CLOSE-TO-CONVEX MULTIVALENT FUNCTIONS WITH RESPECT TO WEAKLY STARLIKE FUNCTIONS

BY

DAVID STYER (1)

ABSTRACT. It is the object of this article to define close-to-convex multivalent functions in terms of weakly starlike multivalent functions. Six classes are defined, and shown to be equal. These generalize the class of close-to-convex functions developed by Livingston in the article, p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115 (1965), 161-179.

1. In this paper we consider several ways to define multivalent close-to-convex functions with respect to weakly starlike functions, and we study the relationships between the classes defined. The theory is based on J. A. Hummel's paper [1] on p-valent weakly starlike functions, and the paper by A. E. Livingston [3] on p-valent close-to-convex functions.

This section is devoted to the definitions and theorems which we will use.

Definition 1. Let $S_0(1)$ be the class of functions f univalent in $U = \{z: |z| < 1\}$ such that f(0) = 0 and f(U) is starshaped with respect to 0. $S_0(1)$ is the class of starlike univalent functions.

Note that we do not insist that f'(0) = 1. It is well known that

 $f \in S_0(1)$ if and only if f is regular in U, has one zero there (counting multiplicity) and Re(zf'(z)/f(z)) > 0 for all $z \in U$.

Definition 2. Let $S_a(p)$ be the class of functions f regular in U, with p zeros there (counting multiplicity) and such that $\operatorname{Re}(zf'(z)/f(z)) > 0$ for all z in some annulus $A_{\rho} = \{z \colon \rho < |z| < 1\}$.

These are the "standard" multivalent starlike functions. The extension to the class of weakly starlike functions, as developed by Hummel [1], is direct:

Definition 3. Let $S_w(p)$ be the class of functions f regular in U, with p zeros there and such that

(1)
$$\liminf_{r\to 1-}\left[\min_{|z|=r}\operatorname{Re}\frac{zf'(z)}{f(z)}\right]\geq 0.$$

Received by the editors June 29, 1971.

AMS 1970 subject classifications. Primary 30A32.

Key words and phrases. Multivalent functions, close-to-convex functions, weakly starlike functions.

⁽¹⁾ This paper was written while the author was a Charles Phelps Taft Postdoctoral Fellow at the University of Cincinnati.

Definition 4. We will say that the sequence $\{f_n\}$ of functions in U converges almost uniformly to f if $\{f_n\}$ converges uniformly to f on each compact subset of U.

The following results on weakly starlike functions may be found in Hummel [1].

Proposition 1. $f \in S_w(p)$ if and only if f has p zeros and f is the almost uniform limit of a sequence of functions in $S_a(p)$.

Since functions in $S_a(p)$ are p-valent, this shows that functions in $S_w(p)$ are also p-valent. It also shows that f' has at most p-1 zeros.

Let
$$\Psi(z, z_0) = (z - z_0)(1 - \overline{z_0}z)/z$$
, $\Psi(z, 0) \equiv 1$.

Proposition 2. $f \in S_w(p)$ if and only if there is a function $h \in S_0(1)$ such that

(2)
$$f(z) = [b(z)]^p \prod_{i=1}^p \Psi(z, z_i), \quad |z_i| < 1.$$

Here each z; is a zero of f.

We follow Livingston in our definition of close-to-convex functions.

Definition 5. Let K(p) be the class of functions F, regular in U, with F(0) = 0, such that there is a function $f \in S_a(p)$ for which f(0) = 0 and

(3)
$$\operatorname{Re}[zF'(z)/f(z)] > 0$$
 in some annulus $A_{\rho} = \{z : \rho < |z| < 1\}.$

We note that Livingston singles out the subclass for which F and f are both regular on $C_1 = \{z : |z| = 1\}$ and satisfy (3) on C_1 .

The class K(1) is automatically reduced to close-to-convex univalent functions of Kaplan [2]:

 $H \in K(1)$ if and only if there is a function $h \in S_0(1)$ such that

(4)
$$\operatorname{Re}\left[zH'(z)/b(z)\right] > 0 \quad \text{for all } z \in U.$$

Proposition 3. Let $F \in K(p)$. Then F is at most p-valent in U, and F' has exactly p-1 zeros in U.

The proof of this proposition may be found in Livingston [3]. It depends on a lemma by Umezawa [5].

2. Weakly close-to-convex functions. In this section we define two classes of functions which both extend the class K(p).

Definition A. Let F be regular and nonconstant in U $(p \ge 1)$. F belongs to the class $K_{WA}(p)$ if F(0) = 0 and there is a function $f \in S_w(p)$, f(0) = 0, such that

(5)
$$\liminf_{r\to 1-} \left[\min_{|z|=r} \operatorname{Re} \frac{zF'(z)}{f(z)} \right] \geq 0.$$

Definition B. F belongs to the class $K_{WB}(p)$ if there are $F_n \in K(p)$ and $f_n \in S_a(p)$, $f_n(0) = 0$, $n = 1, 2, \dots$, such that

 $F_n \to F$ almost uniformly in U and $F \not\equiv 0$, $f_n \to f$ almost uniformly in U and $f \in S_{uv}(p)$,

and

(6)
$$\operatorname{Re} \left\{ z F_n'(z) / f_n(z) \right\} > 0 \text{ for } \rho_n < |z| < 1, \ n = 1, 2, \dots$$

Remark. If the F_n , f_n , $n=1, 2, \cdots$, were given the added condition that they all be regular on C_1 and if (6) were changed to be true on $z \in C_1$, then the same class of functions would result. This is because we may choose a sequence $\{r_n\}$ such that $r_n \to 1$, $F_n(r_n z) \in K(p)$, $f_n(r_n z) \in S_n(p)$.

Both of these classes are obvious extensions of K(p). We prove

Proposition 4. $K(p) \subseteq K_{WA}(p) \subseteq K_{WB}(p)$.

Proof. We only need show that $K_{WA}(p) \subseteq K_{WB}(p)$.

Let $F \in K_{WA}(p)$ and $f \in S_w(p)$, f(0) = 0, satisfy (5). Suppose $f(z) = [b(z)]^p \Pi \Psi(z, z)$ as in Proposition 2. Let

$$H_{t}(z) = \int_{0}^{z} \left[\frac{b(tz)}{b(z)} \right]^{p} \left(F'(z) + (1-t) \frac{f(z)}{z} \right) dz$$

where 0 < t < 1. That $f_t(z) = [b(tz)]^p \Pi \Psi(z, z_i)$ is in $S_a(p)$ is shown in Hummel [1]. A little manipulation shows that $zH_t'(z)/f_t(z) = zF'(z)/f(z) + 1 - t$. Thus

$$\lim_{r \to 1^{-}} \inf \left[\min_{|z|=r} \operatorname{Re} \frac{zH'_{t}(z)}{\int_{t}(z)} \right] = \lim_{r \to 1^{-}} \inf \left[\min_{|z|=r} \operatorname{Re} \frac{zF'(z)}{\int_{t}(z)} \right] + 1 - t \ge 1 - t > 0.$$

Therefore, in some annulus, $\rho_t < |z| < 1$, $\text{Re}(zH_t'(z)/f_t(z)) > 0$. $f_t \to f$ almost uniformly on U as $t \to 1$ (see Hummel [1]).

We will show that $H_t \to F$ almost uniformly on U as $t \to 1$. This will complete the proof that $F \in K_{WR}(p)$.

Let $|z| \le r < 1$. Then

$$|H_t(z) - F(z)| \le \int \left| \left[\frac{b(tz)}{b(z)} \right]^p \left(F'(z) + (1-t) \frac{f(z)}{z} \right) - F'(z) \right| |dz|$$

where the path of integration is the line segment from 0 to z. But the quantity under the integral is

$$\left| F'(z) \left(\left[\frac{b(tz)}{b(z)} \right]^p - 1 \right) + (1-t) \frac{f(z)}{z} \left[\frac{b(tz)}{b(z)} \right]^p \right|$$

which can be made arbitrarily small for t near 1 while $|z| \le r$. Therefore, $H_t \to F$ almost uniformly as $t \to 1$. This completes the proof.

3. More weakly starlike functions. In this section we define a class of functions which is a slight extension of $S_w(p)$. We then show that functions close-to-convex with respect to this larger class have some simple and useful properties.

Definition 6. Let $S_{\mu\nu}(p)$ be the class of functions f of the form

(7)
$$f(z) = [b(z)]^p \prod_{i=1}^p \Psi(z, z_i), \quad |z_i| \le 1, \ 1 \le i \le p,$$

and $h \in S_0(1)$. Let $S_{mc}(0)$ be the set of nonzero constant functions.

The only difference between (7) and (2) is that in (7) we may have $|z_i| = 1$. This is significant in terms of being "starlike" with respect to zero. A function in $S_{wc}(p)$ may have no zero in U. Nevertheless, the author shows in another article [4] that most of the theory of the class $S_w(p)$ carries over to $S_{wc}(p)$.

We will use the uniform convergence property of $S_{n,c}(p)$. Namely,

Proposition 5. $f \in S_{wc}(p)$ if and only if $f \neq 0$ and f is the almost uniform limit of a sequence of functions in $S_a(p)$.

This is much the same as Proposition 1, and a proof need not be included.

Definition C. A function $F \neq 0$ belongs to the class $K_{WC}(p)$ if there are $F_n \in K(p), n = 1, 2, \cdots$, such that $F_n \to F$ almost uniformly in U.

Note that here we may assume there are $f_n \in S_a(p)$, $f_n(0) = 0$, $n = 1, 2, \cdots$, such that $f_n \to f$ almost uniformly in U, $f \in S_{wc}(p)$, and

$$\operatorname{Re} \left\{ z F_n'(z) / f_n(z) \right\} > 0, \quad \rho_n < |z| < 1, \ n = 1, 2, \cdots.$$

Thus $K_{WC}(p)$ is trivially an extension of $K_{WR}(p)$.

Definition D. A function F belongs to the class $K_{WD}(p)$ if there is a function $H \in K(1)$ and a function $g \in S_{WC}(p-1)$ such that

(8)
$$F(z) = \int_{0}^{z} g(z)H'(z) dz.$$

Proposition 6. $K_{WB}(p) \subseteq K_{WC}(p) \subseteq K_{WD}(p)$.

Proof. We only need show that $K_{WC}(p) \subseteq K_{WD}(p)$.

Let $F \in K_{WC}(p)$ and suppose F_n and f_n , $n = 1, 2, \dots$, are as defined in Definition C. We may then assume without loss of generality that the F_n and the f_n are regular on C_1 and $\text{Re}\{zF_n^i(z)/f_n(z)\}>0$ on C_1 .

Let $f_n(z) = [b_n(z)]^p \Pi \Psi(z, z_i)$. Suppose that the zeros of F_n' are $\alpha_1^{(n)}, \dots, \alpha_{p-1}^{(n)}$.

Then

$$\operatorname{Re} \left. \left\{ \frac{z F_n'(z) \left[\prod \Psi(z, \, \alpha_i^{(n)}) \right]^{-1}}{\left[b_n(z) \right]^p} \right\} > 0 \quad \text{on } C_1.$$

But this is the real part of a regular function, so it is positive throughout U. Also, $H'_n(z) = F'_n(z)/([b_n(z)]^{p-1} \prod \Psi(z, \alpha_i^{(n)}))$ is regular in U, and $\operatorname{Re}\{zH'_n(z)/b_n(z)\} > 0$ in $|z| \le 1$.

Now $b_n \to b$ almost uniformly in U, and $b \in S_0(1)$.

$$H'_n(z) \to \frac{F'(z)}{[b(z)]^{p-1} \Pi \Psi(z, \alpha_i)}$$
 almost uniformly in U ,

where $\alpha_i^{(n)} \to \alpha_i$, $1 \le i \le p-1$. Let $H'(z) = F'(z)/([b(z)]^{p-1} \Pi \Psi(z, \alpha_i))$. Thus H' is not identically zero. Furthermore, $zH'_n(z)/h_n(z) \to zH'(z)/h(z)$ almost uniformly on U, so $\operatorname{Re}\{zH'(z)/h(z)\} \ge 0$ for all $z \in U$. For $H(z) = \int_0^z H'(z)dz$, $H \in K(1)$. That is, if zH'(z)/h(z) is not constant, then $\operatorname{Re}\{zH'(z)/h(z)\} > 0$ for all $z \in U$. If $zH'(z)/h(z) = i\alpha$ for some $\alpha \in \mathbb{R}$, then $i\alpha h(z) \in S_0(1)$ and $zH'(z)/i\alpha h(z) = 1$, which has positive real part.

Let $g(z) = [b(z)]^{p-1} \Pi \Psi(z, \alpha_i)$. Thus F'(z) = g(z)H'(z), where $H \in K(1)$ and $g \in S_{WC}(p-1)$, $F \in K_{WD}(p)$. This completes the proof.

Definition E. Let F be regular in U, with F(0) = 0. F belongs to the class $K_{WF}(p)$ if there is a function $f \in S_{WC}(p)$ such that f(0) = 0 and

(9)
$$\operatorname{Re} \left\{ z F'(z) / f(z) \right\} > 0 \quad \text{for all } z \in U.$$

Proposition 7. $K_{WD}(p) \subseteq K_{WE}(p)$.

Proof. Let $F \in K_{WD}(p)$. Then there is an $H \in K(1)$ and a $g \in S_{wc}(p-1)$ such that F'(z) = g(z)H'(z). Also there is a function $h \in S_0(1)$ such that $\text{Re}\{zH'(z)/h(z)\} > 0$ in U. Thus

$$\operatorname{Re} \{zF'(z)/g(z)b(z)\} = \operatorname{Re} \{zg(z)H'(z)/g(z)b(z)\} > 0$$
 in U .

Now $g(z) = [g_1(z)]^{p-1} \Pi \Psi(z, z_i)$, where $g_1 \in S_0(1)$, so $h(z) [g_1(z)]^{p-1} = [f_1(z)]^p$ for some $f_1 \in S_0(1)$. Thus $g(z) h(z) = [f_1(z)]^p \Pi \Psi(z, z_i) = f(z)$. Hence $\text{Re}\{zF'(z)/f(z)\}>0$ in U, and $f \in S_{wc}(p)$, f(0)=0, $F \in K_{WE}(p)$. This completes the proof.

4. A subclass of $K_{WA}(p)$. In this section we unify our results. First it is desirable to define a final class of close-to-convex functions.

Definition O. Let F be regular and nonconstant in U. F belongs to the class $K_{WO}(p)$ if F(0) = 0 and there is a function $h \in S_0(1)$ such that

(10)
$$\liminf_{r \to 1-} \left[\min_{|z|=r} \operatorname{Re} \left\{ \frac{zF'(z)}{[b(z)]^p} \right\} \right] \ge 0.$$

It is completely trivial that $K_{WO}(p) \subseteq K_{WA}(p)$. It is less trivial, but true, that $K_{WE}(p) \subseteq K_{WO}(p)$. When we show this we will have

Theorem 1. Let p be a positive integer. Then $K_{WA}(p) = K_{WB}(p) = K_{WC}(p) = K_{WD}(p) = K_{WE}(p) = K_{WC}(p)$. If we let $K_{W}(p)$ stand for this class, then any function $F \in K_{W}(p)$ is at most p-valent and F' has at most p-1 zeros in U. Furthermore, $K(p) \subseteq K_{W}(p)$ when p > 1.

That a function $F \in K_W(p)$ is at most p-valent follows from the characterization $K_{WB}(p)$. By the integral (8), F' has exactly the same number of zeros as g. Since g may have fewer than p-1 zeros when p>1, F need not be in K(p).

In order to show that $K_{WE}(p) \subseteq K_{WO}(p)$ we prove a couple of lemmas.

Lemma 1. Let

$$g(z, t) = \frac{1 + e^{-it}z}{1 - e^{-it}z} \cdot \prod_{i=1}^{n} \Psi(z, z_i)$$

where $|z_i| \le 1$, $1 \le i \le n$, $z \in \mathbb{C}$ and $t \in [0, 2\pi]$. Then $\liminf_{r \to 1^-} [\min \operatorname{Re} g(z, t)] \ge 0$ where the minimum is taken over all $z \in C$, and all $t \in [0, 2\pi]$.

Proof. For t fixed, g(z, t) is continuous on C_1 , except possibly at $z = e^{it}$, and pure imaginary on C_1 . If g(z, t) is continuous on C_1 , then

$$\lim_{r\to 1} \left[\min_{|z|=r} \operatorname{Re} g(z, t) \right] = 0.$$

If g(z, t) has a pole at $z = e^{it}$, then it has a pole of order one, so that g(z, t) is conformal in some disc D centered on e^{it} . Since g(z, t) is pure imaginary on C_1 , either $\operatorname{Re} g(z, t)$ is positive for all $z \in D \cap U$ or $\operatorname{Re} g(z, t)$ is negative for all $z \in D \cap U$. Since g(z, t) has a pole at $z = e^{it}$, $z_i \neq e^{it}$, $1 \leq i \leq n$. It is easily seen that for $z = re^{it}$, $z \in D$ and $\operatorname{Re} g(z, t) > 0$ provided r, which is less than 1, is sufficiently near 1. Therefore, $\operatorname{Re} g(z, t) > 0$ for all $z \in D \cap U$.

In any case, for t fixed,

$$\lim_{r\to 1}\inf\left[\min_{z\mid =r}\operatorname{Re}g(z,\ t)\right]\geq 0.$$

For each positive real number ϵ , let

$$r(t) = r(t, \epsilon) = \inf\{r: \operatorname{Re} g(re^{i\theta}, t) > -\epsilon \text{ for all } \theta\}.$$

Let $\epsilon_1 > 0$ be given with $r(t) + \epsilon_1 < 1$. If we choose r such that $r(t) < r < r(t) + \epsilon_1$, then $\operatorname{Re} g(re^{i\theta}, t) > -\epsilon + \alpha$ for all θ , where α is some positive number. Since g is continuous in t, $\operatorname{Re} g(re^{i\theta}, t') > -\epsilon$ for all θ in $[0, 2\pi]$ and all t' in some neighborhood of t. Therefore $r(t') < r(t) + \epsilon_1$. This means, by definition, r(t) is upper-semicontinuous on $[0, 2\pi]$. But any such function takes its maximum. That is, there is a $t_0 \in [0, 2\pi]$ such that $r(t) \le r(t_0) < 1$ for all $t \in [0, 2\pi]$.

Therefore $\inf \operatorname{Re} g(z, t) \ge -\epsilon$ where the infimum is taken over all z with $r(t_0) < |z| < 1$, and $t \in [0, 2\pi]$. This completes the proof of Lemma 1.

Lemma 2. Suppose that f is regular in U and that $\operatorname{Re} f(z)>0$ for all $z\in U$. Then

$$\liminf_{r\to 1} \min_{|z|=r} \operatorname{Re}\left\{ f(z) \prod_{i=1}^{n} \Psi(z, z_i) \right\} \ge 0$$

whenever $|z_i| \le 1$ for $1 \le i \le n$.

Proof. Assume that f(0) = 1. With this normalization we can apply the Herglotz representation theorem for functions with positive real part:

There is an increasing function α : $[0, 2\pi] \rightarrow [0, 1]$ such that $\alpha(0) = 0$, $\alpha(2\pi) = 1$, and

$$f(z) = \int_{0}^{2\pi} \frac{1 + e^{-it}z}{1 - e^{-it}z} d\alpha(t).$$

See, for instance, Wall [6, p. 275]. Therefore,

$$\operatorname{Re} f(z) \prod \Psi(z, z_i) = \int_0^{2\pi} \operatorname{Re} \left\{ \frac{1 + e^{-it}z}{1 - e^{-it}z} \prod \Psi(z, z_i) \right\} d\alpha(t).$$

Let $\epsilon > 0$ be given. By Lemma 1, there is an $r_{\epsilon} < 1$ such that

$$\operatorname{Re}\left\{\frac{1+e^{-it}z}{1-e^{-it}z}\prod\Psi(z,\ z_i)\right\} > -\epsilon$$

whenever $|z| > r_{\epsilon}$. Thus, for $|z| > r_{\epsilon}$,

Re
$$f(z)$$
 $\prod \Psi(z, z_i) > \int_0^{2\pi} -\epsilon \, d\alpha(t) = -\epsilon$.

This proves Lemma 2 for the case f(0) = 1.

Suppose f(0) = a + ib. Then a > 0, and g(z) = (f(z) - ib)/a is regular in U with g(0) = 1 and has positive real part. Since $f(z) \prod \Psi(z, z_i) = ag(z) \prod \Psi(z, z_i) + ib \prod \Psi(z, z_i)$ and $\lim_{r \to 1^-} \operatorname{Re} ib \prod \Psi(z, z_i) = 0$, Lemma 2 is seen to be correct in any case.

Proposition 8. $K_{WF}(p) \subseteq K_{WO}(p)$.

Proof. Let $F \in K_{WE}(p)$. Then there is a function $f \in S_{wc}(p)$ such that f(0) = 0 and $\text{Re}\{zF'(z)/f(z)\} > 0$ for all $z \in U$. Let $f(z) = [b(z)]^p \prod_{j=1}^{p-1} \Psi(z, z_j)$. Now

$$\liminf_{r \to 1-} \left[\min_{|z|=r} \operatorname{Re} \left\{ \frac{zF'(z)}{[b(z)]^p} \right\} \right]$$

=
$$\liminf_{r \to 1} \left[\min_{|z|=r} \operatorname{Re} \left\{ \left(\frac{zF'(z)}{f(z)} \right) \prod \Psi(z, z_i) \right\} \right] \ge 0$$
 by Lemma 2.

Therefore $F \in K_{WO}(p)$. This completes the proof of Proposition 8 and thus also the proof of Theorem 1.

REFERENCES

- 1. J. A. Hummel, Multivalent starlike functions, J. Analyse Math. 18 (1967), 133-160. MR 35 #359.
- 2. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185. MR 14, 966.
- 3. A. E. Livingston, p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115 (1965), 161-179. MR 33 #7520.
 - 4. D. Styer, On weakly starlike multivalent functions, J. Analyse Math. (to appear).
- 5. T. Umezawa, On the theory of univalent functions, Tôhoku Math. J. (2) 7 (1955), 212-228. MR 17, 1068.
 - 6. H. S. Wall, Analytic theory of continued fractions, Chelsea, New York, 1967.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO 45221