PROJECTIVE GROUPS OF DEGREE LESS THAN 4p/3 WHERE CENTRALIZERS HAVE NORMAL SYLOW p-SUBGROUPS

B١

J. H. LINDSEY II

ABSTRACT. This paper proves the following theorem:

Theorem 1. Let \overline{G} be a finite primitive complex projective group of degree n with a Sylow p-subgroup \overline{P} of order greater than p for p prime greater than five. Let $n \neq p$, n < 4p/3, and if p = 7, $n \le 8$. Then $p \equiv 1 \pmod{4}$, \overline{P} is a trivial intersection set, and for some nonidentity element \overline{x} in \overline{G} , $C(\overline{x})$ does not have a normal Sylow p-subgroup.

- 1. Introduction. The main object of study in this paper is the case where a projective group \overline{G} has a Sylow p-subgroup \overline{P} which is a trivial intersection set and nonidentity elements of \overline{G} have centralizers which have normal Sylow p-subgroups. The other possible cases were studied in earlier papers. These results are combined in Theorem 3.
- 2. Notation. If H is a subgroup of a group G, we let H^G be the normal subgroup of G generated by H. The set of nonidentity elements of H is called $H^{\#}$. For characters μ and ν of H we let $(\mu, \nu) = (1/|H|) \sum_{x \in H} \mu(x) \overline{\nu(x)}$, and we let the squared norm $\|\mu\|^2 = (\mu, \mu)$.

A representation X of a group G is called quasiprimitive if it is irreducible and its restriction to any normal subgroup of G is the sum of equivalent irreducible constituents.

3. Projective groups where centralizers of nonidentity elements have normal Sylow p-subgroups. We shall prove the following theorem:

Theorem 2. Let p be a prime greater than five. Let G be a finite group with a faithful, quasiprimitive, complex representation X with character χ of dimension n < 4p/3, $n \neq p$. Let P be an abelian Sylow p-subgroup of G. Throughout, let Z = Z(G), C = C(P), N = N(P), and $N_0 = \sum_{y \in P^{\#}} C(y) - Z$. Let P satisfy [4, Hypothesis 4.1] (that is, P and N_0 are trivial intersection sets and $N(N_0) = N$). Let (|Z|, p) = 1. Then $|P| \leq p$.

By running through the classifications of groups of small degree, it can be

Received by the editors June 4, 1971.

AMS (MOS) subject classifications (1970). Primary 20G20; Secondary 20C25.

Key words and phrases. Primitive projective group, trivial intersection set, centralizers having normal Sylow p-subgroups.

seen that the hypothesis p > 5 of Theorem 2 is unnecessary. By [2, (4A)], the assumption $n \neq p$ is unnecessary. Also, 4p/3 can be replaced by a number asymptotic to $\sqrt{2}p$ for large p. The following proof of Theorem 2 does not require the use of [7].

Proof. Let X(G) be a counterexample with n minimal. Given that n is minimal, let |G| be minimal. Then $|P| \geq p^2$. Suppose X(G) is imprimitive on c > 1 subspaces and let K be the subgroup of G fixing these spaces setwise. By quasiprimitivity, K is represented faithfully by the c equivalent constituents of $X|_K$ of degree no larger than 2p/3. By [4], $p^2 \nmid [K:O_p(K)]$. As $O_p(K) \leq G$, by quasiprimitivity, $O_p(K) \subseteq Z$ and $O_p(K) = \langle 1 \rangle$. Then $p \mid [G:K] \mid c!$ and c = n. Then K is an abelian normal subgroup of G and K = Z. Then at most p divides c! and |G|, which is a contradiction. If X(G) is a subgroup of a tensor product of two smaller dimensional groups, then, unless p = 7 and n = 9, using $((p - 1)/2)^2 > 4p/3 \ge n$ with [5] and using n/2 < 2p/3 < p - 1 with [4] we have by [6], Lemma 1] that $p^2 \nmid [G:O_p(G)]$, contrary to $O_p(G) = \langle 1 \rangle$ and $p^2 \mid |G|$. Even if p = 7 and n = 9, X(G) contains $M \otimes I_3$ and $I_3 \otimes M$ where $M \cong SL(2,7)$ and a 7-element $x \in I_3 \otimes M$ has $M \otimes I_3 \subseteq C(x)$, so C(x) does not have a normal Sylow 7-subgroup, contrary to P being a T.I. set. Therefore, G is strongly primitive.

Let P^G be the normal subgroup of G generated by P. By strong primitivity and [3, Theorem 51.7], $X \mid P^G$ is irreducible. If $X \mid P^G$ is imprimitive, then $X \mid P^G$ is monomial; otherwise, the p-elements generating P^G would fix all spaces of primitivity. If $X \mid P^G$ is monomial, then $\langle 1 \rangle \neq O_p(P^G) \leq G$, contrary to $O_p(G) = \langle 1 \rangle$. As P^G also satisfies [4, Hypothesis 4.1], $G = P^G$ by minimality of |G|. For any nonprincipal irreducible character γ of G we write

$$\gamma|_{N} = \pi + \rho$$

where ρ is the sum of irreducible constituents of $\gamma_{|N|}$ having P in the kernel and π is the sum of the others. As $G = P^G$, $||\pi|| \ge 1$.

Throughout, let t = [N:PZ]. Let $m = \gamma(1)$ and $b = \rho(1)$. By [4, Lemma 2.11], π vanishes on $N - (N_0 \cup Z)$. As in [4, Lemma 4.1],

$$1 = \|\gamma\|^{2} > (1/|G|)(|G|/|N|) \sum_{N_{0}} |\gamma(x)|^{2}$$

$$= -m^{2}/t|P| + (1/|N|) \sum_{N_{0} \cup Z} (\pi(x) + \rho(x))(\overline{\pi(x)} + \overline{\rho(x)})$$

$$= -m^{2}/t|P| + (1/|N|) \left[\sum_{N} (\pi(x)\overline{\pi(x)} + \pi(x)\overline{\rho(x)} + \rho(x)\overline{\pi(x)}) + \sum_{N_{0} \cup Z} |\rho(x)|^{2} \right]$$

$$= -m^{2}/t|P| + \|\pi\|^{2} + (1/|N|) \sum_{N_{0} \cup Z} |\rho(x)|^{2}$$

$$\geq -m^{2}/t|P| + \|\pi\|^{2} + b^{2}/t.$$

When $\gamma = \chi$, throughout we let α and β correspond to π and ρ respectively, $q = \beta(1)$, and

$$\chi_{|_{N}} = \alpha + \beta,$$

where we show that $n \ge p+1$, $\beta(1) \le 1$, $\|\alpha\| = 1$, $\alpha|_P$ is a sum of $\alpha(1) = n-q$ distinct nonprincipal linear characters of P permuted transitively by N, $|P| = p^2$, P is elementary abelian, $O_p(G) = Z$, and C = PZ.

Since $|P| \ge p^2$, $O_p(G) = \langle 1 \rangle$, and $O^2(G) \ge P^G = G$, by [6], we have n > p-1 and $n \ge p+1$ as $n \ne p$ by hypothesis. If t=1, then N=PZ is abelian and by (2), $p < n \le \|\alpha\|^2 + q < 1 + n^2/t|P| \le 1 + (4p/3)^2/p^2 = 25/9$, which is a contradiction. Therefore, t > 2 and by (2),

$$\|\alpha\|^2 \le 1 + n^2/t|P| \le 1 + (4p/3)^2/2p^2 < 2$$
,

and $\|\alpha\| = 1$. Also, by (2), $q = b \le n/(|P|)^{1/2} \le (4p/3)/p < 2$, and $q \le 1$. More generally, in (2),

(4)
$$(\gamma_{|P|}, 1_{P}) < \gamma(1)/(|P|)^{1/2}$$
.

If $\alpha_{|P|}$ has homogeneous constituents (Wedderburn components) of dimension e, then by summing (4) over the irreducible constituents of $\chi \overline{\chi} - 1_G$, we have

(5)
$$(n-1)e \le [(n-q)/e]e^2 + q - 1 = ((\chi \overline{\chi} - 1_G)_{|P|}, 1_P) < (n^2 - 1)/(|P|)^{1/2}.$$

Then $e \le (n+1)/p < (4p/3+1)/p < 2$ and e=1. As $\|\alpha\|=1$, the distinct linear homogeneous spaces of $\alpha_{\mid P}$ are permuted transitively by N. Also, by (5), $|P| < (n+1)^2 < (4p/3+1)^2 < p^3$ and $|P|=p^2$. If P is cyclic, $[N:C] \mid |\operatorname{Aut}(P)|=p(p-1)$ and $(n-q) \mid [N:C] \mid p-1$, contrary to n-q>p-1. As $\beta(1) \le 1$, $\chi_{\mid P}$ has all distinct linear constituents.

Suppose $O_{p'}(G) \supset Z$. Then by strong primitivity, $X \mid O_{p'}(G)$ is irreducible. Replacing elements x of X(P) by all unimodular scalar multiples of x, we get a group P^* of exponent p, since (n, p) = 1, with $X(O_{p'}(G)) \triangleleft P^*X(O_{p'}(G))$. By [6, Lemma 8] for $x \in P^*$ some scalar multiple y of x has all primitive pth roots of unity occurring equally often. As (n, p) = 1 and det $x = \det y$, x = y and trace x is rational. Then by [9],

$$p^2 = |P/P \cap Z| \le |P^*| \le p^{\lfloor n/(p-1)\rfloor + \lfloor n/p(p-1)\rfloor + \cdots} = p$$

which is a contradiction. If $C \supset PZ$, we may find a q-element $v \in C - PZ$ for q a prime unequal to p. By [2, proof of (3F)], since $\chi_{\mid P}$ is a sum of distinct linear constituents, $v \in O_{a}(G) \subseteq O_{b'}(G) = Z$, which is a contradiction.

Throughout, we write

$$\chi^2 = k1_G + \sum \gamma_i$$

where k equals 0 or 1 and the γ_i are irreducible nonprincipal characters of G. We now divide the proof into parts.

(A) G/Z is simple. If $W \subseteq G$ and $W \not\subset Z$, then W = G. Also, G = G'. Irreducible nonprincipal characters γ of G have degree greater than p. If U is a subgroup of Z and S is a subset of G, let \overline{S} be the image of S in G/U. Then \overline{N}_0 is the similarly defined N_0 of \overline{G} , and \overline{N}_0 and \overline{P} are T.I. sets whose normalizer is \overline{N} .

Proof. Let $Z \subseteq K \trianglelefteq G$. As $P^G = G$ and $O_p(G) = Z$, we have $p^2 \nmid |K|$ and $p \mid |K|$, so K has a Sylow p-subgroup $Q = P \cap K$ of order p. As P is a T.I. set, P is a normal Sylow p-subgroup of C(Q). Then P char $C(Q) \trianglelefteq N(Q)$. By a Sylow theorem G = KN(Q). Then N(Q) and $N(Q)/K \cap N(Q) \simeq G/K$ have normal Sylow p-subgroups. Then $O_p(G/K) = O^{p'}(G/K) = G/K$ since $G = P^G$. Then G/K is a p-group and [G:K] = p. As P is elementary abelian and ([N:P], p) = 1, by complete reducibility, Q has an N/C complement R in P. Then $(R, N) = (R, P(N \cap K)) = (R, N \cap K) \subseteq R \cap K \subseteq R \cap (P \cap K) = R \cap Q = \langle 1 \rangle$. By (3) with α irreducible and $\alpha(1) \geq n - 1$, $R^\#$ consists of homologies contrary to [8] (alternatively, some element in $R^\#$ violates [1, Theorem 8, page 96] and quasiprimitivity). Therefore, G/Z is simple.

Let $W \subseteq G$ and $W \not\in Z$. Then W covers G/Z, $p^2 \mid |W|$, $P \subseteq W$, and $G = P^G \subseteq W$. As G' covers G/Z, $G' \not\in Z$ and G' = G. Let Y be an irreducible nonprincipal character of G of degree less than P+1 and kernel W. As $W \neq G$ and $W \subseteq G$, $W \subseteq Z$. For any group M, let $i_p(M) = [M:O_p(M)]_p$. As $O^2(G/W) \supseteq O^{p'}(G/W) = G/W$, by [G], $i_p(G/W) \le p$ if Y(1) < p. If Y(1) = p, then as P is abelian, by [G, G/W], $[G/W] \subseteq p$. Then by [G, G/W], $[G/W] \subseteq p$, which is a contradiction.

Let $U\subseteq Z$. Let $\overline{x}\in \overline{G}$ centralize $\overline{y}\in \overline{P}^{\#}$. Then $(x,y)\in Z$ is the quotient of the commuting p-elements y^x and y. As (|Z|,p)=1, (x,y)=1. Then \overline{N}_0 is the N_0 for \overline{G} . As N_0 consists only of entire cosets of U, \overline{N}_0 is a T.I. set with normalizer \overline{N} . As $\overline{P}^{\#}\subseteq \overline{N}_0$, \overline{P} also is a T.I. set with normalizer \overline{N} .

(B) $N/C \simeq L$ where L is a subgroup (L is fixed throughout this paper) of GL(2, p) of order t. We view L as a 2-dimensional matrix group over GF(p). Also, column vectors and row vectors correspond to elements of P and linear characters of P, respectively, on which L acts by matrix multiplication as N/C acts on P and characters of P. If rc is the matrix product of a row vector r with a column vector c, then $e^{(2\pi i/p)rc}$ equals the value of the corresponding character of P at the corresponding element of P.

Proof. As C is the kernel of the action of N on P, N/C is isomorphic to a subgroup of Aut $(P) \simeq GL(2, p)$. As C = PZ, |L| = t.

(C) Let θ be an irreducible character of N not having P in its kernel. Let

 ϕ be a linear constituent of $\theta|_P$ and H be the subgroup of N fixing ϕ . Then $C \subseteq H \subseteq N_0 \cup Z$ and there exists a linear constituent ξ of $\theta|_H$ with $\xi|_P = \phi$ and $\theta = \xi^N$, the induced character. Also, θ vanishes on $N - (N_0 \cup Z)$.

Proof. Let θ be the character of the representation R on the space W. Let U be the homogeneous space (Wedderburn component) for R restricted to P such that $(\dim U)\phi$ is the character of the representation of P on U. Let H be the subgroup of N fixing ϕ . Then H is also the subgroup of N fixing U. Let \mathcal{E} be the character of the representation of H on U. Then by Frobenius reciprocity, $(\mathcal{E}^N, \theta) = (\mathcal{E}, \theta_{|H}) \geq 1$. Since θ is irreducible and $\theta(1) = \dim W = [N:H]\dim U = [N:H]\mathcal{E}(1) = \mathcal{E}^N(1), \ \theta = \mathcal{E}^N$. Also, \mathcal{E} is irreducible since $\mathcal{E}^N = \theta$ is irreducible. Now, H/C corresponds to a p'-subgroup of the subgroup M of $GL(2, p) \simeq \operatorname{Aut}(P)$ fixing a nonprincipal character of P. As M is isomorphic to a normal extension of a group of order p by a cyclic group of order p-1, H/C is cyclic. As elements of C=PZ are represented by scalars on U and \mathcal{E} is irreducible, \mathcal{E} is linear. As any element of H fixes the nonprincipal linear character ϕ of P, by the permutation lemma, it also fixes a nonidentity element of P and lies in $N_0 \cup Z$. This proves (C) since \mathcal{E}^N vanishes on $N-(N_0 \cup Z)$ since $N=N(N_0)$ and $N=N(N_0) \cup Z$.

- (D) Let $N/C \simeq L \subseteq GL(2, p)$ as in (B). Then either
- I. $L/Z(L) \simeq A_5$ and |L| | 60(p-1),
- II. $L/Z(L) \simeq A_4$ and |L| |12(p-1),
- III. $L/Z(L) \simeq S_4$ and |L| | 24(p-1),
- IV. L is monomial, $|L| |2(p-1)^2$, and L contains a diagonal subgroup A with [L:A] < 2, or
- V. L can be written as a monomial group in $\mathrm{GL}(2,\,p^2)$ where L contains a subgroup

$$A = \left\langle \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^p \end{pmatrix} \right\rangle$$
 for some $\zeta \in GF(p^2)$ and $[L:A] \leq 2$.

Here, $|L| | .2(p^2 - 1)$.

In cases I, II, and III, L is irreducible, |Z(L)| | (p-1), and $-I_2 \in Z(L)$.

Proof. We may consider L to be a faithful 2-dimensional representation of a p'-group over a field of characteristic p. In the case of p'-groups, complex irreducible representations have a one to one correspondence with p-modular representations. Then L may be obtained from a finite complex p-integral 2-dimensional group by taking coefficients modulo an ideal dividing (p). By the classification in [1] of 2-dimensional complex linear groups, we have I, II, or III or L may be taken as monomial when written over a larger field. In the monomial cases there exists A, an abelian subgroup of index 1 or 2 in L. The character of the representation of A by our linear group L is a sum of two linear

characters σ and τ . If σ and τ lie in GF(p), we have case IV. If they do not, since $\sigma + \tau$ lies in GF(p), σ and τ lie in GF(p^2) and are algebraic conjugates over GF(p). Then $\sigma = \tau^p$.

(E) Let θ , ϕ , and H be as in (C). Then except in case IV, $[H:C] \leq 5$. If $\theta = \alpha$, throughout this paper let h = [H:C]. Then t = (n-q)h. Suppose we are in case IV or V. Let $\theta = \alpha$, let A be as in (D), and let $M \subseteq L$ correspond to $H/C \subseteq N/C$. Then $M \cap A = \langle 1 \rangle$ and $h \leq 2$.

Proof. As in the proof of (C), H/C corresponds to the cyclic subgroup M of $L \subseteq GL(2, p)$ of order dividing p-1 and fixing the character ϕ . As elements of M have an eigenvalue 1, $M \cap ZGL(2, p) = \langle 1 \rangle$. Then since M is cyclic, in case I, II, and III, [H:C] divides the order of some element in A_5 , A_4 , or S_4 , so $[H:C] \leq 5$. In case V, I_2 is the only element of A with an eigenvalue 1, so $M \cap A = \langle 1 \rangle$ and $[H:C] \leq 2$.

Suppose $\theta = \alpha$. By (C), $n - q = \alpha(1) = [N:H] = t/h$. Suppose further that we have case IV. Let A be the diagonal subgroup of L of index at most 2. Then if $M \cap A = \langle 1 \rangle$, $[H:C] \leq 2$. Therefore, suppose that diag (σ, τ) lies in $(M \cap A)^{\#}$. Then, as elements of M have an eigenvalue 1, σ or $\tau = 1$, say $\sigma = 1$. Then ϕ corresponds to a multiple of (1, 0). Let ζ be the homomorphism from A to $GF(p)^{\#}$ with $\zeta(\operatorname{diag}(\pi, \rho)) = \pi$. Then $M \cap A$ is the kernel of ζ and $[A:M \cap A] = |\zeta(A)| |(p-1)$. Also, $[L:M] = [L:A][A:M \cap A]/[M:M \cap A] |2(p-1)$. Therefore, $\alpha(1) = [N:H] = [L:M] |2(p-1)$. Then, since $\alpha(1) \leq n < 4p/3 < 2(p-1)$, $\alpha(1) \leq p-1$. Furthermore, $n = \alpha(1) + q \leq \alpha(1) + 1 \leq p$, contrary to (A).

(F) Let ζ and ξ be the characters of the symmetric and skew-symmetric tensors of χ^2 , respectively. Then, if $-I_2 \in L$, $(n+q)/2 = (1_p, |\xi|_p)$ and $(n-q)/2 = (1_p, |\xi|_p)$.

Proof. As multiplying a row vector by $-I_2$ corresponds to taking the complex conjugate of the corresponding character, if $-I_2 \in L$ then all complex conjugates of constituents of $\alpha_{|P|}$ also occur in $\alpha_{|P|}$. By linearity of the homogeneous constituents of $\chi_{|P|}$ this concludes the proof of (F).

(G) $(\chi_{p}^{2}, 1_{p})$ equals q or n. If $(\chi_{p}^{2}, 1_{p}) = n$ then n - q is even.

Proof. If $(\chi_{\mid P}^2, 1_P) \neq q$, then $\alpha_{\mid P}$ contains a pair of complex conjugate linear characters. Then $\alpha_{\mid P}$ consists entirely of pairs of complex linear characters since the action of N is transitive on the linear constituents of $\alpha_{\mid P}$ and commutes with scalar multiplication (by -1 in particular and by elements of GF(p) in general) of the linear characters of P. This proves (G) since $\chi_{\mid P}$ has only linear homogeneous components.

(H) Let $\gamma = \gamma_i$ be a nonprincipal constituent of χ^2 . Let $\gamma_{|N} = \pi + \rho$ as in (1) with P in the kernel of ρ but not in the kernel of any constituent of π . Then $\|\pi\| = 1$.

Proof. Let $m = \gamma(1)$, $b = \rho(1)$, and b = [H:C] with H being the H in (C) when $\theta = \alpha$. Let ζ and ξ be the characters of the symmetric and skew-symmetric tensors of χ^2 , respectively. We may assume that $\|\pi\|^2 \geq 2$, otherwise (H) holds. By (C) irreducible characters of N without P in the kernel have degree no larger than [N:C] = t. Therefore, $\|\pi\|^2 \geq \{\pi(1)/t\} = \{(m-b)/t\}$ where $\{x\}$ is the smallest integer greater than or equal to x. Then fixing p and using (2), we use the following to define various functions:

(7)
$$-m^2/tp^2 + \max(2, \{(m-b)/t\}) + b^2/t < 1,$$

(8)
$$b(t, m, b) = -m^2/tp^2 + \max(2, m/t + b^2/t - b/t) < 1$$
, and

(9)
$$g(t, m) = -m^2/tp^2 + \max(2, m/t) < 1.$$

For at least one of $\mu = \zeta$ or ξ we have $\mu = s1_G + \gamma + \nu$ where ν is a sum of nonprincipal irreducible characters ψ_i of G and $s \le k \le 1$. By (4), $\psi_i(1) > (\psi_{i|P}, 1_P)p$. Summing this over i, we have

$$\mu(1) - s - m = \nu(1) \ge (\nu_{|P}, 1_{P})p = [(\mu_{|P}, 1_{P}) - s - b]p.$$

Suppose that $-I_2 \in L$. Then by (F) and the above inequality, if $\mu = \zeta$ we have

(10)
$$n(n+1)/2 - s - m > [(n+q)/2 - s - b]p$$

and if $\mu = \xi$ we have

(11)
$$n(n-1)/2 - s - m > [(n-q)/2 - s - b]p.$$

In either case,

(12)
$$n(n+1)/2 - m > [(n-1)/2 - 1 - b]p$$

and

(13)
$$b \ge (n-1)/2 - 1 - n(n+1)/2p + m/p = f(n, m)$$

define f(n, m). For fixed m, f(n, m) decreases as a function of $n \ge (p-1)/2$. Since p < n < 4p/3 by (A),

(14)
$$b > f(n, m) > f(4p/3, m) = m/p - (2/9)p - 13/6.$$

We no longer assume that $-l_2 \in L$. The cases p = 7, 11, 13, 17, 19, and 23 were examined by computer for $n = p + 1, \dots, [4p/3]$; q = 0 or 1; s = 0 or 1; $m = p + 1, \dots, -s + n(n+1)/2$; $b = 1, \dots, 5$; and $b = 0, \dots, -s + (n+q)/2$. The computer ruled out cases for any of the following reasons:

- 1. Inequality (7) failed.
- 2. n-q and p failed to satisfy any of the following two propositions:

 P_1 : (n-q) divides 60(p-1) or 24(p-1), P_2 : (n-q) divides $2(p-1)^2$ or $2(p^2-1)$. (This uses (D).)

- 3. P_1 fails and h > 2. (This uses (D) and (E).)
- 4. If $(b > 2 \text{ or } P_2 \text{ fails})$ and $P_3 \text{ holds where } P_3 \text{ is the proposition:}$ $P_3: \text{ Inequality (10) fails and } [n(n-1)/2 s m < 0 \text{ or (11) fails}].$

(Here, if $-I_2 \in L$, then if $\mu = \zeta$, we have (10), and if $\mu = \xi$, we have $s + m \le n(n-1)/2$ and (11). Therefore, $-I_2 \in L$ implies P_3 fails. However, if b > 2 or P_2 fails, then by (D) and (E), $-I_2 \in L$.)

The only cases left by the computer satisfied one of the following:

- 1. p = 7, n q = 8, and P₃ holds.
- 2. p=7, n-q=9, $b \le 3$, $m \ge 30$, and the left side of (7) is greater than .4.
- 3. p = 13, n q = 16, b = 2, and P_3 holds.
- 4. p = 19, n q = 24, b = 2, and P, holds.

In cases 1, 3, and 4, P_3 holds, so $-I_2 \not\in L$. Then we have case IV or V in (D). Let A be the diagonal subgroup of L of index at most 2 (in case V, A may have to be written in $GF(2, p^2)$). As $2 \mid b(n-q)/2 = t/2 \mid |A|$, in case V we have $-I_2 = \operatorname{diag}(-1, (-1)^p) \in A$, which is a contradiction. Therefore, we have case IV. Let D be the group of all nonsingular diagonal matrices in GL(2, p). Then $A \subseteq D$ and $|D| = (p-1)^2$. In all cases 1, 3, and 4, two divides b(n-q)/2 and |A| to at least as high a power as it divides $(p-1)^2$ and |D|. Then a Sylow 2-subgroup of A is a Sylow 2-subgroup of D and contains $-I_2$, which is a contradiction.

Therefore, we have case 2. As $n-q=9 + 2(p^2-1)$ and neither 60, 12, nor 24 divide 9b, in (D) we have case IV. Then by (E), $M \cap A = \langle 1 \rangle$ and b=1 or 2 where $M \subseteq L$ corresponds to $H/C \subseteq N/C$. Changing coordinates, we take

$$A = \{ \text{diag}(x, y) | x, y \in GF(7), x, y = 1, 2, 4 \}.$$

If b=2, we have $\binom{0}{\psi} \binom{\psi-1}{0} \in M$ for some ψ . Changing coordinates by $v \to (\operatorname{diag}(\psi,1)v)$ for $v \in \{\operatorname{column vectors}\} \cong P$, we take $\psi=1$. Further changing coordinates by a scalar matrix, or by a diagonal matrix if b=1, we take (1,1) to correspond to a linear constituent of $\alpha_{|P|}$. Then $\{(x,y)|\ x,y=1,2,4\}$ is the set of linear constituents of $\alpha_{|P|}$ and $\{(x,y)|\ x,y=1,2,3,3,4,5,5,6,6\}$ is the set of 81 constituents of $\chi_{|P|}^2$ with multiplicities. If b=1, then under the action of N, the constituents of $\mu_{|P|}$ lie in four orbits of length 9: O_2 , O_2 , O_3 , and O_4 ; or five orbits of length 9: O_1 , O_2 , O_2 , O_3 , and O_4 if μ corresponds to the skew-symmetric or symmetric tensors, respectively, of χ^2 . Here O_1 is represented by (2,2), O_2 by (3,3), O_3 by (2,3), and O_4 by (3,2). If b=2, then O_3 and O_4 are joined into an orbit O_3 4 of length 18. As $9 \mid |O_i|$ for all i, $9 \mid m$ and m=36 or 45. If $\|\pi\|^2$ max $(2,\{(m-b)/t\})=\{m/9b\}$, then the right side of (2) exceeds 1.4, which is a contradiction. By (C), orbits of linear constituents of $\chi_{|P|}^2$ correspond to irreduc-

ible constituents of $\chi^2_{|N|}$. If b=2, then O_{34} corresponds to the only possible irreducible constituent of π of degree 18. As $m\geq 36$, π has at least two irreducible constituents of degree 9 and $\|\pi\|^2 > \{m/18\}$, which is a contradiction. Therefore, b=1. Then in application of (C) to any irreducible constituents of $\chi^2_{|N|}$, H=PZ=C. If ν and μ both correspond to O_2 , then by (C), ν and μ are induced from linear constituents ϕ and θ of $\nu_{|C|}$ and $\mu_{|C|}$, respectively, with $\phi_{|P|}=\theta_{|P|}$. As $\chi^2_{|Z|}$ is a multiple of $\phi_{|Z|}$ and $\theta_{|Z|}$, $\phi_{|Z|}=\theta_{|Z|}$, $\phi=\theta$, and $\nu=\mu$. As $\|\pi\|^2=\{m/9\}$, π cannot contain both constituents corresponding to O_2 as they are identical. Then m=36, a case not reported by the computer as (7) fails.

We may now assume that $p \ge 29$. As n < 4p/3 and $t = (n-q)b \le 5n$, $t \le 20p/3$ and $2t \le 40p/3 < p^2/2$. For fixed t, g(t, m) is a decreasing function of m for $0 \le m \le 2t$, increasing for $2t \le m \le p^2/2$, and decreasing for $p^2/2 \le m$. For $m \le p^2/2$,

(15)
$$g(t, m) > g(t, 2t) = -(2t)^2/tp^2 + 2 = 2 - 4t/p^2 > 2 - 80/3p > 1.$$

Then by (9), $m \ge p^2/2$. Also,

(16)
$$f(4p/3, m) = m/p - (2/9)p - 13/6 \ge p/2 - (2/9)p - 13/6$$
$$= (5/18)p - 13/6 \ge (5/18)29 - 13/6 \ge 1.$$

Suppose that $-l_2 \in L$. Then (14) holds. For $b \ge 1$ and t and m fixed, b(t, m, b) is an increasing function of b. By (16) we may combine (8) and (14) and define k(t, m):

(17)
$$k(t, m) = b(t, m, f(4p/3, m)) \le b(t, m, b) < 1.$$
As $m > p^2/2 > 2t$,

$$b(t, m, b) = -m^2/tp^2 + m/t + b^2/t - b/t$$

The m^2 terms cancel in k(t, m). The coefficient of m in k(t, m) is 1/t + (2/t)(1/p)[-(2/9)p - 13/6] - (1/t)(1/p) = (5/9 - 16/3p)/t > 0.

Therefore, for $m \ge p^2/2$, by (16) and (15)

$$k(t, m) \ge k(t, p^2/2) \ge b(t, p^2/2, 1) = g(t, p^2/2) > 1.$$

This contradicts (17).

Therefore, we have $p \ge 29$, $m \ge p^2/2$, and $-I_2 \notin L$. By (D) we then have case IV or V. Let x = (4p - 1)/3. By (E), $b \le 2$ and $t = (n - q)b \le 2n \le 2x$. Also, $m \le n(n+1)/2 \le x(x+1)/2 < 2p(4p+3)/9 < p^2$. As g(t, m) is decreasing in m for $m \ge p^2/2$, we have by (9),

$$1 > g(t, m) = (m/t)(1 - m/p^{2})$$

$$\geq (m/2x)(1 - m/p^{2}) \geq [(x(x+1)/2)/2x][1 - x(x+1)/2p^{2}]$$

$$= (x+1)(2p^{2} - x^{2} - x)/8p^{2} = (4p+2)(18p^{2} - 16p^{2} + 8p - 1 - 12p + 3)/216p^{2}$$

$$\geq (4(29) + 2)(1/108)(1 - 2/29) = (3186)/3132 > 1,$$

which is a contradiction.

(I) Let γ be a nonprincipal irreducible character of G with $\gamma_{|N} = \pi + \rho$ as in (1). Let $\|\pi\| = 1$ and $\pi(1) = \alpha(1)$. Then $\rho(1) \leq 1$. For the remainder of the proof, let $\omega = \gamma_1$ be a fixed nonprincipal irreducible constituent of χ^2 with $\omega_{|P|}$ containing ϕ^2 where ϕ is a fixed linear constituent of $\alpha_{|P|}$. Write

$$\omega_{\mid N} = \sigma + \tau$$

as in (1). Then $\|\sigma\| = 1$, $\sigma(1) = \alpha(1)$, and $q \le \tau(1) \le 1$.

Proof. By (4), $p\rho(1) \leq \pi(1) + \rho(1)$ and $\rho(1) \leq \pi(1)/(p-1) < 4p/3(p-1) < 2$. As ϕ^2 is a constituent of $\chi_{||P}$, $\omega = \gamma_1$ exists. By (H), $\|\sigma\| = 1$. As ϕ^2 and ϕ are fixed by the same subgroup H of N, by (C) we have $\sigma(1) = [N:H] = \alpha(1)$. Letting $\gamma = \omega$, we have $\tau(1) \leq 1$. If q = 1 and $\tau(1) = 0$, then by (A), $p < \omega(1) = \sigma(1) = \alpha(1) < \chi(1)$, contrary to (A) and minimality of $\chi(1)$ for a counterexample since by (A) the kernel of ω lies in Z.

(J) Let γ be a nonprincipal irreducible character of G with $\gamma|_N = \pi + \rho$ as (1). Let $\|\pi\| = 1$. Let $\gamma|_Z$ and $\omega|_Z$ be multiples of the same linear character of Z. Let $s = \sigma(1)$ and $r = \pi(1)$. Then $s\gamma - r\omega = (s\pi - r\sigma)^G$, the induced character, and vanishes outside of $N_0^G = \bigcup_{g \in G} g^{-1}N_0g$. Also, $s\rho(1) = r\tau(1)$. Furthermore, if $\pi = \sigma$, then $\gamma = \omega$.

Proof. Suppose that $\pi \neq \sigma$. By hypothesis, $s\pi - r\sigma$ vanishes on Z. By (C), π and σ vanish on $N - (N_0 \cup Z)$ and $s\pi - r\sigma$ vanishes on $N - N_0$. As N_0 is a T.I. set, by [3, Lemma 38.15], $\|(s\pi - r\sigma)^G\|^2 = \|s\pi - r\sigma\|^2 = s^2 + r^2$. By Frobenius reciprocity,

$$((s\pi-r\sigma)^G,\ s\gamma-r\omega)=(s\pi-r\sigma,\ (s\gamma-r\omega)_{\big|N})=(s\pi-r\sigma,\ s\pi+s\rho-r\sigma-r\tau)=s^2+r^2.$$

Then $((s\pi - r\sigma)^G$, $s\gamma - r\omega)$, $\|(s\pi - r\sigma)^G\|^2$, and $\|s\gamma - r\omega\|^2$ all equal $s^2 + r^2$, so by the Cauchy-Schwarz inequality, $s\gamma - r\omega = (s\pi - r\sigma)^G$ which has support on N_0^G since $s\pi - r\sigma$ has support on N_0 . As $1 \notin N_0^G$,

$$0 = s\gamma(1) - r\omega(1) = s\pi(1) + s\rho(1) - r\sigma(1) - r\tau(1) = s\rho(1) - r\tau(1).$$

Suppose that $\pi = \sigma$ and $\omega \neq \gamma$. Then $\pi(1) = \sigma(1) = \alpha(1)$ and by (I), $\rho(1) \leq 1$. Let $D\sigma$ be the determinant of the corresponding representation. As G = G', γ and ω are unimodular. Then if $\tau(1) = \rho(1) = 1$, we have for $x \in N$,

$$\tau(x) = 1/(D\sigma)(x) = 1/(D\pi)(x) = \rho(x).$$

As $\tau(1)$ and $\rho(1) \le 1$, in any event $\rho(x)\overline{\tau(x)}$ is real and nonnegative. Let $e = (1/|G|)\sum_{x \in N_0^G} |\gamma(x)|^2$ and $f = (1/|G|)\sum_{x \in N_0^G} |\omega(x)|^2$. Then since π and σ vanish off $N_0 \cup Z$ by (C), we have

$$(1/|G|) \sum_{x \in N_0^G} \gamma(x) \overline{\omega(x)} = (1/|G|)(|G|/|N|) \sum_{x \in N_0} (\pi(x) + \rho(x))(\overline{\sigma(x)} + \tau(x))$$

$$= (1/|N|) \sum_{x \in N_0 \cup Z} (\pi(x) \overline{\sigma(x)} + \pi(x) \overline{\tau(x)} + \rho(x) \overline{\sigma(x)} + \rho(x) \overline{\tau(x)}) - \gamma(1)\omega(1)/p^2 t$$

$$= (\pi, \sigma) + (\pi, \tau) + (\rho, \sigma) + \sum_{x \in N_0 \cup Z} \rho(x) \overline{\tau(x)} - \gamma(1)\omega(1)/p^2 t$$

$$> 1 + 0 + 0 + 0 - (t + 1)(4p/3 + 1)/p^2t > 1/2.$$

As

$$(1/|G|) \sum_{x \in G - N_0^G} \gamma(x) \overline{\omega}(x) = -(1/|G|) \sum_{x \in N_0^G} \gamma(x) \overline{\omega}(x),$$

we have by the Cauchy-Schwarz inequality

$$1/2 < (1/|G|) \sum_{x \in N_0^G} |\gamma(x)| |\omega(x)|$$

$$\leq \left[(1/|G|) \sum_{x \in N_0^G} |\gamma(x)|^2 (1/|G|) \sum_{x \in N_0^G} |\omega(x)|^2 \right]^{1/2} = [ef]^{1/2}$$

and

$$\begin{split} &1/2 < (1/|G|) \sum_{x \in G - N_0^G} |\gamma(x)| \; |\omega(x)| \\ & \leq \left\lceil (1/|G|) \sum_{x \in G - N_0^G} |\gamma(x)|^2 (1/|G|) \sum_{x \in G - N_0^G} |\omega(x)|^2 \right\rceil^{1/2} = \left[(1 - e)(1 - f) \right]^{1/2}. \end{split}$$

Multiplying the last two equations together, we have

$$1/4 < [ef]^{1/2}[(1-e)(1-f)]^{1/2} = [e(1-e)]^{1/2}[f(1-f)]^{1/2} \le [1/4]^{1/2}[1/4]^{1/2} = 1/4$$
, which is a contradiction.

(K) We have
$$\tau(1) = q = k = 0$$
 and $\chi^2(x) = \chi(1)\omega(x)$ for all $x \notin N_0^G$.

Proof. By (I), $\sigma(1) = \alpha(1) = n - q$. By (H), we may apply (J) to the γ_i in (6). Letting $\gamma_i = \pi_i + \rho_i$ as in (1), $d_i = \pi_i(1)$, and $D = \sum d_i = \sum \pi_i(1) = n^2 - k - \sum \rho_i(1) = n^2 - (\chi_{|P|}^2, 1_P)$, we have $\rho_i(1) = d_i \tau(1)/(n-q)$ and for $u \notin N_0^G$,

$$\gamma_i(u) = d_i \omega(u)/(n-q).$$

Summing the last two equations over i, we have

(19)
$$(\chi_{|P}^2, 1_P) - k = \sum \rho_i(1) = \sum d_i \tau(1)/(n-q) = D\tau(1)/(n-q)$$

and, for $u \notin N_0^G$,

(20)
$$\chi^{2}(u) - k = \sum \gamma_{i}(u) = \sum d_{i}\omega(u)/(n-q) = D\omega(u)/(n-q).$$

Suppose that $\tau(1)=1$ and $N_0 \not\subseteq PZ$. Then for some $v \in P^\#$, $|N_0 \cup Z| \ge |C(V)| \ge 2|PZ|$. As $\tau(1)=1$, $(1/|N|) \sum_{N_0 \cup Z} |\tau(x)|^2 = |N_0 \cup Z|/|N|$. By the second to last line of (2), for $\gamma = \omega$,

(21)
$$[(4p-1)/3+1]^2/tp^2 \ge (n-q+1)^2/tp^2 \ge \omega(1)^2/tp^2 > |N_0 \cup Z|/|N| \ge 2/t.$$

Then p < 11, p = 7, q = 0, and n = 9. Even then the 2 in 2/t in (21) cannot be replaced by a larger integer or (21) would fail. As $N_0 \cup Z$ contains only entire cosets of PZ, $|N_0 \cup Z| = 2|PZ| = |C(v)|$. As $N(N_0) = N$, $C(v) = N_0 \cup Z$ corresponds to a normal subgroup E of order 2 of L where the element x of $E^\#$ has an eigenvalue 1. As $E \subseteq Z(L)$, by diagonalizing x, we have $L \subseteq D$ where D is the group of all nonsingular diagonal matrices in GL(2, p). As 9 = (n - q)|L|, L contains $\{\text{diag}(y, w)|y, w = 1, 2, 4\}$, a Sylow 3-subgroup of D. Then L contains at least five elements with an eigenvalue 1, and $|N_0 \cup Z| \ge 5|PZ|$, contrary to (21).

Still suppose that r(1) = 1. Then $N_0 \subseteq PZ$ and only *p*-singular elements lie in N_0 and N_0^G . There exists some $y \in N - PZ$. If $y \in N_0^G$, then $[y]_P \in P^\#$ and $y \in C([y]_P) \subseteq N_0 \cup Z \subseteq PZ$, which is a contradiction. Therefore, $y \in N - (N_0^G \cup Z)$. By (C), $\omega(y) = r(y)$ and $\chi(y) = \beta(y)$. Then by (20) and (G),

$$2 > |\beta^{2}(y) - k| = |\chi^{2}(y) - k| = D|\omega(y)|/(n-q) = D|r(y)|/(n-q) \ge (n^{2} - n)(1)/(n-q) \ge n-1,$$

which is a contradiction.

Therefore, $\tau(1) \neq 1$. By (I), $q \leq \tau(1) \leq 1$, so $q = \tau(1) = 0$. Then by (19), $((\chi_{p}^{2}, 1_{p}) = k \leq 1)$. By (G), $0 = q = (\chi_{p}^{2}, 1_{p}) = k$. Then for $u \notin N_{0}^{G}$, by (20) $\chi^{2}(u) = D\omega(u)/(n-q) = n^{2}\omega(u)/n = \chi(1)\omega(u)$.

(L)
$$\chi(x) = 0$$
 for $x \notin Z \cup N_0^G$.

Proof. The group $\overline{G} = G/\Omega_1(O_2(Z))$ has the faithful representation Y corresponding to ω since by (A) the kernel of ω lies in Z. By (A), $Y(\overline{G})$ is a counterexample to the theorem. As $\omega(1) = \chi(1)$ by (K), by minimality of |G|, $|\Omega_1([Z]_2)| = 1$ and (|Z|, 2) = 1. Let ζ be a primitive |G|th root of unity, Q be the rationals, and $K = Q(\zeta)$. Let μ be the automorphism of K taking $[\zeta]_2$, and $[\zeta]_2$ (that is, the 2-part of ζ where $\zeta = [\zeta]_2$, $[\zeta]_2$) to $([\zeta]_2$, $[\zeta]_2$ and $[\zeta]_2$, respectively. Then $\omega_{|Z} = \chi_{|Z}^{\mu}$ and by (J), for $u \notin N_0^G$, $\omega(u) = \chi^{\mu}(u)$. Then by (K), for $u \notin N_0^G$,

(22)
$$\chi^{2}(u) = \chi(1)\chi^{\mu}(u).$$

Let $u \not\in N_0^G$ and $\chi(u) \neq 0$, and let ν be any automorphism of K. There exists an integer e such that $\zeta^{\nu} = \zeta^e$ and (e, |G|) = 1. Then $u^e \notin N_0^G$, otherwise, u^e , $u \notin Z$, $\langle u \rangle = \langle u^e \rangle$ centralizes a p-singular element and $u \in N_0^G$. Then by (22),

(23)
$$(\chi^{\nu}(u))^2 = (\chi(u^e))^2 = \chi(1)\chi^{\mu}(u^e) = \chi(1)\chi^{\mu\nu}(u).$$

As we let ν run over all automorphisms of K, $\mu\nu$ runs over all automorphisms of K. Taking the product of (23) as ν ranges over all automorphisms of K,

(24)
$$\left(\prod_{\text{aut }K} \chi^{\nu}(u)\right)^{2} = \chi(1)^{|\text{aut }K|} \prod_{\text{aut }K} \chi^{\nu}(u) \text{ and}$$

$$\prod_{\text{aut }K} \chi^{\nu}(u) = \chi(1)^{|\text{aut }K|}.$$

As $|\chi^{\nu}(u)| \leq \chi(1)$ for all $\nu \in \text{aut } K$, by (24) this is always equality. Then $|\chi(u)| = \chi(1)$ and $u \in Z$.

We are now able to complete the proof of the theorem. By (K), q=0, and $\chi_N=\alpha$, so by (L),

$$\begin{split} 1 &= \|\chi\|^2 = (1/|G|) \sum_{x \in G} |\chi(x)|^2 \\ &= (1/|G|) \left[\sum_{x \in Z} |\chi(x)|^2 + \sum_{x \in N_0^G} |\chi(x)|^2 \right] = (|Z|/|G|)n^2 + (1/|G|)(|G|/|N|) \sum_{x \in N_0} |\chi(x)|^2 \\ &< (|Z|/|N|)n^2 + (1/|N|) \sum_{x \in N_0} |\chi(x)|^2 = (1/|N|) \sum_{x \in Z \cup N_0} |\chi(x)|^2 \le \|\alpha\|^2 = 1, \end{split}$$

which is a contradiction.

4. The case $p \equiv -1 \pmod{4}$. The following theorem combines Theorem 2 and [7, Theorem 4].

Theorem 3. Let p be prime greater than 5 with $p \equiv -1 \pmod{4}$. Let G be a finite group with a faithful, quasiprimitive, complex representation X with character χ of dimension n < 4p/3, $n \neq p$, and if p = 7, $n \leq 8$. Then $p^2 \nmid \lceil G/Z(G) \rceil$.

The hypothesis p > 5 of Theorem 3 is unnecessary by the classification of 2-dimensional groups in the case p = 3. Given Theorem 2 it is easier to prove the combination Theorem 3 and [7, Theorems 2, 3, and 4] than it is to prove [7, Theorems 2, 3, and 4] since the stronger induction hypothesis allowed in proving the former combination eliminates some of the cases that had to be studied in the proof of [7, Theorems 2, 3, and 4]. We now prove Theorem 3.

Proof. We may replace elements x of X(G) by all unimodular scalar multiples

of x. This does not affect quasiprimitivity or change G/Z(G) within isomorphism. Therefore, we may assume that X(G) is unimodular. Let P be a Sylow p-subgroup of G. Then P is abelian, otherwise some element in $(P' \cap Z(P))^{\#}$ contradicts [1, Theorem 8, p. 96] and quasiprimitivity. Then as (n, p) = 1, (|Z(G)|, p) = 1. We may assume that X(G) is a counterexample to our theorem, so |P| > p. Then by [7, Theorem 4], P is a T.I. set and there exists a subgroup $E \subseteq G$ with F = C(E) (possibly equal to G) having the following properties: $P \subseteq F$ and $P \subseteq F$ has a strongly primitive constituent $P \subseteq F$ of degree larger than $P \subseteq F$. Also, $P \subseteq F$ is faithful on $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ are linear and $P \subseteq F$ and $P \subseteq F$ are

By the above, Y has degree unequal to p. Y is quasiprimitive, |Y(P)| = |P| > p, (|Z(Y(F))|, p) = 1, and $Y(P) \subseteq Y(F)$ satisfy [4, Hypothesis 4.1]. Therefore, Y(F) contradicts Theorem 2. This completes the proof.

We now prove Theorem 1 from the abstract. Let G be a linear group corresponding to \overline{G} satisfying the hypothesis of Theorem 1. By [7, Theorem 1, (b)], \overline{P} is a trivial intersection set. By Theorem 3, $p \equiv 1 \pmod{4}$. By replacing elements x of G by all unimodular scalar multiples, we may assume that G is unimodular. As $p \nmid n$, (|Z(G)|, p) = 1. Suppose that for all $\overline{x} \in \overline{G}^{\#}$, $C(\overline{x})$ has a normal Sylow p-subgroup. As in the proof of Theorem 3, P is abelian. Suppose that N_0 is defined as in Theorem 2, and for some $y, g \in G$, $y \in N_0 \cap N_0^g$. Let H be the preimage of $C(\overline{y})$. Then $C(y) \subseteq H$ and $C(\overline{y})$ and H have normal Sylow p-subgroups, so C(y) has a normal Sylow p-subgroup Q which we may assume is contained in a Sylow p-subgroup P^b of G. Now, y centralizes some nonidentity elements u and v of P and P^g , respectively. As $u, v \in Q \subseteq P^b$ and P is a T.I. set, $P = P^b = P^g$ and P satisfies [4, Hypothesis 4.1]. Then by Theorem 2, $|P| \leq p$, which is a contradiction.

REFERENCES

- 1. H. F. Blichfeldt, Finite collineation groups, Univ. of Chicago Press, Chicago, III., 1917.
- 2. R. Brauer, Uber endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73-96. MR 34 #5913.
- 3. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519.
- 4. W. Feit, Groups which have a faithful representation of degree less than p-1, Trans. Amer. Math. Soc. 112 (1964), 287-303. MR 28 #5110.
- 5. W. Feit and J. G. Thompson, Groups which have a faithful representation of degree less than (p-1/2), Pacific J. Math. 11 (1961), 1257-1262. MR 24 #A3207.
- 6. J. H. Lindsey II, A generalization of Feit's theorem, Trans. Amer. Math. Soc. 155 (1971), 65-75. MR 43 #4899.

- 7. J. H. Lindsey II, Complex linear groups of degree less than 4p/3, J. Algebra 23 (1972), 452-475.
- 8. H. Mitchell, Determination of all primitive collineation groups in more than four variables which contain homologies, Amer. J. Math. 36 (1914), 1-12.
- 9. I. Schur, Über eine Klasse von endlichen Gruppen linearer Substitutionen, S.-B. Preuss. Akad. Wiss. 1905, 77-91.

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DeKALB, ILLINOIS 60115