n_i \in Z$ with $\sup_{z \in D} |1 - z^{n_i}| < \varepsilon_i$. This is possible since D is a Kronecker set. Then $\int_D |\lambda^{n_i} - 1|^2 d\mu(\lambda) < \varepsilon_i^2 \mu(D) \to 0$ as $i \to \infty$. Therefore $\mathscr{A}_N(T) = \mathscr{B}$ by Theorem 13 if $N = \{n_i\}$.

We also note the following

THEOREM 15. If S is an invertible measure-preserving transformation with $\alpha_N(S)$ = ε and S does not have discrete spectrum there exists a weak-mixing shift T of a stationary Gaussian process with $\alpha_N(T) = \varepsilon$.

Proof. Let μ_S denote a measure having type equal to the maximal spectral type of S. μ_S can be chosen symmetric with respect to the real axis. Let μ be its continuous part which is nontrivial (by the assumption that S does not have discrete spectrum) and is symmetric. By the proof of Theorem 3, since $\mu \ll \mu_S$ we have $\int_K |\lambda^{n_i} - 1| d\mu(\lambda) \to 0$. So letting T be the shift defined on the Gaussian process with covariance

measure μ we obtain a transformation with $\alpha_N(T) = \varepsilon$ by Theorem 13, and T is weak-mixing since μ is a continuous measure [9].

Other examples of weak-mixing transformations with $\mathcal{A}_N = \mathcal{B}$ for some N are constructed in [7] by taking transformations induced from rotations of the unit circle.

6. **Problems.** We now discuss whether properties of ergodic transformations with discrete spectrum carry over to ergodic transformations with $\alpha_N(T) = \varepsilon$ for some N. Ergodic transformations with discrete spectrum have simple spectrum and this may account for the fact that some properties do not carry over. We first note that if T is ergodic and $\alpha_N(T) = \varepsilon$ then T need not have simple spectrum, for we could choose T weak-mixing and then $T \times T$ does not have simple spectrum but is ergodic and $\alpha_N(T \times T) = \varepsilon$ (Theorem 6).

If T is ergodic with discrete spectrum then T is coalescent, i.e. if S is measure-preserving and ST=TS then S is invertible. All transformations with simple spectrum have this property but it does not hold for all ergodic T with $\alpha_N(T)=\varepsilon$. Let T acting as (X, \mathcal{B}, m) be weak-mixing and $\alpha_N(T)=\varepsilon$ then $T_\infty=\prod_{i=1}^\infty T$ acting on $Y=\prod_{i=1}^\infty X$ is ergodic with $\alpha_N(T_\infty)=\varepsilon$ but commutes with the 1-sided shift with state space X.

The main result of [1] is that if T admits an approximation by periodic automorphisms (in the sense of Chacon and Schwarzbauer) and if S is an invertible measurepreserving transformation commuting with T there exists a sequence $\{j_n\}$ of integers such that $m(T^{j_n}A\Delta SA) \to 0$ for every $A \in \mathcal{B}$. This property is, of course, true for an ergodic T with discrete spectrum since every measure-preserving transformation commuting with an ergodic rotation of a compact abelian group is itself a rotation. It is not true in general for ergodic transformations with $\alpha_N = \varepsilon$ as the following example shows. Let T acting on (X, \mathcal{B}, m) be weak-mixing with $\alpha_N(T) = \varepsilon$. Put $T_{\infty} = \prod_{i=1}^{\infty} T$, $X_{\infty} = \prod_{i=1}^{\infty} X$, $\mathscr{B}_{\infty} = \prod_{i=1}^{\infty} \mathscr{B}$, $m_{\infty} = \prod_{i=1}^{\infty} m$, $S = \prod_{i=1}^{\infty} T^i$. T_{∞} and Sboth act on X_{∞} , $\alpha_N(T_{\infty}) = \varepsilon$ and $T_{\infty}S = ST_{\infty}$. However there is no sequence $\{j_n\}$ with $m_{\infty}(T_{\infty}^{j_n}A\Delta SA) \to 0$ for all $A \in \mathcal{B}_{\infty}$. However if T admits an approximation by periodic automorphisms in Chacon and Schwartzbauer's sense then T has simple spectrum and so we could pose the following problem that we have been unable to solve. If T has simple spectrum and $\alpha_N(T) = \varepsilon$ for some N and if S is an invertible measure-preserving transformation with ST=TS then does there exist a sequence $\{j_n\}$ of integers with $m(T^{j_n}A\Delta SA) \to 0$ for every $A \in \mathcal{B}$?

Another property enjoyed by an ergodic transformation T with discrete spectrum is that if S is measure-preserving and ST = TS then $\mathcal{A}_M(S) = \mathcal{B}$ for some sequence M. It is possible that if T has simple spectrum and $\mathcal{A}_N(T) = \mathcal{B}$ for some sequence N then each measure-preserving transformation S commuting with T has $\mathcal{A}_M(S) = \mathcal{B}$ for some sequence M. This is false if the condition of simplicity of the spectrum of T is replaced by ergodicity since we could take T to be the 2-sided direct product of a weak-mixing transformation with $\mathcal{A}_N = \mathcal{B}$ and then T commutes with the 2-sided shift S which is invertible and $\mathcal{A}_M(S) = \mathcal{N}$ for every sequence M (Theorem 8).

Another property of ergodic transformations with discrete spectrum is that $\{B \in \mathcal{B} \mid (B, X \setminus B) \text{ is a generator}\}\$ is dense in the metric space $\mathcal{B} \pmod{0}$ with the symmetric difference metric [16]. This is also true for totally ergodic transformations with quasi-discrete spectrum [5]. We have been unable to decide whether it is true for ergodic T with $\mathcal{A}_N(T) = \mathcal{B}$ for some N.

7. Noninvertible transformations. Suppose now that T is a noninvertible measure-preserving transformation of a Lebesgue space (X, \mathcal{B}, m) . If we define $\mathcal{A}_N(T) = \{A \in \mathcal{B} \mid m(T^{-n_i}A\Delta A) \to 0\}$ for a sequence $N = \{n_i\}_{i=1}^{\infty}$ of nonnegative integers and let $\alpha_N(T)$ denote the corresponding partition, then $T^{-1}\alpha_N(T) \leq \alpha_N(T)$ and one can show, as in the proof of Theorem 5, that $\alpha_N(T) \leq \pi(T)$ for each sequence N. Since $T_{\pi(T)}$ is an invertible measure-preserving transformation with zero entropy we have $T^{-1}\alpha_N(T) = \alpha_N(T)$ mod 0 for each sequence N. Hence to study the algebras $\alpha_N(T)$ for a noninvertible T it suffices to study $\alpha_N(T_{\pi(T)})$ for the invertible transformation $T_{\pi(T)}$.

REFERENCES

- 1. R. V. Chacon and T. Schwartzbauer, Commuting point transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 277-287. MR 39 #2939.
 - 2. N. A. Friedman and D. S. Ornstein, On mixing and partial mixing (to appear).
- 3. H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. MR 35 #4369.
- 4. L. W. Green and W. Parry, Ergodic theory of G-spaces, Bull. London Math. Soc. (to appear).
- 5. F. J. Hahn and W. Parry, Some characteristic properties of dynamical systems with quasi-discrete spectra, Math. Systems Theory 2 (1968), 179-190. MR 37 #6435.
- 6. P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan, no. 3, Math. Soc. Japan, Tokyo, 1956; reprint, Chelsea, New York, 1960. MR 20 #3958.
- 7. A. B. Katok and A. M. Stepin, *Approximations in ergodic theory*, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 81-106=Russian Math. Surveys 22 (1967), no. 5, 77-102. MR 36 #2776.
- 8. A. G. Kušnirenko, *Metric invariants of entropy type*, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 57-65 = Russian Math. Surveys 22 (1967), no. 5, 53-67. MR 36 #348.
- 9. G. Maruyama, The harmonic analysis of stationary stochastic processes, Mem. Fac. Sci. Kyūsyū Univ. A. 4 (1949), 45-106. MR 11, 257.
- 10. D. Newton, On Gaussian processes with simple spectrum, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 207-209. MR 34 #868.
- 11. W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757-771. MR 41 #5595.
- 12. M. S. Pinsker, Dynamical systems with completely positive or zero entropy, Dokl. Akad. Nauk SSSR 133 (1960), 1025-1026=Soviet Math. Dokl. 1 (1961), 937-938. MR 27 #2603.
- 13. A. I. Plesner and V. A. Rohlin, Spectral theory of linear operators. II, Uspehi Mat. Nauk 1 (1946), no. 1 (11), 71-191; English transl., Amer. Math. Soc. Transl. (2) 62 (1967), 29-175. MR 9, 43.
- 14. V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sb. 25 (67) (1949), 107-150; English transl., Amer. Math. Soc. Transl. (1) 10 (1962), 1-54. MR 11, 18.

- 15. V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3-56=Russian Math. Surveys 22 (1967), no. 5, 1-52. MR 36 #349.
- 16. ——, On endomorphisms of compact commutative groups, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 329–340. (Russian) MR 11, 40.
- 17. R. K. Thomas, Metric properties of transformations of G-spaces, J. London Math. Soc. (to appear).

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY, ENGLAND