A CHARACTERIZATION OF COMPACT MULTIPLIERS

GREGORY F. BACHELIS AND LOUIS PIGNO

Abstract. Let G be a compact abelian group and φ a complex-valued function defined on the dual Γ . The main result of this paper is that φ is a compact multiplier of type $(p,q), 1 \le p < \infty$ and $1 \le q \le \infty$, if and only if it satisfies the following condition: Given $\varepsilon > 0$ there corresponds a finite set $K \subset \Gamma$ such that $|\sum a_{\gamma}b_{\gamma}\varphi(\gamma)| < \varepsilon$ whenever $P = \sum a_{\gamma}\gamma$ and $Q = \sum b_{\gamma}\gamma$ are trigonometric polynomials satisfying $\|P\|_{\nu} \le 1$, $\|Q\|_{q'} \le 1$ (q' the conjugate index of q) and $b_{\gamma} = 0$ for $\gamma \in K$. Using the above characterization we obtain the following necessary and sufficient condition for φ to be the Fourier transform of a continuous complex-valued function on G: Given $\varepsilon > 0$ there corresponds a finite set $K \subset \Gamma$ such that $|\sum b_{\gamma}\varphi(\gamma)| < \varepsilon$ whenever $Q = \sum b_{\gamma}\gamma$ is a trigonometric polynomial satisfying $\|Q\|_1 \le 1$ and $b_{\gamma} = 0$ for $\gamma \in K$.

Throughout the paper G is a compact abelian group, φ a complex-valued function defined on the dual Γ and $L^p(G)$ $(1 \le p \le \infty)$ the usual Lebesgue space of index p formed with respect to Haar measure on G. Let M(G) denote the convolution algebra of complex-valued regular measures which are bounded on G, and C(G) the class of all continuous complex-valued functions defined on G.

The Fourier transform \hat{f} of a function $f \in L^1(G)$ is defined by

$$\hat{f}(\gamma) = \int_{C} f(x)(-x, \gamma) dx \qquad (\gamma \in \Gamma)$$

and the Fourier-Stieltjes transform $\hat{\mu}$ of a measure $\mu \in M(G)$ by

$$\hat{\mu}(\gamma) = \int_{G} (-x, \gamma) \, d\mu(x) \qquad (\gamma \in \Gamma).$$

The function φ is said to be a multiplier of type (p, q) if given $f \in L^p(G)$ there corresponds a $g \in L^q(G)$ such that $\varphi \hat{f} = \hat{g}$.

Now any (p,q) multiplier induces a bounded linear operator from $L^p(G)$ into $L^q(G)$, T_{φ} , where $(T_{\varphi}f)^{\wedge} = \varphi \hat{f}$ and T_{φ} commutes with translation. Conversely for $p < \infty$, there corresponds to any such bounded linear operator T mapping $L^p(G)$ into $L^q(G)$, a unique multiplier φ of type (p,q) such that $T = T_{\varphi}$ (see [5, pp. 249–250]). We say that φ is a compact multiplier if T_{φ} is a compact operator. Let $M_p^q(\Gamma)$ denote the set of all multipliers of type (p,q) and $m_p^q(\Gamma)$ the set of all $\varphi \in M_p^q(\Gamma)$ which are compact. Then $M_p^q(\Gamma)$ is a Banach space where the norm $\|\cdot\|_{(p,q)}$ of the multiplier φ is defined to be the norm of the multiplier operator T_{φ} . Let $\mathfrak{F}(G)$

Received by the editors February 2, 1971.

AMS 1970 subject classifications. Primary 42A16, 42A18, 43A22; Secondary 42A08, 47B05.

denote the set of all trigonometric polynomials on G and $\mathfrak{F}(G)$ the set of all functions on Γ which are Fourier transforms of functions in $\mathfrak{F}(G)$. The following lemma is important in the sequel.

LEMMA. Let $1 \le p < \infty$ and $1 \le q \le \infty$. Then the closure of $\mathfrak{F}(G)$ in $M_p^q(\Gamma)$ is precisely $m_p^q(\Gamma)$.

Proof. If $P \in \mathfrak{F}(G)$ then the convolution product $P * L^p(G)$ is finite dimensional. Therefore convolution by P is an operator of finite rank. Thus the closure of $\mathfrak{F}(G)$ is contained in $m_p^p(\Gamma)$.

On the other hand, if $\varphi \in m_p^q(\Gamma)$, let $\varphi_\alpha = \varphi \hat{e}_\alpha$, where e_α is a bounded approximate identity in $L^1(G)$ consisting of trigonometric polynomials. Then $\varphi_\alpha \in \mathfrak{F}(G)$ and $\|\varphi_\alpha - \varphi\|_{(p,q)} \to 0$. (See Gaudry [8] or Bachelis and Gilbert [1] for details.)

Our main result is the following characterization of $m_p^q(\Gamma)$:

THEOREM. Let φ be a complex-valued function defined on Γ , $1 \le p < \infty$ and $1 \le q \le \infty$. The following statements are equivalent:

- (i) $\varphi \in m_p^q(\Gamma)$;
- (ii) Given $\varepsilon > 0$, there corresponds a finite subset $K \subset \Gamma$ such that $|\sum a_{\gamma}b_{\gamma}\varphi(\gamma)| < \varepsilon$ whenever $P = \sum a_{\gamma}\gamma$ and $Q = \sum b_{\gamma}\gamma$ are trigonometric polynomials satisfying $||P||_p \le 1$, $||Q||_{q'} \le 1$ (q' the conjugate index of q) and $b_{\gamma} = 0$ for $\gamma \in K$.

If p = 1, then both (i) and (ii) are equivalent to

- (iii) Given $\varepsilon > 0$, there corresponds a finite subset $K \subset \Gamma$ such that $|\sum b_{\gamma} \varphi(\gamma)| < \varepsilon$ whenever $Q = \sum b_{\gamma} \gamma$ is a trigonometric polynomial with $||Q||_{q'} \le 1$ and $b_{\gamma} = 0$ for $\gamma \in K$.
- **Proof.** (i) \Rightarrow (ii). Let $\varepsilon > 0$ be given. There corresponds by the preceding lemma a trigonometric polynomial L such that $||L T_{\varphi}||_{(p,q)} < \varepsilon$.

Let K be the finite support of \hat{L} and let P and Q be as in (ii). Then Q * L = 0, so

$$\left| \sum \hat{P}(\gamma)\hat{Q}(\gamma)\varphi(\gamma) \right| = |T_{\varphi}(P) * Q(0)| = |T_{\varphi}(P) * Q(0) - L * P * Q(0)|$$

$$\leq \|T_{\varphi}(P) - L * P\|_{q} \|Q\|_{q'} \leq \|T_{\varphi} - L\|_{(p,q)} \|P\|_{p} \|Q\|_{q'}$$

$$< \varepsilon.$$

(ii) \Rightarrow (i). The function φ induces a linear mapping of $\Im(G)$ into $\Im(G)$ as follows:

$$T(P) = \sum \hat{P}(\gamma)\varphi(\gamma)\gamma$$
 $(P \in \mathfrak{F}(G)).$

Let $\varepsilon > 0$. We claim it is enough to show that there exists a trigonometric polynomial N such that

$$||T(P)-N*P||_q<\varepsilon$$

for all trigonometric polynomials P such that $||P||_p \le 1$. Since $p < \infty$, this implies that T has a continuous extension \tilde{T} to $L^p(G)$ which necessarily is compact and commutes with translation. Hence, $\tilde{T} = T_{\psi}$ for some ψ in $m_p^q(\Gamma)$. Since $\tilde{T}(\gamma)^{\hat{\gamma}}(\gamma) = \varphi(\gamma)$ we may conclude $\psi = \varphi$.

So let K be as in (ii) corresponding to $\varepsilon/3$. Now choose a trigonometric polynomial R such that $||R||_1 \le 2$ and $\hat{R}|_{K=1}$; see [10, p. 53]. Put $N = \sum \hat{R}(\gamma)\varphi(\gamma)\gamma$. To show (*) it suffices to prove that

$$|(T(P)-N*P)*Q(0)| < \varepsilon$$

for all trigonometric polynomials Q such that $||Q||_{q'} \le 1$. Given such a Q let $Q_1 = \frac{1}{3}(Q - Q * R)$. Then

$$||Q_1||_{q'} \le \frac{1}{3}(||Q||_{q'} + ||Q||_{q'}||R||_1) \le 1$$
 and $\hat{Q}_1|K = 0$.

Thus by the choice of K, $|\sum \hat{P}(\gamma)\hat{Q}_1(\gamma)\varphi(\gamma)| < \varepsilon/3$. But

$$\sum \hat{P}(\gamma)\hat{Q}_1(\gamma)\varphi(\gamma) = \frac{1}{3}\left[\sum \hat{P}(\gamma)\hat{Q}(\gamma)\varphi(\gamma) - \sum \hat{P}(\gamma)\hat{Q}(\gamma)\hat{R}(\gamma)\varphi(\gamma)\right]$$
$$= \frac{1}{3}\left[T(P) * Q(0) - N * P * Q(0)\right]$$

which proves (**).

Suppose now that p=1. We will show that (ii) \Leftrightarrow (iii). If (ii) holds and $\varepsilon > 0$, let K be as given by (ii) corresponding to $\varepsilon/2$.

If Q is a trigonometric polynomial with $||Q||_{q'} \le 1$ and $\hat{Q}|K=0$, choose a trigonometric polynomial P such that $||P||_1 \le 3/2$ and P * Q = Q.

Then

$$\left| \sum \hat{Q}(\gamma)\varphi(\gamma) \right| = \left| \sum \hat{P}(\gamma)\hat{Q}(\gamma)\varphi(\gamma) \right| < (\varepsilon/2) \|P\|_1 < \varepsilon.$$

Therefore (ii) \Rightarrow (iii).

Suppose now that (iii) holds. Given $\varepsilon > 0$ let K be as given by (iii). If P and Q are trigonometric polynomials with $||P||_1 \le 1$, $||Q||_{q'} \le 1$, and $\hat{Q}|K=0$, then

$$||P * Q||_{q'} \le ||P||_1 ||Q||_{q'} \le 1$$
 and $(P * Q)^{\hat{}}|K = 0$.

Thus

$$\left|\sum \hat{P}(\gamma)\hat{Q}(\gamma)\varphi(\gamma)\right| = \left|\sum (P*Q)^{\hat{}}(\gamma)\varphi(\gamma)\right| < \varepsilon$$

and this concludes the proof.

Applying the above characterization in the special cases $m_1^1(\Gamma)$ and $m_1^{\infty}(\Gamma)$ we obtain the following corollary:

COROLLARY. Let φ be a complex-valued function defined on Γ .

- (a) The function $\varphi \in L^1(G)^{\wedge}$ if and only if it satisfies the following condition: Given $\varepsilon > 0$ there corresponds a finite subset $K \subset \Gamma$ such that $|\sum b_{\gamma} \varphi(\gamma)| < \varepsilon$ whenever $Q = \sum b_{\gamma} \gamma$ is a trigonometric polynomial satisfying $||Q||_{\infty} \le 1$ and $b_{\gamma} = 0$ for $\gamma \in K$.
- (b) The function $\varphi \in C(G)^{\wedge}$ if and only if it satisfies the following condition: Given $\varepsilon > 0$ there corresponds a finite subset $K \subset \Gamma$ such that $|\sum b_{\gamma} \varphi(\gamma)| < \varepsilon$ whenever $Q = \sum b_{\gamma} \gamma$ is a trigonometric polynomial satisfying $||Q||_1 \le 1$ and $b_{\gamma} = 0$ for $\gamma \in K$.

Proof. Clearly it is enough to show that

$$m_1^1(\Gamma) = L^1(G)^{\hat{}}$$

and

$$(2) m_1^{\infty}(\Gamma) = C(G)^{\hat{}}.$$

Now $M_1^1(\Gamma) = M(G)^{\hat{}}$ and $M_1^{\infty}(\Gamma) = L^{\infty}(G)^{\hat{}}$ (see [7, p. 368] and [9]), thus (1) and (2) follow from the lemma since the closure of $\mathfrak{F}(G)$ in M(G) ($L^{\infty}(G)$) is $L^1(G)$ (C(G)).

REMARKS. For compact abelian groups, the above characterization of transforms of absolutely continuous measures is Theorem 2 of Doss [3, pp. 361–362]. Theorem 2 of [3] in the noncompact case may be obtained by simple modifications of the above proofs, which we omit. For an interesting reformulation of Theorem 2 of [3] the reader is referred to [2, p. 114]. For different characterizations of transforms of $L^1(G)$ and C(G) functions, see Theorems 3 and 4 of [6, pp. 245–246]. In this connection see also Theorem 2 of [4, p. 78].

REFERENCES

- 1. G. F. Bachelis and J. E. Gilbert, Banach spaces of compact multipliers and their dual spaces, Math. Z. (to appear).
- 2. R. Doss, Approximations and representations for Fourier transforms, Trans. Amer. Math. Soc. 153 (1971), 103-114.
- 3. ——, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361–363. MR 36 #5619.
- 4. ——, On the Fourier-Stieltjes transforms of singular or absolutely continuous measures, Math. Z. 97 (1967), 77–84. MR 35 #665.
- 5. R. E. Edwards, Fourier series: A modern introduction. II, Holt, Rinehart and Winston, New York, 1967. MR 36 #5588.
- 6. ——, Criteria for Fourier transforms, J. Austral. Math. Soc. 7 (1967), 239-246. MR 35 #7078.
 - 7. ——, On factor functions, Pacific J. Math. 5 (1955), 367-378. MR 17, 283.
- 8. G. I. Gaudry, *Quasimeasures and multiplier problems*, Doctoral Thesis, Australian National University, Canberra, Australia, 1966.
- 9. H. Helson, Isomorphisms of abelian group algebras, Ark. Math. 2 (1953), 475-487. MR 15, 327.
- 10. W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808.

KANSAS STATE UNIVERSITY, MANHATTAN, KANSAS 66502

Current address (Bachelis): Wayne State University, Detroit, Michigan 48202