KRULL DIMENSION IN POWER SERIES RINGS

BY

JIMMY T. ARNOLD

ABSTRACT. Let R denote a commutative ring with identity. If there exists a chain $P_0 \subset P_1 \subset \cdots \subset P_n$ of n+1 prime ideals of R, where $P_n \neq R$, but no such chain of n+2 prime ideals, then we say that R has dimension n. The power series ring R[[X]] may have infinite dimension even though R has finite dimension.

1. Introduction. We shall write dim R = n to denote that R has dimension n. Seidenberg, in [6] and [7], has investigated the theory of dimension in rings of polynomials. In particular, he has shown in [6] that if dim R = n, then $n + 1 \le \dim R[X] \le 2n + 1$, where X is an indeterminate over R. One might now ask whether it is also true that $n + 1 \le \dim R[[X]] \le 2n + 1$. It is easy to show that $n + 1 \le \dim R[[X]]$ when dim R = n. In [3] Fields has considered the theory of dimension in power series rings over valuation rings. Using results obtained by Fields, Arnold and Brewer have noted in [1] that dim $V[[X]] \ge 4$ for any rank one nondiscrete valuation ring V. Thus, if dim R = n, then 2n + 1 is not, in general, an upper bound for dim R[[X]]. In this paper we show that we may have dim $R[[X]] = \infty$ even though R has finite dimension. Our main result is Theorem 1, which gives sufficient conditions on a ring R in order that dim $R[[X]] = \infty$. In fact, the conditions given insure the existence of an infinite ascending chain of prime ideals in R[[X]].

Throughout this paper, R denotes a commutative ring with identity, ω is the set of natural numbers, and ω_0 is the set of nonnegative integers. If $f(X) = \sum_{i=0}^{\infty} a_i X^i \in R[[X]]$, then we denote by A_f the ideal of R generated by the coefficients of f(X). For an ideal A of R, we let $A[[X]] = \{f(x) = \sum_{i=0}^{\infty} a_i X^i | a_i \in A$ for each $i \in \omega_0 \}$ and we define AR[[X]] to be the ideal of R[[X]] which is generated by A. Thus, $AR[[X]] = \{f(X) | A_f \subseteq B \text{ for some finitely generated ideal } B$ of R, with $B \subseteq A \}$. We shall say that the ideal A is an ideal of strong finite type (or an SFT-ideal) provided there is a finitely generated ideal $B \subseteq A$ and $A \in B$ such that $A \in B$ for each $A \in A$. If each ideal of $A \in A$ is an SFT-ideal, then we say that $A \in A$ satisfies the SFT-property. Throughout, our notation and terminology are essentially that of $A \in A$.

Presented to the Society, January 21, 1971; received by the editors February 21, 1972. AMS (MOS) subject classifications (1969). Primary 1393; Secondary 1320. Key words and phrases. Dimension, power series ring.

2. Main Theorem. Let R be a ring which does not satisfy the SFT-property. If M is an ideal of R which is not an SFT-ideal, then we may choose a sequence $\{a_i\}_{i=0}^{\infty}$ of elements of M so that $a_{k+1}^{k+1} \not\in (a_0, \cdots, a_k)$ for each $k \in \omega_0$. Set $A_k = (a_0, \cdots, a_k)$ and let $A = \bigcup_{k=0}^{\infty} A_k$. For each $m \in \omega$, we now choose a sequence $\{a_{m,i}\}_{i=0}^{\infty}$ of elements of A as follows. For m=1, we take $a_{1,i} = a_i$ for each $i \in \omega_0$. Having defined the sequence $\{a_{m,i}\}_{i=0}^{\infty}$ for $1 \le m < n$, we define the sequence $\{a_{n,i}\}_{i=0}^{\infty}$ by taking $a_{n,i} = a_{n-1,i} + 1$ for each $i \in \omega_0$. For each $i \in \omega_0$. For each $i \in \omega_0$ we set $a_{n,i} = \sum_{i=0}^{\infty} a_{n,i} + 1$.

Definition 1. Suppose that $g(X) \in R[[X]]$, $g(X) = \sum b_i X^i$, and let n, m, μ, r be integers such that $m \ge n \ge 1$, and $r \ge 0$. We shall say that the tuple (g, m, μ, r) has property (n) if for $i \ge r$ there exists an integer t_i such that the following hold, where we assume that $a_{m,i} = a_{n,k_i} = a_{1,s_i}$.

- (i) $b_{t_i} = a_{m,i}^{\mu} + \alpha$ for some $\alpha \in A_{s_{i-1}}$.
- (ii) $t_i \leq \mu k_i$
- (iii) $b_i \in A_{s_i-1}$ for $0 \le j < t_i$.

For $n \in \omega$, we set $S_n = \{g(X) \in R[[X]] | (g, m, \mu, r) \text{ has property } (n) \text{ for some } m, \mu \in \omega \text{ and } r \in \omega_0\}$. S_n is nonempty since $(f_{(n)}, n, 1, 0)$ satisfies property (n).

Lemma 1. If $n, n_1 \in \omega$ are such that $n \ge n_1$, then $S_n \subseteq S_{n_1}$.

Proof. Suppose that $g(X) \in S_n$ and that (g, m, μ, r) has property (n). We wish to see that (g, m, μ, r) also has property (n_1) . But properties (i) and (iii) of Definition 1 already hold since they are independent of the choice of n. To see that (ii) holds, suppose that $i \ge r$ and that $a_{m,i} = a_{n,k_i} = a_{n_1,\nu_i}$. Then $k_i \le \nu_i$, and hence $t_i \le \mu k_i \le \mu \nu_i$. It follows that $g(X) \in S_{n_1}$.

Lemma 2. For each $n \in \omega$, S_n is a multiplicatively closed subset of R[[X]].

Proof. Let $g(X) \in R[[X]]$, $g(X) = \sum_{i=0}^{\infty} b_i X^i$. We first show that if (g, m, μ, r) has property (n) and if $m_1 \ge m$, then (g, m_1, μ, r) also has property (n). Thus, suppose that $i \ge r$ and that $a_{m_1,i} = a_{m,j_i} = a_{n,k_i} = a_{1,s_i}$. Since $j_i \ge i \ge r$, there exists an integer t_{j_i} such that:

- (i) $b_{t_{j_i}} = a_{m,j_i}^{\mu} + \alpha$ for some $\alpha \in A_{s_{j-1}}$.
- (ii) $t_{j_i} \leq \mu k_j$.
- (iii) $b_{\lambda} \in A_{s_i-1}$ for $0 \le \lambda < t_{j_i}$.

Taking $\tau_i = t_{j_i}$ and using the fact that $a_{m_1,i} = a_{m,j_i}$, we see that τ_i satisfies properties (i), (ii) and (iii) of Definition 1 so (g, m_1, μ, r) has property (n).

Now let g(X), $b(X) \in S_n$, where $g(X) = \sum_{i=0}^{\infty} b_i X^i$ and $b(X) = \sum_{i=0}^{\infty} c_i X^i$, and suppose that (g, m_1, μ_1, r_1) and (b, m_2, μ_2, r_2) satisfy property (n). By the preceding remarks, we may assume that $m_1 = m_2$ and, clearly, we may assume that $r_1 = r_2$. Set $m = m_1 = m_2$ and $r = r_1 = r_2$. We wish to show that $(gb, m, \mu_1 + \mu_2, r)$

has property (n). Suppose that $i \geq r$ and that $a_{m,i} = a_{n,k_i} = a_{1,s_i}$. By assumption there exist integers t_i and τ_i such that $b_{t_i} = a_{m,i}^{\mu_1} + \alpha$ and $c_{\tau_i} = a_{m,i}^{\mu_2} + \beta$ for some α , $\beta \in A_{s_i-1}$. Moreover, b_{λ} , $c_{\delta} \in A_{s_i-1}$ for $0 \leq \lambda < t_i$ and $0 \leq \delta < \tau_i$. If $g(X)b(X) = \sum_{i=0}^{\infty} \xi_i X^i$, then

$$\xi_{t_i+\tau_i} = b_{t_i} c_{\tau_i} + \sum_{\lambda + \delta = t_i + \tau_i; \lambda \neq t_i; \delta \neq \tau_i} b_{\lambda} c_{\delta}.$$

But if $\lambda \neq t_i$ and $\delta \neq \tau_i$, then either $\lambda < t_i$ or $\delta < \tau_i$. Consequently, either $b_{\lambda} \in A_{s_i-1}$ or $c_{\delta} \in A_{s_i-1}$. Since $b_{t_i} c_{\tau_i} = a_{m,i}^{\mu_1 + \mu_2} + \alpha a_{m,i}^{\mu_2} + \beta a_{m,i}^{\mu_1} + \alpha \beta$, it follows that $\xi_{t_i + \tau_i} = a_{m,i}^{\mu_1 + \mu_2} + \gamma$ for some $\gamma \in A_{s_{i-1}}$. By assumption, we have $t_i \leq \mu_1 k_i$ and $\tau_i \leq \mu_2 k_i$. Therefore, $t_i + \tau_i \leq (\mu_1 + \mu_2) k_i$. Finally, if $0 \leq \lambda < t_i + \tau_i$, then $\xi_{\lambda} = \sum_{j=0}^{\lambda} b_j c_{\lambda-j} \in A_{s_i-1}$ since either $j < t_i$ or $\lambda - j < \tau_i$.

Lemma 3. Let $n, \nu \in \omega$ be such that $n > \nu$. If $g(X) \in S_n$, then $g(X) + b(X)f_{(\nu)}(X) \in S_n$ for arbitrary $b(X) \in R[[X]]$.

Proof. Suppose that $g(X) = \sum_{i=0}^{\infty} b_i X^i$ and that (g, m, μ, r) has property (n). Let $\eta = \min \{i \in \omega_0 | a_{m,i} = a_{n,k_i} \Longrightarrow k_i \ge \mu \}$ and set $r_1 = \max \{r, \eta \}$. If $q(X) = g(X) + b(X) f_{(v)}(X) = \sum_{i=0}^{\infty} \xi_i X^i$, then we wish to show that (q, m, μ, r_1) satisfies property (n). Thus, suppose that $i \ge r_1$ and that $a_{m,i} = a_{n,k_i} = a_{v,\lambda_i} = a_{1,s_i}$. By assumption, there exists an integer t_i such that $b_{t_i} = a_{m,i}^{\mu} + \alpha$ for some $\alpha \in A_{s_{i-1}}$ and such that $t_i \le \mu k_i \le k_i^2$. Since $\lambda_i \ge k_i^2 + 1$, it follows that $a_{v,j} \in A_{s_{i-1}}$ for $0 \le j \le t_i$. Consequently, if $b(X) = \sum_{j=0}^{\infty} c_j X^j$ and $b(X) f_{(v)}(X) = \sum_{i=0}^{\infty} \gamma_j X^i$, then $\gamma_{t_i} = \sum_{j=0}^{t_i} a_{v,j} c_{t_i-j} \in A_{s_{i-1}}$. Therefore, $\xi_{t_i} = b_{t_i} + \gamma_{t_i} = a_{m,i}^{\mu} + \alpha + \gamma_{t_i}$ and (i) of Definition 1 is satisfied. We already have that $t_i \le \mu k_i$, so (ii) is also satisfied. To see that (iii) holds, suppose that $0 \le \delta < t_i$. By assumption, we have that $b_{\delta} \in A_{s_{i-1}}$. Also, $\gamma_{\delta} = \sum_{j=0}^{\delta} a_{v,j} c_{t_i-j} \in A_{s_{i-1}}$, since $j \le \delta < t_i \le k_i^2$ implies that $a_{v,j} \in A_{s_{i-1}}$. Consequently, $\xi_{\delta} = b_{\delta} + \gamma_{\delta} \in A_{s_{i-1}}$ and our proof is complete. We now state our main result.

Theorem 1. Let R be a commutative ring with identity. The following conditions are equivalent and imply that R[[X]] has infinite dimension.

- (1) R does not satisfy the SFT-property.
- (2) There exists an ideal A of R such that $A[[X]] \not\subseteq \sqrt{AR[[X]]}$.
- (3) There exists a prime ideal P of R such that $P[[X]] \neq \sqrt{PR[[X]]}$.

Proof. Assume that (1) holds. We shall first prove that $\dim R[[X]] = \infty$. Let the ideal A be as previously defined. We wish to see that $AR[[X]] \cap S_1 = \emptyset$. Thus, let $g(X) \in AR[[X]] \cap S_1$, $g(X) = \sum_{i=0}^{\infty} b_i X^i$. Then $A_g \subseteq C$ for some finitely generated ideal C of R, where $C \subseteq A$. Consequently, there exists $k \in \omega_0$ such that $A_g \subseteq A_k$. Suppose that (g, m, μ, r) has property (1) and that r has been chosen so that if $i \ge r$ and $a_{m,i} = a_{1,s_i}$, then $s_i > \max\{\mu, k\}$. If t_i is such that $b_{t_i} = a_{m,i}^{\mu} + \alpha$ for some $\alpha \in A_{s_{i-1}}$, then we have $a_{m,i}^{\mu} + \alpha \in A_k \subseteq A_{s_{i-1}}$.

Therefore, $a_{m,i}^{\mu} \in A_{s_{i-1}}$, a contradiction since $a_{m,i}^{s_i} = a_{i,s_i}^{s_i} \notin A_{s_{i-1}}$ and $s_i > \mu$. (Since $f_{(1)} \in S_1$, it follows that $f_{(1)} \in A[[X]] - \sqrt{AR[[X]]}$. Thus we see that (1) implies (2).) But $S_1 \cap AR[[X]] = \emptyset$ implies the existence of a prime ideal P_1 of R[[X]] such that $AR[[X]] \subseteq P_1$ and $P_1 \cap S_1 = \emptyset$. Suppose there exists a chain $P_1 \subset \cdots \subset P_n$ of prime ideals of R[[X]] such that $P_n \cap S_n = \emptyset$, and let $C_n = P_n + (f_{(n)}(X))$. If $g(X) \in S_{n+1}$, then by Lemma 3, $g(X) + b(X)f_{(n)}(X) \in S_{n+1} \subseteq S_n$ for arbitrary $b(X) \in R[[X]]$. It follows that $g(X) + b(X)f_{(n)}(X) \notin P_n$ and hence that $g(X) \notin C_n$. Thus, $C_n \cap S_{n+1} = \emptyset$ and there exists a prime ideal P_{n+1} such that $P_n \subseteq C_n \subseteq P_{n+1}$ and $P_{n+1} \cap S_{n+1} = \emptyset$. We see by induction that $\dim R[[X]] = \infty$.

To see that (2) implies (3), we note that if $A[[X]] \not\subseteq \sqrt{AR[[X]]}$, then there exists a prime ideal Q of R[[X]] such that $AR[[X]] \subseteq Q$ but $A[[X]] \not\subseteq Q$. If $P = Q \cap R$, then $P \supseteq A$ and hence $P[[X]] \supseteq A[[X]]$. Therefore, $Q \supseteq PR[[X]]$ but $Q \not\supseteq P[[X]]$. It follows that $P[[X]] \ne \sqrt{PR[[X]]}$. In order to show that (3) implies (1), we require the following lemma.

Lemma 4. Let A be an ideal of R and suppose that there exists $k \in \omega$ such that $a^k = 0$ for each $a \in A$. If $f(X) \in A[[X]]$, then f(X) is nilpotent.

Proof. We first prove the existence of an integer m such that $m\xi=0$ for all $\xi\in A^m$. Suppose we have integers μ,ν_1,\cdots,ν_t such that $\mu a_1^{\nu_1}\cdots a_t^{\nu_t}=0$ for all $a_1,\cdots,a_t\in A$ (certainly this condition is satisfied if $\mu=t=1$ and $\nu_1=k$) and suppose that $\nu_i\geq 2$ for some $i,\ 1\leq i\leq t$. For convenience, we suppose that $\nu_1\geq 2$. Now let $b_0,\ b_1,\cdots,b_t\in A$. By assumption, we have that

$$0 = \mu(b_0 + b_1)^{\nu_1} b_2^{\nu_2} \cdots b_t^{\nu_t} = \mu b_0^{\nu_1 - 2} (b_0 + b_1)^{\nu_1} b_2^{\nu_2} \cdots b_t^{\nu_t} = \sum_{j=0}^{\nu_1} \xi_j,$$

where $\xi_j = \mu({}^{\nu_1}_j) \ b_0^{2\nu_1-j-2} b_1^j b_2^{\nu_2} \cdots b_t^{\nu_t}$. If $0 \le j \le \nu_1 - 2$, then $2\nu_1 - j - 2 \ge \nu_1$ so that $\xi_j = 0$. Also, $\xi_{\nu_1} = b_0^{\nu_1-2} (\mu b_1^{\nu_1} \cdots b_t^{\nu_t}) = 0$. It follows that $0 = \xi_{\nu_1-1} = \mu \nu_1 b_0^{\nu_1-1} b_1^{\nu_1-1} b_2^{\nu_2} \cdots b_t^{\nu_t}$. By a finite number of repetitions of this procedure, we may find integers μ and t such that $\mu a_1 \cdots a_t = 0$ for all $a_1, \dots, a_t \in A$. If we set $m = \mu t$, then $mA^m = (0)$. Now let $f(X) \in A[[X]]$, $f(X) = \sum_{i=0}^{\infty} a_i X^i$. Following a proof given by Fields [2, Theorem 1] we suppose that m = p is a prime integer. Then $(f(X))^{pk} = \sum_{i=0}^{\infty} a_i^{pk} X^{ipk} = 0$. If m is not prime and $m = p_1^{e_1} \cdots p_t^{e_t}$ is a prime factorization for m, then let $\phi_j : R[[X]] \to (R/p_j A^{p_j})[[X]]$ be the canonical homomorphism for $1 \le j \le t$. By the previous case for m a prime, we have $0 = [\phi_j(f(X))]^{pj}$, that is $(f(X))^{pj} \in p_j A^{pj}[[X]]$. If $n = (p_1^{e_1k} + \cdots + p_t^{e_tk})m$, then

$$(f(X))^{n} - [((f(X))^{p_{1}^{k}})^{e_{1}} \dots ((f(X))^{p_{t}^{k}})^{e_{t}}]^{m} \in [(p_{1}A^{p_{1}})^{e_{1}}[[X]] \dots (p_{t}A^{p_{t}})^{e_{t}}[[X]]]^{m} \subset mA^{m}[[X]] = (0).$$

To complete the proof of Theorem 1, suppose that B is an ideal of R which is an SFT-ideal. By definition, there exists $k \in \omega$ and a finitely generated ideal $C \subseteq B$ such that $b^k \in C$ for all $b \in B$. Setting $\overline{R} = R/C$ and $\overline{B} = B/C$, it follows from Lemma 4 that f(X) is nilpotent for each $f(X) \in \overline{B}[[X]]$. Therefore, if $g(X) \in B[[X]]$, then $g(X) \in \sqrt{C[[X]]} = \sqrt{CR[[X]]} \subseteq \sqrt{BR[[X]]}$. Consequently, if P is a prime ideal of R such that $P[[X]] \neq \sqrt{PR[[X]]}$, then P is not an SFT-ideal. This proves that (3) implies (1) and the theorem follows.

If dim R = n, then it is natural to ask whether the conditions given in Theorem 1 are necessary in order that dim $R[[X]] = \infty$. Another interesting question which arises is whether the following conditions are equivalent:

- (1) dim $R[[X]] \neq n + 1$.
- $(2) \dim R[[X]] = \infty.$

We show that both these questions can be answered affirmatively if $\dim R = 0$.

Theorem 2. Let R be a commutative ring with identity and suppose that $\dim R = 0$. Then the following statements are equivalent:

- (1) dim $R[[X]] \neq 1$.
- $(2) \dim R[[X]] = \infty.$
- (3) R contains a maximal ideal M such that $M[X] \neq \sqrt{MR[X]}$.

Proof. We have already seen that (3) implies (2) and clearly, (2) implies (1). Suppose that (1) holds and let $Q_0 \subseteq Q_1 \subseteq Q_2 \subseteq R[[X]]$ be a chain of prime ideals of R[[X]]. If $M = Q_0 \cap R$, then M is a maximal ideal of R so we have $M = Q_0 \cap R = Q_1 \cap R = Q_2 \cap R$. Now $Q_0 \not\supseteq M[[X]]$ since $R[[X]]/M[[X]] \cong (R/M)[[X]]$ is a rank one discrete valuation ring. But by [1, Proposition 1], either $Q_0 \subseteq M[[X]]$ or $Q_0 \supseteq M[[X]]$. Therefore, $MR[[X]] \subseteq Q_0 \subseteq M[[X]]$ and $M[[X]] \ne \sqrt{MR[[X]]}$.

3. Examples. We conclude by providing three examples of finite dimensional rings R such that dim $R[[X]] = \infty$.

Example 1. If V is a rank one nondiscrete valuation ring, then $\dim V[[X]] = \infty$. More generally, if V is a valuation ring which contains an idempotent prime ideal P, then P is not an SFT-ideal so $\dim V[[X]] = \infty$.

Example 2. An integral domain D is said to be almost Dedekind provided D_M is a Noetherian valuation ring for each maximal ideal M of D. Let D be any almost Dedekind domain which is not Dedekind [4, p. 586], and let M be a maximal ideal of D which is not finitely generated. It follows from Theorem 29.4 of [4, p. 411] that M is not the radical of a finitely generated ideal. Thus, M is not an SFT-ideal and dim $D[[X]] = \infty$. More generally, if R is a commutative ring with identity which does not have Noetherian prime spectrum, then dim $R[[X]] = \infty$. This is an immediate consequence of Corollary 2.4 of [5] which states that a ring R has Noetherian prime spectrum if and only if each prime ideal of R is the radical of a finitely generated ideal. Example 1 and the following example illustrate

that we may have dim $R[[X]] = \infty$ even though R has Noetherian prime spectrum.

Example 3. Let $\{Y_i\}_{i=0}^{\infty}$ be a collection of indeterminates over Q, the field of rationals, and set $R = Q[Y_0, Y_1, \cdots]/(Y_0^n, Y_1^n, \cdots)$, where n is a positive integer and $n \geq 2$. We note that dim R = 0 and that $M = (\overline{Y}_0, \overline{Y}_1, \cdots)$ is the unique proper prime ideal of R. If $f(X) = \sum_{i=0}^{\infty} \overline{Y}_i X^i$, then Fields proves in [2] that f(X) is not nilpotent. If $g(X) \in MR[[X]]$, then $g(X) = \sum_{i=0}^{\overline{t}} \overline{Y}_i b_i(X)$ for some $t \in \omega$ and $b_i(X) \in R[[X]]$. Since $\overline{Y}_i^n = 0$ for $0 \leq i \leq t$, it follows that g(X) is nilpotent. Consequently, $f(X) \notin \sqrt{MR[[X]]}$ so, by Theorem 1, dim $R[[X]] = \infty$.

BIBLIOGRAPHY

- 1. J. T. Arnold and J. W. Brewer, When $(D[[X]])_{P[[X]]}$ is a valuation ring, Proc. Amer. Math. Soc. 37 (1973), 326-332.
- 2. D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (1971), 427-433. MR 42 #5983.
- 3. —, Dimension theory in power series rings, Pacific J. Math. 35 (1970), 601-611. MR 43 #3251.
- 4. R. Gilmer, Multiplicative ideal theory, Queen's Papers in Pure and Appl. Math., no. 12, Queen's University, Kingston, Ont., 1968. MR 37 #5198.
- 5. J. Ohm and R. Pendleton, Rings with Noetherian spectrum, Duke Math J. 35 (1968), 631-639. MR 37 #5201.
- 6. A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505-512. MR 14, 941.
- 7. ———, On the dimension theory of rings. II, Pacific J. Math. 4 (1954), 603-614. MR 16, 441.

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061