WALL MANIFOLDS WITH INVOLUTION

RY

R. J. ROWLETT

ABSTRACT. Consider smooth manifolds $\mathbb W$ with involution t and a Wall structure described by a map $f\colon \mathbb W \to S^1$ such that ft=f. For such objects we define cobordism theories $\mathbb W^I_*$ (in case $\mathbb W$ is closed, t unrestricted), $\mathbb W^F_*$ (for $\mathbb W$ closed, t fixed-point free), and $\mathbb W^{\rm rel}_*$ ($\mathbb W$ with boundary, t free on $\mathbb W$). We prove that there is an exact sequence

$$0 \longrightarrow \mathbf{W}_{*}^{I} \longrightarrow \mathbf{W}_{*}^{\text{rel}} \longrightarrow \mathbf{W}_{*}^{F} \longrightarrow 0.$$

As a corollary, \mathbf{W}_{*}^{I} imbeds in the cobordism of unoriented manifolds with involution. We also describe how \mathbf{W}_{*}^{I} determines the 2-torsion in the cobordism of oriented manifolds with involution.

1. Introduction. C. T. C. Wall defined the class of manifolds now named for him in order to compute the 2-torsion of oriented cobordism [8]. In this paper we will show how a similar construction determines, in principle, the 2-torsion of the cobordism of oriented manifolds with involution.

Let W be a smooth, unoriented manifold. A Wall structure on W is a homotopy class of maps $f:W\to S^1$ such that $f^*(\iota)$ is the Stiefel-Whitney class $w_1(W)$, where $\iota\in H^1(S^1;Z_2)\cong Z_2$ is the generator. Equivalently, a Wall structure is given by a class $x\in H^1(W;Z)$ whose reduction mod 2 is $w_1(W)$. If $t\colon W\to W$ is a smooth involution, we say that (W,t,f) is a Wall manifold with involution provided f(w)=f(t(w)) for all $w\in W$. We define a cobordism theory W_*^I for such objects, a similar theory W_*^F for Wall manifolds with free involution, and a theory W_*^{rel} for Wall manifolds with boundary and an involution free on the boundary. The major result is that there is an exact sequence

$$0 \to \mathbf{W}_*^I \to \mathbf{W}_*^{\text{rel}} \to \mathbf{W}_*^F \to 0.$$

By comparison with a theorem of Conner and Floyd [3, p. 73] this proves that \mathbf{W}_*^I imbeds in the cobordism $I_*(Z_2)$ of manifolds with involution.

In the last section we will define a cobordism theory $O_*(Z_2)$ of oriented manifolds with involution, which contains as a summand the theory $\mathcal{C}_*(Z_2)$ studied by

Received by the editors October 4, 1971.

AMS 1970 subject classifications. Primary 57D85; Secondary 57D85, 57D15.

Key words and phrases. Wall manifold, orientation-preserving involution, equivariant cobordism.

Rosenzweig [5] and Conner [2]. There is a Rohlin sequence

$$\bigvee_{*}^{I} \longrightarrow 0_{*}(Z_{2})$$

$$\downarrow_{0_{*}(Z_{2})}^{2}$$

which is exact at the upper corners (but not at the lower one). This outlines a possible calculation of the 2-torsion of $\mathbf{0}_*(Z_2)$, although the practical difficulties remain considerable.

2. Involutions and Wall structures. Let $(W, f: W \to S^1)$ be a Wall manifold, and let t be an involution on W, with $\pi: W \to W/t$ as quotient map. If $x \in H^1(W; Z)$ is the class whose mod 2 reduction is $w_1(W)$, we have this equivalent to our definition of a structure-preserving map:

Proposition 2.1. (W, t, f) is a Wall manifold with involution if and only if there is a class $y \in H^1(W/t; Z)$ such that $\pi^*(y) = x$.

The proof is trivial, since both conditions are equivalent to the existence of a map $b: W/t \rightarrow S^1$ such that $f \cong b\pi$.

Next, suppose that t is fixed point free. Then W/t is a smooth manifold with boundary $(\partial W)/t$, and π is a principal Z_2 -bundle. If $y \in H(W/t; Z)$ meets the conditions of (2.1), then

$$\pi^*(w_1(W/t)) = w_1(W),$$

$$\pi^*(\rho(y)) = \rho(\pi^*(y)) = w_1(W), \qquad \rho = \text{mod 2 reduction.}$$

It does not follow that $w_1(W/t) = \rho(y)$, but recall that in the Gysin sequence of π there is an exact sequence

$$H^0(W/t; Z_2) \longrightarrow H^1(W/t; Z_2) \xrightarrow{\pi^*} H^1(W; Z_2),$$

where the left map is multiplication by the characteristic class $w_1(\pi)$. This proves

Proposition 2.2. If W/t is connected, then either $\rho(y) = w_1(W/t)$ or else $\rho(y) = w_1(W/t) + w_1(\pi)$.

This provides a tool for studying W/t, which need not be a Wall manifold.

Our cobordism theories are established by standard arguments. Let $i: \partial W \subset W$, and recall that $w_1(\partial W) = i*w_1(W)$. The boundary of a Wall manifold with involution (W, t, g) is the Wall manifold with involution (W, ti, gi). Two closed, n-dimensional Wall manifolds with involution are cobordant if their disjoint union bounds a Wall manifold with involution. It is easy to check that this defines an equivalence relation, and that the set W_n^I of equivalence classes is a Z_2 -vector space

with operation induced by disjoint union. Further, the direct sum \mathbf{W}_*^I of the \mathbf{W}_n^I is a module over the Wall cobordism ring \mathbf{W}_* , with multiplication induced by Cartesian product, and by use of the multiplication $S^1 \times S^1 \to S^1$ of complex numbers of norm 1. A similar argument, with all involutions required to be free, produces the cobordism \mathbf{W}_*^F of Wall manifolds with free involution.

Finally, if (W_1, t_1, g_1) and (W_2, t_2, g_2) are n-dimensional Wall manifolds with involutions t_i free on ∂W_i , then they are cobordant if there is a Wall manifold with involution (V, u, b), having $W_1 \cup_{\emptyset} W_2$ as a submanifold of ∂V , u free on $\partial V - \operatorname{int}(W_1 \cup W_2)$, $u | W_i = t_i$ and $b | W_i = g_i$. This is also an equivalence relation, and the equivalence classes form a W_* -module W_i^{rel} .

The assignment $\partial(W, t, g) = (\partial W, ti, gi)$ defines a homomorphism $\mathbb{W}_n^{\mathrm{rel}} \to \mathbb{W}_{n-1}^F$, also called ∂ . Let $r \colon \mathbb{W}_n^F \to \mathbb{W}_n^I$ and $s \colon \mathbb{W}_n^I \to \mathbb{W}_n^{\mathrm{rel}}$ be the obvious forgetful homomorphisms. It is straightforward, if tedious, to prove the cobordism exact sequence.

Proposition 2.3. The sequence

$$W_*^I \xrightarrow{S} W_*^{\text{rel}} \xrightarrow{\partial} W_*^F$$

is exact.

In the next section we will need to know something about the characteristic classes of a projective space bundle. Suppose $x^k \to B$ is a vector bundle of dimension k, and let $Sx \to B$ be its (k-1)-sphere bundle. The following calculation follows from well-known results of Borel and Hirzebruch, and is proved in [3, Theorem 23.3]:

Proposition 2.4. Let Px = Sx/t, where $t: Sx \to Sx$ is the involution antipodal on each fiber, and let π and p be the obvious projections:

Then $w_1(Px) = p*(w_1(B) + w_1(x)) + kw_1(\pi)$.

Corollary 2.5. If the disk bundle Dx is a Wall manifold and k is even, then Px is also a Wall manifold.

Proof. If $r: Dx \to B$ is the projection, note that $w_1(Dx) = r^*(w_1(B) + w_1(x))$ is an integral class, by hypothesis. Since B is homotopy equivalent to Dx it follows that $w_1(Px) = p^*(w_1(B) + w_1(x))$ is also integral. ***

3. Imbedding W^l_* in $I_*(Z_2)$. We begin by calculating W^F_* from Proposition 2.2. Suppose (W, f) is a Wall manifold and $g \colon W \to RP^\infty$ is any smooth map. The pullback of the universal Z_2 -bundle $S^\infty \to RP^\infty$ is a cover $q \colon W' \to W$, and $w_1(W') = q * w_1(W) = (fq) * (\iota)$. Therefore, if $t_q \colon W' \to W$ reverses the sheets of the cover, $(W', t_{q'}, fq)$ is a Wall manifold with free involution. This construction defines a homomorphism

$$k: \mathbf{W}_{\star}(RP^{\infty}) \to \mathbf{W}_{\star}^{F}$$

Now let V be any smooth manifold, and $f\colon V\to S^1$ any smooth map. Corresponding to the cohomology class $f^*(\iota)+w_1(V)\in H^1(V;Z_2)$ is a map $V\to RP^\infty$ and hence a Z_2 -bundle $q\colon W'\to V$. By construction,

$$(fq)^*(\iota) + w_1(W') = q^*(f^*(\iota) + w_1(V)) = q^*(w_1(q)) = 0.$$

Therefore, (W', t_q, fq) is again a Wall manifold with free involution. This defines a homomorphism

$$j: \mathfrak{N}_*(S^1) \to \mathbb{W}_*^F$$
.

There are monomorphisms $a: \mathbf{W}_* \to \mathfrak{R}_*(S^1)$ and $b: \mathbf{W}_* \to \mathbf{W}_*(RP^{\infty})$ given by $a(W, f) = (W \to * \in S^1)$ and $b(W, f) = (W, f; W \to * \in RP^{\infty})$.

(See [6] for a discussion of these and other results from the theory of Wall cobordism.) Since $ja(W, f) = kb(W, f) = (W \times Z_2, -1, *)$, we have the commutative diagram:

$$\mathbb{W}_{*}(RP^{\infty}) \xrightarrow{k} \mathbb{W}_{*}^{F}$$

$$\downarrow b \qquad \qquad \downarrow j \qquad \qquad \downarrow j$$

The computation of \mathbf{W}_*^F is now easy:

Theorem 3.1. k and j are monic, and

$$k+j \colon \mathbf{W}_*(RP^\infty) \oplus \mathfrak{N}_*(S^1) \longrightarrow \mathbf{W}_*^F$$

is epic, with kernel $a\mathbf{W}_* \oplus b\mathbf{W}_*$.

Proof. k must be a monomorphism, for there is a commutative diagram

$$\begin{array}{ccc}
\mathbf{W}_{*}(RP^{\infty}) & \xrightarrow{\phi} & \mathfrak{N}_{*}(RP^{\infty}) \\
\downarrow k & & & & \cong \\
\mathbf{W}_{*}^{F} & \longrightarrow & \mathfrak{N}_{*}(Z_{2})
\end{array}$$

in which the horizontal maps forget Wall structure, and ϕ is known to be monic. Define an inverse for j, assigning to the class of (W, t, g) the class of the induced map $g_{\#}: W/t \to S^1$.

Proposition 2.2 shows that k+j is epic. Now suppose $\pi\colon W'\to W$ is a double cover, and $b\colon W\to S^1$ is such that $(W',\,t_{\pi'},\,b\pi)$ is a cobordism between $(M'_1,\,t_{\pi^i}i_1,\,b\pi i_1)$, a representative of $m_1\in\operatorname{Im} k$, and $(M'_2,\,t_{\pi^i}i_2,\,b\pi i_2)$, a representative of $m_2\in\operatorname{Im} j$, where $i_x\colon M'_x\subset W'$. Then W is a cobordism between $M_1=\pi M'_1$ and $M_2=\pi M'_2$, and by hypothesis, $b^*\iota|M_1=w_1(M_1)$, while $b^*\iota|M_2=w_1(M_2)+w_1(\pi|M_2)$. By (2.2), either $b^*\iota=w_1(W)$, in which case $w_1(\pi|M_2)=0$ and $m_2\in\operatorname{Im} ja$, or else $b^*\iota=w_1(W)+w_1(\pi)$, in which case $w_1(\pi|M_1)=0$ and $m_1\in\operatorname{Im} kb$. This completes the proof. ***

The next task is to describe the structure of W. rel.

Theorem 3.2. There is an isomorphism

$$\beta \colon \mathbf{W}_{*}^{\mathsf{rel}} \cong \widetilde{\mathbf{W}}_{*} \left(\bigvee_{k} TBO_{k} \right)$$

given by a standard "normal bundle to the fixed set" construction (as in [3, p. 73]).

Proof. To review the construction, let (M, t, g) represent an element of $\mathbb{W}^{\mathrm{rel}}_*$, let F^k be the k-dimensional component of the fixed set of t, and let $\nu^{n-k} \to F^k$ be its normal bundle in M. There is a tubular neighborhood of F^k equivariantly diffeomorphic to the disk bundle $D\nu^{n-k}$, where $D\nu^{n-k}$ is given an involution antipodal in each fiber. $D\nu^{n-k}$ thus acquires a Wall structure by imbedding in M, so classifying $D\nu^{n-k}$ produces an element of $\widetilde{W}_n(TBO_{n-k})$.

Conversely, suppose $b: (M, \partial M) \to (TBO_j, \infty)$ represents some element of $\widetilde{W}_n(TBO_j)$, with $f: M \to S^1$ defining the Wall structure. Set $BO_j \subset TBO_j$ as the zero section of the universal bundle y^j , and make b transverse regular on BO_j . Then $F = b^{-1}BO_j$ has a tubular neighborhood D diffeomorphic to Db^*y^j , so that, if we give D the Wall structure induced by that of M, and the involution S antipodal in the fibers of b^*y^j , we obtain a Wall manifold together with an involution whose fixed set is F. This construction produces an inverse for B, as in [3], but we must verify that D as D is a Wall manifold with involution. Recall that there is a retraction D as D factoring through D and D is an isomorphism, D is epic, and Proposition 2.1 applies.

Theorem 3.3. The map $\partial: W^{rel}_* \to W^F_*$ of (2.3) is an epimorphism. Thus there is an exact sequence

$$0 \to \mathbb{V}^I_* \xrightarrow{s} \mathbb{V}^{\mathrm{rel}}_* \xrightarrow{\partial} \mathbb{V}^F_* \to 0.$$

Proof. There are two steps; we show that $\partial \widetilde{W}_*(\bigvee_{k \text{ odd}} TBO_k)$ covers Im j, and that $\partial \widetilde{W}_*(\bigvee_{k \text{ even}} TBO_k)$ covers Im k.

Lemma 3.4. The composite

$$\widetilde{\mathbf{W}}_{*}(TBO_{1}) \xrightarrow{\beta-1} \mathbf{W}_{*}^{rel} \xrightarrow{\partial} \mathbf{W}_{*}^{F} \xrightarrow{j-1} \mathfrak{R}_{*}(S^{1})$$

is well defined and an isomorphism.

Proof. Let $(W, t, f\pi)$, where $\pi: W \to W/t$, represent an element of $\operatorname{Im} j \in W_*^F$. Let $d: D\xi \to W/t$ be the disk bundle of the line bundle associated with π . By definition of j,

$$w_{1}(\xi) = w_{1}(\pi) = f^{*}(\iota) + w_{1}(W/t),$$

$$w_{1}(D\xi) = d^{*}(w_{1}(\xi) + w_{1}(W/t)) = (fd)^{*}(\iota),$$

so $D\xi$ is a Wall manifold with boundary, and $(W, t, f\pi)$ represents the image of $[D\xi] \in \widetilde{W}_*(TBO_1)$. Thus $j^{-1}\partial\beta^{-1}$ is defined and epic. A simple calculation shows that $\mathfrak{N}_n(S^1)$ has the same rank as $\widetilde{W}_{n+1}(TBO_1) \cong W_n(RP^\infty)$, so $j^{-1}\partial\beta^{-1}$ is an isomorphism.

Lemma 3.5. The composite

$$\widetilde{\mathbb{W}}_*(TBO_2) \xrightarrow{\beta^{-1}} \mathbb{W}_*^{\mathsf{rel}} \xrightarrow{\partial} \mathbb{W}_*^F \xrightarrow{k^{-1}} \widetilde{\mathbb{W}}_*(RP^{\infty})$$

is well defined and an epimorphism.

Proof. If $a \in \widetilde{W}_*(TBO_2)$, $\partial \beta^{-1}(a)$ is represented as the sphere bundle Sx of some 2-dimensional bundle x, together with the antipodal involution. By Corollary 2.5, the quotient space Px is also a Wall manifold, so $\partial \beta^{-1}(a) \in \operatorname{Im} k$.

We will exhibit a W_* -basis of $\widetilde{W}_*(RP^{\infty})$ which lies in the image of $k^{-1}\partial\beta^{-1}$. To be specific, there are manifolds W^j , in each dimension $j \ge 1$, with these properties:

- (1) There is an $\alpha \in H^1(W^j; Z_2)$ so that α^j is the generator of $H^j(W^j; Z_2) \cong Z_2$.
- (2) Each W^j is a Wall manifold.
- (3) Each $W^{j} = Px_{j}$ for some two-dimensional bundle x_{j} .
- (4) $w_1(W^j)$ is the image of some integral class in the cohomology of the base of x_j .

If $h_j: W^j \to RP^\infty$ classifies α , then the first and second properties assure that (W^j, h_j) represents a set of generators of $\widetilde{W}_*(RP^\infty)$ over W_* . The third and fourth properties, together with Proposition 2.4, assure that the Dx_j are Wall manifolds, so that the W^j lie in the image of $k^{-1}\partial\beta^{-1}$. Since all three maps are clearly W_* -homomorphisms, the lemma will follow.

The necessary examples were constructed by P. G. Anderson in [1]. If $\lambda \to RP^n$ is the canonical line bundle, define (m+n)-manifolds

$$M(m, n) = P(\lambda \oplus m \rightarrow RP^n).$$

Then

$$H^*(M(m, n); Z_2) = Z_2[\alpha, \beta]/\langle \alpha^{m+1} + \alpha^m \beta, \beta^{n+1} \rangle$$
, dim $\alpha = \dim \beta = 1$.

If m is odd and n is even, M(m, n) is orientable. If m is odd and n = 1, M(m, 1) is a Wall manifold, and $w_1(M(m, 1)) = \beta + (m + 1)\alpha = \beta$ is induced from an integral class in the cohomology of the base S^1 . Next, let $\lambda' \to M(m, 1)$ be the canonical line bundle. Define an (m + 2)-manifold

$$M(1, m, 1) = P(\lambda' \oplus 1 \longrightarrow M(m, 1)).$$

Then

$$H^*(M(1, m, 1); Z_2) = Z_2[\alpha, \beta, \gamma]/(\alpha^2 + \alpha\beta, \beta^{m+1} + \beta^m \gamma, \gamma^2),$$

 $\dim \alpha = \dim \beta = \dim \gamma = 1.$

For m even, M(1, m, 1) is a Wall manifold, and $w_1(M(1, m, 1)) = \gamma + (m+2)\beta = \gamma$ is induced from an integral class in the cohomology of the base M(m, 1). All these calculations are expanded in [1].

The required manifolds are

$$W^{j} = \begin{cases} M(1, 2k), & \text{if } j = 2k + 1 \ge 3, \\ M(1, 2k - 2, 1), & \text{if } j = 2k \ge 4. \end{cases}$$

In the low dimensions, $W^1 = S^1 = P(1 \oplus 1 \rightarrow pt)$ and $W^2 = M(1, 1) =$ the Klein bottle. Properties (2), (3), and (4) are clear from Anderson's construction; property (1) for the class $\alpha \in H^1(W^j; Z_2)$ is immediate from the indicated structure of $H^*(W^j; Z_2)$.

This completes the proof of Theorem 3.3. ***

Corollary 3.6. There is a commutative diagram

$$0 \longrightarrow \mathbf{W}_{*}^{I} \xrightarrow{s} \mathbf{W}_{*}^{\text{rel}} \xrightarrow{\partial} \mathbf{W}_{*}^{F} \longrightarrow 0$$

$$\downarrow^{a} \qquad \downarrow^{b} \qquad \downarrow^{c}$$

$$0 \longrightarrow I_{*}(Z_{2}) \longrightarrow \mathfrak{R}_{*} \left(\bigvee_{k} TBO_{k}\right) \longrightarrow \mathfrak{R}_{*}(Z_{2}) \longrightarrow 0$$

the lower sequence being that of [3, Theorem 28.1], and a and b are monomorphisms.

This follows at once, since the map

$$\mathbb{W}_* \left(\bigvee_k TBO_k \right) \to \mathfrak{N}_* \left(\bigvee_k TBO_k \right),$$

forgetting Wall structure, is known to be monic.

4. Oriented manifolds with involution. Rosenzweig [5] and Conner [2] have studied the cobordism group $\mathcal{O}_*(Z_2)$ of orientation-preserving involutions on closed oriented manifolds. In this section we consider this subject from a different point of view.

Let $t\colon M\to M$ be an involution on an oriented manifold with boundary. Clearly, t will be orientation-preserving on ∂M if and only if it is orientation-preserving on M. If ∂M is the disjoint union of N_1 and N_2 then we say that (M,t) is a cobordism between $(N_1,t|N_1)$ and $(N_2,t|N_2)$, and thus construct the cobordism group $\mathbf{0}_*(Z_2)$ of oriented manifolds with involution (no restriction on t's action on the orientation). $\mathbf{0}_*(Z_2)$ is obviously a module over the oriented cobordism ring Ω_* , with multiplication induced by the Cartesian product. $\mathcal{O}_*(Z_2)\subset \mathbf{0}_*(Z_2)$, and indeed

$$\mathbf{0}_{*}(Z_{2}) = \mathcal{O}_{*}(Z_{2}) \oplus \mathcal{R}_{*}(Z_{2}),$$

where $\Re_*(Z_2)$ can be interpreted as the cobordism of oriented manifolds with orientation-reversing involution.

In order to relate $\mathbf{0}_*(Z_2)$ to $\mathbf{W}_*(Z_2)$, one would like to define a map $\partial : \mathbf{W}_*(Z_2) \to \mathbf{0}_*(Z_2)$, of degree -1, which associates to the class of (W, t, f) the class of (N, t|N), where N is a submanifold of W invariant under t and dual to $w_1(W)$. This makes sense if, for some point $* \in S^1$, f is equivariantly homotopic to a map $g: W \to S^1$ which is transverse regular at *, for then $N = g^{-1}(*)$ will have the needed properties (see Wall's original construction $[8, \S 1]$).

Lemma 4.1. Let (M, t) be a manifold with involution, X any manifold, and $* \in X$. Any equivariant map $f: (M, t) \to (X, 1_X)$ can be equivariantly homotoped to a map g which is transverse regular at *. Further, if $A \subseteq M$ is an invariant closed set and f is transverse regular at * for points of A, the homotopy can be kept fixed on a neighborhood of A.

The technique of proof is standard; for a more extensive use see Stong [7, Lemma 4.2]. Briefly, we homotope f to be transverse regular on the fixed set F of t. Since F is an equivariant strong neighborhood deformation retract, we may assume f to be transverse regular on a neighborhood of F. We may extend the result to all of f if we can prove the theorem under the assumption that f is free. In that case, divide out the action of f, obtaining f: f is the made transverse regular via some f: f is the desired equivariant homotopy. ***

Using this lemma, it is easy to prove that ∂ is well defined. We now prove that there is a partial Rohlin sequence relating $\mathbf{W}_{*}(Z_{2})$ and $\mathbf{O}_{*}(Z_{2})$.

Theorem 4.2. Let $p: \mathbf{O}_*(Z_2) \to \mathbf{W}_*(Z_2)$ be defined by assigning to the class of (M, t) the class of $(M, t, *: M \to point \in S^1)$. There is an exact sequence

$$\mathbf{O}_*(Z_2) \stackrel{p}{\to} \mathbf{W}_*^l \stackrel{\partial}{\to} \mathbf{O}_*(Z_2) \stackrel{2}{\to} \mathbf{O}_*(Z_2),$$

where 2 represents multiplication by 2.

Note. There is clearly an inclusion Im $2 \subseteq \text{Ker } p$, but Conner has shown it to be proper [2, Theorem 5.8].

Proof. If W is orientable, $w_1(W) = 0$ and its dual submanifold is \emptyset , so $\partial p = 0$.

If $\partial(w)=0$, and w is represented by $(W,\,t,\,f)$ with f transverse regular at $*\in S^1$, then $N=f^{-1}(*)$ bounds some oriented manifold M with involution m. Now the normal bundle of N in W is trivial by construction, so one can form $(S,\,s)$ from $(W\times I,\,t\times 1_I)$ and $(M\times I,\,m\times 1_I)$ by identifying an equivariant tubular neighborhood D of $N\times 1$ in $W\times 1$ with $(N\times I,\,t|N\times 1_I)\subset (M\times I,\,m\times 1_I)$. The result is a cobordism between $(W,\,t,\,f)=(W,\,t,\,f)\times 0$ and an object of the form $(\operatorname{cl}(W-D)\cup (M\times\partial I),\,t',\,f')$. We may assume, from the construction, that $\operatorname{Im} f'$ misses *, so this object lies in $\operatorname{Im} p$.

To show that $2\partial = 0$, let $\partial(W, t, f) = (N, t|N)$ as before, and deform f so that, on a tubular neighborhood D of N, f factors through the projection $D \to N$. If V = W - Int D, then V is orientable, and $\partial(V, t|V) = 2(N, t|N)$.

Finally, suppose (M, t') is an oriented manifold with involution, and (M, t') $\times (S^0, 1) = \partial(U, u)$. Let $* \in S^1$ have a tubular neighborhood D with boundary S^0 . Using a tubular neighborhood of ∂U , we can easily construct a map $f: U \to S^1$. Int $D \subset S^1$ which is the projection $M \times S^0 \to S^0$ when restricted to ∂U . Form (W, t) by sewing (U, u) and $(M \times D, t' \times 1_D)$ along the copies of $M \times S^0$, and extend f by the projection $M \times D \to D$ to define $g: W \to S^1$. It is clear that $g^*(\iota) = w_1(W)$, g is transverse regular at $*, g^{-1}(*) = M$, and g is equivariant, so (M, t') represents a class in $Im \partial_*$ ***

In particular, the 2-torsion of $\mathbf{0}_*(Z_2)$ is precisely Im ∂ . Since \mathbf{W}_*^I imbeds in $I_*(Z_2)$, which was computed by Conner and Floyd [4], it becomes possible, in principle, to compute the 2-torsion of $\mathbf{0}_*(Z_2)$ from the structure of $I_*(Z_2)$. There are, of course, two highly practical obstacles: the complexity of $I_*(Z_2)$ and the lack of a geometric splitting in the proof of Theorem 3.3.

BIBLIOGRAPHY

- 1. P. G. Anderson, Cobordism classes of squares of orientable manifolds, Ann. of Math. (2) 83 (1966), 47-53. MR 32 #4700.
- 2. P. E. Conner, "Orientation preserving involutions," in Lectures on the action of a finite group, Lecture Notes in Math., no. 73, Springer-Verlag, Berlin, 1968, Chap. 2. MR 41 #2670.

- 3. P. E. Connor and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750.
- 4. ——, Supplement to differentiable periodic maps, University of Virginia, Charlottesville, Va., 1965. (mimeograph).
- 5. H. Rosenzweig, Bordism groups of all orientation preserving involutions, Dissertation, University of Virginia, Charlottesville, Va., 1967.
- 6. R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, N. J., Univ. of Tokyo Press, Tokyo, 1968. MR 40 #2108.
- 7. ——, Complex and oriented equivariant bordism, Topology of Manifolds, J. C. Cantrell and C. H. Edwards, Jr. (Editors), Markham, Chicago, Ill., 1970.
- 8. C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292-311. MR 22 #11403.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540