LOCALLY B*-EQUIVALENT ALGEBRAS. II(1)

BY

BRUCE A. BARNES

ABSTRACT. Let A be a locally B^* -equivalent Banach *-algebra. Then A possesses a unique norm $|\cdot|$ with the property that $|a^*a|=|a|^2$ for all $a\in A$. Let B be the B^* -algebra which is the completion of A in the norm $|\cdot|$. In this paper it is shown that there exists a closed B^* -equivalent *-ideal of A which contains the maximal GCR ideal of B. In particular, when B is a GCR algebra, then A=B.

1. Introduction. Let A be a Banach *-algebra. A is B^* -equivalent if A is *-isomorphic to some B^* -algebra B. Then by [6], Theorem [4]. Theorem (4.1.20)] and the Closed Graph Theorem, the *-isomorphism between A and B is a homeomorphism. Thus A and B have the same algebraic and topological structure (but not necessarily the same geometric structure). We call A locally B^* -equivalent if for every selfadjoint element $a \in A$, the closed *-subalgebra of A generated by a is B^* -equivalent. Whether or not every locally B^* -equivalent Banach *-algebra is B^* -equivalent is not known. Some partial results on this question have been obtained in [2].

Now assume that A is a locally B^* -equivalent Banach *-algebra. Then A possesses a unique norm $|\cdot|$ with the property that $|a^*a|=|a|^2$ for all $a\in A$. Let B be the B^* -algebra which is the completion of A in the norm $|\cdot|$. In this paper, which is a sequel to [2], we prove that there exists a closed B^* -equivalent *-ideal of A which contains the maximal GCR ideal of B (Theorem 2). Thus if B is a GCR algebra, then A=B.

H. Behncke has considered some questions concerning locally B^* -equivalent algebras in [3]. However, there is almost no overlap of his paper with either this paper or [2].

2. Preliminary remarks. Throughout this paper A is a locally B^* -equivalent Banach *-algebra with norm $\|\cdot\|$. By [2, Proposition 2.1], there is a unique norm $|\cdot|$ on A with the B^* -property (that is, $|a^*a| = |a|^2$ for all $a \in A$). Throughout this paper B is the completion of A with respect to the norm $|\cdot|$. Then A is B^* -equivalent if and only if A = B.

By [6, Corollary (4.1.16)], there exists a constant M > 0 such that $|a| \le M \|a\|$ for all $a \in A$. Since A is locally B^* -equivalent, the norms $\|\cdot\|$ and $\|\cdot\|$

Received by the editors March 1, 1972.

AMS (MOS) subject classifications (1970). Primary 46L05, 46K99, 46H20.

⁽¹⁾ This research was partially supported by National Science Foundation Grant GP-28250.

are equivalent on the closed *-subalgebra of A generated by a selfadjoint element of A. Therefore, if $a = a^* \in A$, there exists K > 0 such that $||a^n|| \le K|a^n|$ for all $n \ge 1$. Then

$$||a^n||^{1/n} < K^{1/n}|a^n|^{1/n} = K^{1/n}|a|.$$

It follows that the spectral radius of a selfadjoint element a is |a|.

The norms $\|\cdot\|$ and $\|\cdot\|$ are equivalent on every maximal commutative *-subalgebra of A by [2, Proposition 2.2]. This implies a fact that we use repeatedly: if $\{a_n\}$ is a sequence of selfadjoint elements of A and $a_n a_m = 0$ whenever $n \neq m$, then there exists K > 0 such that $\|a_n\| \leq K|a_n|$ for all $n \geq 1$ (proof—the sequence $\{a_n\}$ is contained in some maximal commutative *-subalgebra of A).

3. Preliminary results. In this section we prove some basic lemmas. If l is a $|\cdot|$ -closed ideal of A, we let $|\cdot|_a$ denote the usual quotient norm on A/I,

$$|a+I|_a = \inf\{|a-b| \mid b \in I\}.$$

Lemma 1. Let I be a closed ideal of B. Then

- (1) $A \cap I$ is $|\cdot|$ -dense in I, and
- (2) if $\|\cdot\|$ and $\|\cdot\|$ are equivalent on $A \cap I$, then $I \subset A$.

Proof. Since I is a closed ideal in the B^* -algebra B, I is a *-ideal (see [6, Theorem (4.9.2)]). Then $A \cap I$ is a $|\cdot|$ -closed (and therefore also $|\cdot|$ -closed) *-ideal of A. Let J be the $|\cdot|$ -closure of $A \cap I$ in B. Then $A \cap J = A \cap I$. The quotient algebra $A/A \cap I$ is naturally embedded in the quotient algebras B/I and B/J by the maps $a+A \cap I \rightarrow a+I$ and $a+A \cap I \rightarrow a+J$, respectively. Define two norms on $A/A \cap I$ by

$$|a+A\cap I|_1 = |a+I|_q$$
 and $|a+A\cap I|_2 = |a+J|_q$.

Since $|a+I|_q$ and $|a+J|_q$ are B^* -norms, then $|\cdot|_1$ and $|\cdot|_2$ are norms on $A/A\cap I$ that have the B^* -property. By [2, Proposition 2.3], $A/A\cap I$ is locally B^* -equivalent. Then by [2, Proposition 2.1], $|a+A\cap I|_1=|a+A\cap I|_2$ for all $a\in A$. It follows that $|a+I|_q=|a+J|_q$ for all $a\in A$. Now assume $t\in I$, and choose a sequence $\{t_n\}$ in A such that $|t_n-t|\to 0$. Then $|(t_n-t)+I|_q\to 0$, and since $t\in I$, it follows that $|t_n+I|_q\to 0$. Therefore $|t_n+J|_q\to 0$. This means that there exists $\{s_n\}\subset J$ such that $|t_n-s_n|\to 0$. Then $|t-s_n|\to 0$, so that $t\in J$. This proves (1).

Now assume that $\|\cdot\|$ and $|\cdot|$ are equivalent on $A\cap I$. If $t\in I$, by (1) we can choose $\{t_n\}\subset A\cap I$ such that $|t_n-t|\to 0$. Then the sequence $\{t_n\}$ is $|\cdot|$ -Cauchy, and therefore $\|\cdot\|$ -Cauchy. Therefore there exists $s\in A$ such that $\|t_n-s\|\to 0$. Then $|t_n-s|\to 0$ so that s=t.

If $a=a^*\in A$, let C(a) be the closed *-subalgebra of A generated by a. Let $\Phi_{C(a)}$ be the carrier space of C(a), and if $b\in C(a)$, let \hat{b} denote the Gelfand transform of b. Since A is locally B^* -equivalent, $b\to \hat{b}$ is a bicontinuous *-isomorphism of C(a) onto the algebra of all complex continuous functions that vanish at infinity on $\Phi_{C(a)}$. Now let D be a *-subalgebra of A. By [2], Lemma 2.5], if there exists K>0 such that $K|a|\geq \|a\|$ for all $a=a^*\in D$, then the $\|\cdot\|$ -closure of D is B^* -equivalent. We use these results in the proof of the next lemma.

Lemma 2. Let I be a *-subalgebra of A with the properties:

- (1) if $t^* = t \in I$, then $C(t) \subset I$,
- (2) if $t \in I$, then $(1-t^*)I(1-t) \neq \{0\}$.

Then there exists $h \in I$ such that the $\|\cdot\|$ -closure of $(1-b^*)I(1-h)$ is B^* -equivalent.

Proof. Suppose that there is no $b \in I$ such that the $\|\cdot\|$ -closure of $(1-b^*)I(1-b)$ is B^* -equivalent. Then the $\|\cdot\|$ -closure of I is not B^* -equivalent, so that there exists $b_1^* = b_1 \in I$ such that $|b_1| < \frac{1}{2} \|b_1\|$. Choose $g_1^* = g_1 \in C(b_1)$ such that \hat{g}_1 has compact support in $\Phi_{C(b_1)}$ and $|g_1| < \frac{1}{2} \|g_1\|$. Then choose $k_1^* = k_1 \in C(b_1)$ such that $\hat{k}_1 \equiv 1$ on the support of \hat{g}_1 . Note that $g_1(1-k_1) = (1-k_1)g_1 = 0$. Let $I_1 = (1-k_1)I(1-k_1)$. By assumption the $\|\cdot\|$ -closure of I_1 is not B^* -equivalent. Then choose $b_2^* = b_2 \in I_1$ such that $|b_2| < \frac{1}{4} \|b_2\|$. Choose as before $g_2^* = g_2$ and $k_2^* = k_2$ in $C(b_2)$ such that $|g_2| < \frac{1}{4} \|g_2\|$ and $g_2(1-k_2) = (1-k_2)g_2 = 0$. Since $g_1b_2 = b_2g_1 = 0$, then $g_1k_2 = k_2g_1 = 0$ and $g_1g_2 = g_2g_1 = 0$. Let $I_2 = (1-k_2)(1-k_1)I(1-k_1)(1-k_2)$. If $u = (1-k_2)(1-k_1)v(1-k_1)(1-k_2)$ for some $v \in I$, then $g_1u = ug_1 = 0$ and $g_2u = ug_2 = 0$. As before choose $g_3 = g_3^*$ and $k_3 = k_3^*$ in I such that $|g_3| < (\frac{1}{2})^3 \|g_3\|$, $(1-k_3)g_3 = g_3(1-k_3) = 0$, and $g_1g_1 = 0$ if $i \neq j$. Continuing in this fashion we can construct a sequence of self-adjoint elements $\{g_k\} \subset I$ such that $g_1g_1 = 0$ whenever $i \neq j$ and $|g_k| < (\frac{1}{2})^k \|g_k\|$. This contradicts the fact that A is locally B^* -equivalent.

Lemma 3. Let $\{I_{\lambda}\}$, $\lambda \in \Lambda$, be a collection of closed *-ideals of Λ , and let $I = \bigcup_{\lambda \in \Lambda} I_{\lambda}$. If I_{λ} is B^* -equivalent for each $\lambda \in \Lambda$, and I is a *-subalgebra of Λ , then the $\|\cdot\|$ -closure of I is B^* -equivalent.

Proof. Assume that there exists an element $t \in I$ such that $(1-t^*)I(1-t) = \{0\}$. Then for any $a \in I$, $(1-t^*)a^*a(1-t) = 0$, so that a(1-t) = 0. There exists $\mu \in \Lambda$ such that $t \in I_{\mu}$. Then $a = at \in I_{\mu}$. Then $I = I_{\mu}$, which proves the lemma in this case.

Now assume that $(1-t^*)I(1-t) \neq \{0\}$ whenever $t \in I$. By Lemma 2 there exists $b \in I$ such that the $\|\cdot\|$ -closure of $(1-b^*)I(1-b)$ is B^* -equivalent. Assume that $\{b_n\}$ is a $\|\cdot\|$ -Cauchy sequence in the $\|\cdot\|$ -closure of I. For each n,

$$b_n = [(1 - b^*)b_n(1 - b)] + [(1 - b^*)b_nb + b^*b_n].$$

There exists $\mu \in \Lambda$ such that $h \in I_{\mu}$. Then $\{(1-b^*)b_n h + b^* b_n\}$ is a $|\cdot|$ -Cauchy sequence in I_{μ} , and $\{(1-b^*)b_n(1-b)\}$ is a $|\cdot|$ -Cauchy sequence in the $\|\cdot\|$ -closure of $(1-b^*)I(1-b)$. Since both these $|\cdot|$ -Cauchy sequences converge to some element of A, then $\{b_n\}$ converges to some element of A. It follows that the $\|\cdot\|$ -closure of I is B^* -equivalent.

4. Locally B^* -equivalent algebras of vector valued functions. Let Ω be a compact Hausdorff space and denote by $C_R(\Omega)$ the algebra of all continuous real-valued functions on Ω . For each $\omega \in \Omega$, let B_ω be a B^* -algebra with norm $|\cdot|_\omega$. Define $C(\Omega, B_\omega)$ to be the algebra of all functions f defined on Ω such that $f(\omega) \in B_\omega$ for all $\omega \in \Omega$ and such that the function $\omega \to |f(\omega)|_\omega$ is in $C_R(\Omega)$. The algebra $C(\Omega, B_\omega)$ is a B^* -algebra in the norm

$$|f| = \sup_{\omega \in \Omega} |f(\omega)|_{\omega}.$$

Throughout this section we assume that B is a closed *-subalgebra of $C(\Omega, B_{\omega})$ which is closed under multiplication by functions in $C_R(\Omega)$.

Theorem 1. Assume that A is a dense *-subalgebra of B such that A is a locally B*-equivalent Banach algebra. Furthermore, assume that if $\omega_1, \dots, \omega_n$ are any n distinct points in Ω and b_1, \dots, b_n are such that $b_k \in B_{\omega_k}$, $1 \le k \le n$, then there exists $g \in A$ such that $g(\omega_k) = b_k$, $1 \le k \le n$.

Then A = B.

We proceed with the proof of Theorem 1 by establishing several lemmas. If V is a subset of Ω , let $J_V = \{f \in B | f(\omega) = 0 \text{ whenever } \omega \notin V\}$. We say that $\|\cdot\|$ and $\|\cdot\|$ are equivalent on A at $\omega \in \Omega$ if there exists an open neighborhood V of ω such that $\|\cdot\|$ and $\|\cdot\|$ are equivalent on the ideal $A \cap J_V$.

Lemma 4. The norms $\|\cdot\|$ and $|\cdot|$ are equivalent on A at all but at most a finite number of points of Ω .

Proof. Suppose that there is an infinite sequence of distinct points $\{\omega_n\} \subset \Omega$ such that $\|\cdot\|$ and $\|\cdot\|$ are not equivalent on A at ω_n for all $n \geq 1$. By choosing a suitable subsequence of $\{\omega_n\}$ if necessary, we may assume that there exists a disjoint sequence of open subsets of Ω , $\{U_n\}$, such that $\omega_n \in U_n$ for $n \geq 1$. Then for each $n \geq 1$ there exists $g_n^* = g_n \in J_{U_n} \cap A$ such that $n|g_n| < \|g_n\|$. Since $g_n g_m = g_m g_n = 0$ when $n \neq m$, this contradicts the assumption that A is locally B^* -equivalent.

If $|\cdot|$ and $|\cdot|$ are equivalent on A at every point in Ω , let I = B. In the case where there exist points in Ω at which $|\cdot|$ and $|\cdot|$ are not equivalent on A, then by Lemma 4 there must be only a finite number of such points. Let

 $\{\omega_1, \dots, \omega_n\}$ be this collection of points. Define I in this case to be the set of all $f \in B$ such that $f(\omega_k) = 0$, $1 \le k \le n$.

Lemma 5. $I \subset A$.

Proof. For each $\omega \in \Omega$ such that $\omega \neq \omega_k$, $1 \leq k \leq n$, there exists an open neighborhood U of ω in Ω such that $|\cdot|$ and $|\cdot|$ are equivalent on $A \cap J_U$. It follows from Lemma 1 that $J_U \subset A$. Let K be a closed subset of Ω disjoint from $\{\omega_1, \cdots, \omega_n\}$ (when I = B, let $K = \Omega$). Choose $\{U_1, \cdots, U_m\}$ a finite open cover of K such that $|\cdot|$ and $|\cdot|$ are equivalent on $A \cap J_{U_k}$, $1 \leq k \leq m$. Then, as noted above, $J_{U_k} \subset A$, $1 \leq k \leq m$. Let $U_0 = \Omega \setminus K$. Choose $f_k \in C_R(\Omega)$ such that $f_k(\omega) = 0$ whenever $\omega \notin U_k$, $0 \leq k \leq m$, and such that $1 = \sum_{k=0}^m f_k$. If $g \in J_K$, then $f_0g = 0$. Then $g = \sum_{k=0}^m f_k g = \sum_{k=1}^m f_k g$. By hypothesis B is closed under multiplication by functions in $C_R(\Omega)$. Therefore $f_k g \in J_{U_k} \subset A$ for $1 \leq k \leq m$. (In the case where I = B, the proof is now complete.) There exist constants M_k such that $||b|| \leq M_k |b|$ whenever $b \in J_{U_k}$, $1 \leq k \leq m$. Then

$$\|g\| \leq \sum_{k=1}^{m} \|f_k g\| \leq \sum_{k=1}^{m} M_k |f_k g| \leq \left(\sum_{k=1}^{m} M_k \|f_k\|_{\infty}\right) |g|.$$

Therefore $|\cdot|$ and $\|\cdot\|$ are equivalent on the closed *-ideal $J_K \subset A$. Let $I_0 = \bigcup J_K$ where the union is over all closed subsets K of Ω that are disjoint from $\{\omega_1, \cdots, \omega_n\}$. By Lemma 3, $|\cdot|$ and $\|\cdot\|$ are equivalent on the $\|\cdot\|$ -closure of I_0 . But I_0 is $|\cdot|$ -dense in I. Therefore the same proof as given for part (2) of Lemma 1 shows that $I \subset A$.

Now we complete the proof of Theorem 1. Assume that $f \in B$. Let $\{\omega_1, \dots, \omega_n\}$ be as above. By hypothesis there exists $g \in A$ such that $g(\omega_k) = f(\omega_k)$, $1 \le k \le n$. Then $f - g \in I$. But by Lemma 5, $I \subseteq A$, and therefore $f \in A$.

5. The main result. Assume that B is a CCR (liminaire) algebra with Hausdorff structure space Ω . To each point $P \in \Omega$ associate the B^* -algebra $B_P = B/P$. Each of the algebras B_P is *-isomorphic to the algebra of all compact operators on some Hilbert space. By [5, Lemma 4.3] Ω is locally compact in the Jacobson topology. If Ω is not compact, then compactify it by adding a point at ∞ , P_{∞} , and associate with P_{∞} the algebra $B_{P_{\infty}} = \{0\}$. Each $b \in B$ determines a function b(P) defined on Ω by

$$b(P)=b+P\in B_{P}.$$

Let $|b(P)|_P$ be the quotient norm of b+P in B/P ($b \in B$, $P \in \Omega$). Then $|b|=\sup\{|b(P)|_P|\ P \in \Omega\}$ for all $b \in B$. Furthermore, by [5, Theorem 4.1], $P \to |b(P)|_P$ is a continuous function on Ω . If P_1, \dots, P_n are n distinct points of Ω , and b_1, \dots, b_n are n elements of B, then there exists $b \in B$ such that

 $b(P_k) = b + P_k = b_k + P_k$ for $1 \le k \le n$. This follows from [4, Proposition 4.2] for the case n = 2, but the result is easily extended to all positive integers n. Then [5, Theorem 3.3] applies to B, so that B is closed under multiplication by functions in $C_R(\Omega)$.

Now assume that A is a locally B^* -equivalent Banach algebra which is a dense *-subalgebra of B. Let P_1, \dots, P_n be n distinct points of Ω . Let $B' = B_{P_1} \oplus \cdots \oplus B_{P_n}$ (the direct sum of the quotient algebras $B_{P_k}, 1 \le k \le n$). B' is a dual B^* -algebra. Let $I = A \cap P_1 \cap \cdots \cap P_n$. The map $\pi \colon A/I \to B'$, defined for $a \in A$ by $\pi(a+1) = (a+P_1) \oplus \cdots \oplus (a+P_n)$, is a *-isomorphism of the locally B^* -equivalent Banach algebra A/I into B'. Let b_1, \dots, b_n be any n elements of B. Then as noted above, there exists $b \in B$ such that $b(P_k) = b + P_k = b_k + P_k$ for $1 \le k \le n$. Choose a sequence $\{a_j\} \in A$ such that $|a_j - b| \to 0$. Then $\pi(a_j + I) \to (b_1 + P_1) \oplus \cdots \oplus (b_n + P_n)$ in B'. This proves that $A' = \pi(A/I)$ is a dense locally B^* -equivalent Banach *-subalgebra of the dual B^* -algebra B'. If $t = t^* \in A'$, then t has the same spectrum in A' and B'. Then by [1, Theorem 3.4], the spectrum of t in A' is at most countable. Therefore by [2, Theorem 4.1], A' = B'. It follows that if b_1, \dots, b_n are n elements of B, there exists $a \in A$ such that $a(P_k) = b_k + P_k$ for $1 \le k \le n$. Then A satisfies all the hypotheses of Theorem 1, so that A = B. We state this result as a proposition.

Proposition 6. If B is a CCR algebra with Hausdorff structure space, then A = B.

Lemma 7. Let K be a closed B^* -equivalent *-ideal of A. Then there exists a closed B^* -equivalent *-ideal I of A such that $K \subset I$ and A/I has no nonzero closed B^* -equivalent *-ideals.

Proof. Let \S be the collection of all closed B^* -equivalent *-ideals of A that contain K. Then \S is nonempty, and \S is partially ordered by inclusion. Assume that $\{I_{\lambda}\}$, $\lambda \in \Lambda$, is a chain in \S . Then by Lemma 3 the $\|\cdot\|$ -closure of $\bigcup_{\lambda \in \Lambda} I_{\lambda}$ is in \S . By Zorn's Lemma \S contains a maximal element I. Assume that I is a closed B^* -equivalent *-ideal of A/I. Let π be the natural quotient map of A onto A/I. By [2, Lemma 2.4], $\pi^{-1}(I)$ is a closed B^* -equivalent *-ideal of A that contains I. Then by the maximality of I, $\pi^{-1}(I) = I$. This proves that I is the zero ideal in A/I.

Proposition 8. If B is a GCR algebra, then A = B.

Proof. By Lemma 7 A contains a closed B^* -equivalent *-ideal I such that A/I has no nonzero closed B^* -equivalent *-ideals. Then I is a closed *-ideal of B, and A/I is a dense locally B^* -equivalent *-subalgebra of B/I. By [4, Proposition 4.3.5], B/I is a GCR algebra. Let A_1 and B_1 denote the quotient

algebras A/I and B/I, respectively. Assume $B_1 \neq \{0\}$ (that is, $B \neq I$). Then B_1 contains a nonzero closed *-ideal J which is a CCR algebra (see [4, p. 87]). Then J_1 , the first nonzero ideal in the composition series described in [5, Theorem 6.2], is a closed *-ideal of B_1 which is a CCR algebra with Hausdorff structure space. Now $A_1 \cap J_1$ is dense in J_1 by Lemma 1. Then by Proposition 6, $J_1 \subset A_1$. This contradiction implies that B = I. Therefore B = A.

Now we prove the main result.

Theorem 2. There exists a closed *-ideal I of A with the properties:

- (1) I is B*-equivalent.
- (2) I contains the largest GCR ideal of B, and
- (3) A/I has no nonzero closed B*-equivalent ideals.

Proof. Let J be the largest GCR ideal of B (see [5, Theorem 7.5]). By Lemma 1 $A \cap J$ is a dense *-subalgebra of J. Furthermore $A \cap J$ is locally B*-equivalent. Then by Proposition 8, $J = A \cap J \subset A$. Then Lemma 7 implies the existence of a closed *-ideal I of A with properties (1)-(3).

REFERENCES

- 1. B. A. Barnes, A generalized Fredholm theory for certain maps in the regular representations of an algebra, Canad. J. Math. 20 (1968), 495-504. MR 38 #534.
- 2. ———, Locally B*-equivalent algebras, Trans. Amer. Math. Soc. 167 (1972), 435-442.
- 3. H. Behncke, A note on the Gel'fand-Naïmark conjecture, Comm. Pure Appl. Math. 23 (1970), 189-200. MR 41 #2404.
- 4. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 5. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255. MR 13, 48.
- 6. C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403