k-PARAMETER SEMIGROUPS OF MEASURE-PRESERVING TRANSFORMATIONS

BY

NORBERTO ANGEL FAVA

ABSTRACT. An individual ergodic theorem is proved for semigroups of measure-preserving transformations depending on k real parameters, which generalizes N. Wiener's ergodic theorem.

In this paper we use the method introduced in ergodic theory by A. P. Calderón [1] combined with a covering lemma due to N. M. Rivière to obtain a pointwise ergodic theorem concerning k-parameter semigroups of measure-preserving transformations. Let X be a σ -finite measure space. We denote by T the set of all points $t = (t_1, \dots, t_k)$ with nonnegative coordinates in k-dimensional euclidean space.

By a k-parameter semigroup of measure-preserving transformations we mean a system of mappings $(\theta_i, t \in T)$ of X into itself having the following properties:

- (i) $\theta_t(\theta_s x) = \theta_{t+s} x$, $\theta_0 x = x$ for every t and s in T and every x in X.
- (ii) For every measurable subset E of X the measure of $\theta_t^{-1}(E)$ equals the measure of E, for any t in T.

As usual, we shall assume that for any function f measurable on X, the function $f(\theta_t x)$ is measurable on the product space $T \times X$, where T is endowed with Lebesgue measure. In the next sections we give sufficient conditions for the almost everywhere convergence of the averages

$$\Lambda_{\alpha}/(x) = \frac{1}{|D_{\alpha}|} \int_{D_{\alpha}} (\theta_{t}x) dt \text{ as } \alpha \to \infty,$$

where f is an arbitrary function in $L^{1}(X)$, D_{α} is an increasing family of regions in T depending on the positive real parameter α , and the vertical bars stand for Lebesgue measure.

For the definitions of sublinearity, strong and weak type properties of operators as used in the sequel, we refer to Zygmund [5, vol. 2, p. 111].

1. A covering lemma of N. M. Rivière. We will make use of the following

Lemma 1. Let $(U_{\alpha}, \alpha > 0)$ be a one-parameter family of open sets in \mathbb{R}^k , containing the origin and such that

(1)
$$\alpha < \beta$$
 implies $U_{\alpha} \subset U_{\beta}$,

Received by the editors March 8, 1972.

AMS (MOS) subject classifications (1970). Primary 47A35; Secondary 28A65.

Key words and phrases. Measure-preserving transformations, maximal ergodic operator, weak type, one-parameter family of regions, pointwise ergodic theorem.

$$(2) |U_a - U_a + U_a| \le \operatorname{const} |U_a|,$$

where $U_{\alpha} - U_{\alpha} + U_{\alpha}$ denotes the set of all points which can be represented in the form u - v + w with u, v and w in U_{α} . Under these conditions, if $\alpha(x)$ is a positive real-valued function defined on the compact set K, then there exists a finite set x_1, \dots, x_n of points in K, such that the sets $x_i + U_{\alpha(x_i)}$ $(i = 1, \dots, n)$ are disjoint and

$$|K| \le C \sum_{i=1}^{n} |U_{\alpha(x_i)}|$$

where C is the same constant that figures in condition (2).

Proof. Since the sets $x + U_{\alpha(x)}$, $x \in K$, form an open covering of K, there exists a finite set $F \subset K$, such that the sets $y + U_{\alpha(y)}$, $y \in F$, also cover K. Choose x_1 in F so that $\alpha(x_1) = \max\{\alpha(y): y \in F\}$. If x_1, \dots, x_n have been chosen, we consider the set

$$A_n = K \cap \left(\bigcup_{i=1}^n (x_i + V_{\alpha(x_i)}) \right)^c$$

where $V_a = U_a - U_a + U_a$ and the upper c denotes complement. If $A_n = \emptyset$ we stop; otherwise we choose a point x_{n+1} in the set

$$B_n = \{ y \in F : (y + U_{\alpha(y)}) \cap A_n \neq \emptyset \}$$

so that $\alpha(x_{n+1}) = \max\{\alpha(y): y \in B_n\}$. Obviously x_{n+1} is different from all the preceding points. Since the sequence of sets A_n is decreasing, so is the sequence of numbers $\alpha(x_n)$. The set F being finite, we must have $A_n = \emptyset$ for some n and the process stops there.

To prove the lemma, it will suffice to show that the sets $x_i + U_{\alpha(x_i)}$ $(i = 1, \dots, n)$ are disjoint. Assume on the contrary that $(x_i + U_{\alpha(x_i)}) \cap (x_j + U_{\alpha(x_j)}) \neq \emptyset$, with $1 \le i < j \le n$, say. Then there are points u in $U_{\alpha(x_i)}$ and v in $U_{\alpha(x_j)}$ such that $x_i + u = x_j + v$. Since $x_j \in B_{j-1}$ there is a point w in $U_{\alpha(x_j)}$ such that the point $z = x_j + w$ is in A_{j-1} . Since $A_{j-1} \cap A_i$ and $U_{\alpha(x_j)} \cap U_{\alpha(x_j)}$ it follows that $z = x_i + u - v + w$ is in A_i and also in $x_i + V_{\alpha(x_i)}$, but this is a contradiction.

Corollary. If the family of sets $(U_{\alpha}, \alpha > 0)$ satisfies the hypothesis of Lemma 1 and for every g(x) in $L^{1}(\mathbb{R}^{k})$ we define the "maximal function"

$$Sg(x) = \sup_{\alpha > 0} \frac{1}{|U_{\alpha}|} \int_{X + U_{\alpha}} |g(y)| dy,$$

then S is of weak type (1, 1).

In fact, let K be an arbitrary compact subset of $E = \{x: Sg(x) > \lambda\}$. For every x in K there is a positive number $\alpha(x)$ such that

$$\int_{x+U_{\alpha(x)}} |g(y)| dy > \lambda |U_{\alpha(x)}|.$$

By virtue of the preceding lemma there exists a finite sequence x_1, \dots, x_n of points in K such that the sets $x_i + U_{\alpha(x_i)}$ are disjoint and

$$|K| \le C \sum_{i=1}^{n} |U_{\alpha(x_i)}| \le \frac{C}{\lambda} \sum_{i=1}^{n} \int_{x_i + U_{\alpha(x_i)}} |g(y)| dy \le C \|g\|_1 / \lambda.$$

Remarks. (i) Condition 2 of Lemma 1 is satisfied with the same constant C for all one-parameter families of open cells containing the origin (by a cell we mean the cartesian product of k linear intervals). As a consequence, the statement of the corollary remains true if the sets U_{α} are replaced by a one-parameter family $(P_{\alpha}, \alpha > 0)$ of closed cells containing the origin. To see this we construct for each α a decreasing sequence $U_{\alpha}^{(n)}$ $(n=1, 2, \cdots)$ of open cells whose intersection is P_{α} . If we denote by \widetilde{S} the maximal operator associated with the cells P_{α} ,

$$\widetilde{S}g(x) = \sup_{\alpha > 0} \frac{1}{|P_{\alpha}|} \int_{x+P_{\alpha}} |g(y)| dy,$$

while S_n is the maximal operator associated with the family of open cells $U_{\alpha}^{(n)}$, $\alpha > 0$, then we have

$$\{x: \widetilde{S}_g(x) > \lambda\} \subset \liminf \{x: S_{-g}(x) > \lambda\}$$

from which we deduce

$$|\{x\colon \widetilde{S}_g(x) > \lambda\}| \le \lim_{n \to \infty} \inf |\{x\colon S_n g(x) > \lambda\}| \le C \|g\|_1 / \lambda.$$

- (ii) The statement of the corollary still remains true if the sets U_a are replaced by a one-parameter family of regions D_a containing the origin, provided that these regions satisfy the following hypothesis, which we shall assume to hold throughout the sequel.
- (A) There exists a one-parameter family of closed cells P_{α} such that, for each α , $P_{\alpha} \supset D_{\alpha}$ and $|D_{\alpha}| \geq C |P_{\alpha}|$, where C is a constant. In fact, if S is the maximal operator associated with the family of regions $(D_{\alpha}, \alpha > 0)$, while \widetilde{S} is defined as in the previous remark, then $Sg(x) \leq \mathrm{const} \ \widetilde{S}g(x)$.
- 2. The maximal ergodic inequality. Let $(D_{\alpha}, \alpha > 0)$ be an increasing family of regions in T, depending on the real parameter α and subject to hypothesis (A) of the preceding section. For each function f(x) in $L^{1}(X)$ we define the maximal ergodic operator M by the formula

$$Mf(x) = \sup_{\alpha > 0} \frac{1}{|D_{\alpha}|} \int_{D_{\alpha}} |f(\theta_{t}x)| dt.$$

Following A. P. Calderón we prove

Theorem 1. The maximal ergodic operator M is of weak type (1, 1).

Proof. For any function g(t) integrable over the parameter set T in \mathbb{R}^k and for each positive integer N, we write

$$S_N g(t) = \sup_{\delta(D_\alpha) < N} \frac{1}{|D_\alpha|} \int_{D_\alpha} |g(t+s)| ds$$

if $|t| \le N$; $S_N g(t) = 0$ otherwise, where $\delta(D_a)$ denotes the diameter of D_a , while as before

$$Sg(t) = \sup_{\alpha > 0} \frac{1}{|D_{\alpha}|} \int_{D_{\alpha}} |g(t+s)| ds,$$

so that $S_N g(t) \leq Sg(t)$ and $\lim_{N\to\infty} S_N g(t) = Sg(t)$. From the preceding section we derive the inequalities

$$|\{t\colon S_Ng(t)>\lambda\}|\leq |\{t\colon Sg(t)>\lambda\}|\leq \frac{C}{\lambda}\int_T|g(t)|\,dt.$$

Let us define the function $F(t, x) = \int (\theta_t x)$ if $|t| \le 2N$; F(t, x) = 0 otherwise. It follows from Fubini's theorem that F(t, x) is an integrable function of t for almost all x. For a given $\lambda > 0$ consider the set E of all pairs (t, x) such that $S_N F(t, x) > \lambda$ and its sections $E_t = \{x : (t, x) \in E\}$, $E^x = \{t : (t, x) \in E\}$.

We observe that for $|t| \leq N$, $S_N F(t, x) = S_N F(0, \theta_t x)$, and therefore $E_t = \theta_t^{-1}(E_0)$ for $|t| \leq N$ while $E_t = \emptyset$ if |t| > N. If we denote by ρ the product of Lebesgue measure with the measure on X, then

$$\rho(E) = \int_{T} \operatorname{meas}(E_t) dt = \int_{|t| \le N} \operatorname{meas}(E_t) dt = w_k N^k \operatorname{meas}(E_0),$$

where w_k is the measure of T intersected with the unit ball in R^k . On the other hand,

$$\begin{split} \rho(E) &= \int_X \left| E^x \right| dx \leq \int_X dx \ \frac{C}{\lambda} \int_{\left| t \right| \leq 2N} \left| f(\theta_t x) \right| dt \\ &= \frac{C}{\lambda} \int_{\left| t \right| \leq 2N} dt \int_X \left| f(\theta_t x) \right| dx = \frac{C w_k (2N)^k}{\lambda} \ \left\| f \right\|_1. \end{split}$$

Therefore

$$\operatorname{meas}(E_0) \le 2^k C \|f\|_1 / \lambda$$

and Theorem 1 follows from the last inequality by letting $N \to \infty$.

Corollary. Since M does not increase the L^{∞} -norm of any function, it follows that M is of strong type (p, p) for any p > 1.

- 3. A pointwise ergodic theorem. In this section we shall assume that in addition to hypothesis (A) of the first section, the family of sets D_{α} , $\alpha > 0$, and the semigroup $(\theta_{,}, t \in T)$ satisfy the following assumptions:
 - (B) For any t in R^k

$$\lim_{\alpha \to \infty} \frac{\left| (t + D_{\alpha}) \Delta D_{\alpha} \right|}{\left| D_{\alpha} \right|} = 0,$$

where Δ denotes the symmetric difference.

(C) If $B_{K,a}$ denotes the set of all points t in R^k such that $t + D_a$ intersects the compact set K without covering it, then

$$\lim_{\alpha \to \infty} \frac{|B_{K,\alpha}|}{|D_{\alpha}|} = 0.$$

(D) For any f(x) in $L^p(X)$ and any g(x) in $L^q(X)$, where 1 and <math>1/p + 1/q = 1,

$$\int_{X} f(\theta_{t} x) g(x) dx$$

is a continuous function of t.

We can now state the following:

Theorem 2. If the family of regions D_{α} and the semigroup θ_t satisfy the preceding conditions, then for any f in $L^1(X)$ the averages

$$A_{\alpha}f(x) = \frac{1}{|D_{\alpha}|} \int_{D_{\alpha}} f(\theta_{t}x) dt$$

converge almost everywhere in X as $\alpha \to \infty$.

Proof. Let us consider the set of all functions h(x) which can be represented in the form

(1)
$$b(x) = \int_{T} f(\theta_{t} x) \phi(t) dt$$

where f is a bounded function having support of finite measure and $\phi(t)$ is infinitely differentiable with compact support in T and vanishing integral. For any

function b of this form we have

$$\begin{split} A_{\alpha}b(x) &= \frac{1}{|D_{\alpha}|} \int_{D_{\alpha}} b(\theta_{u}x) \, du = \frac{1}{|D_{\alpha}|} \int_{D_{\alpha}} du \, \int_{T} f(\theta_{s+u}x) \, \phi(s) \, ds \\ &= \int_{T} dt \, f(\theta_{t}x) \, \frac{1}{|D_{\alpha}|} \int_{D_{\alpha}} \phi(t-u) \, du = \int_{T} dt \, f(\theta_{t}x) \, \frac{1}{|D_{\alpha}|} \int_{t-D_{\alpha}} \phi(s) \, ds. \end{split}$$

If we call B_{α} the set of points t such that $t-D_{\alpha}$ intersects the support of ϕ without covering it, we can estimate the L^1 -norm of the expression depending on α in the last integral as follows:

$$\frac{1}{|D_{\alpha}|} \int_{T} dt \left| \int_{t-D_{\alpha}} \phi(s) ds \right| \leq \|\phi\|_{1} \frac{|B_{\alpha}|}{|D_{\alpha}|},$$

which tends to zero as $\alpha \to \infty$ by virtue of (C). Since $f(\theta_t x)$ is a bounded function of t for almost all x, we see at once that $A_{\alpha} b(x)$ tends to zero for almost all x as $\alpha \to \infty$.

We will say that a function l(x) in $L^p(X)$ is invariant if for every t, $l(\theta_t x) = l(x)$ for almost all x. If l(x) is an invariant function, for almost all x we have $l(\theta_t x) = l(x)$ for almost all t. Therefore

$$\frac{1}{|D_{\alpha}|} \int_{D_{\alpha}} l(\theta_t x) dt = l(x)$$

for all α almost everywhere in X.

We conclude that the averages $A_{a}f(x)$ converge almost everywhere if f is in the linear span of the functions b and l. Theorem 2 will follow by a standard argument if we prove that this linear span is dense in $L^p(X)$. In fact, it is enough to recall that M is of weak type (p, p) for $1 \le p < \infty$. For this purpose, let us assume that a certain function $g_0(x)$ in the dual space $L^q(X)$, where p > 1 and 1/q = 1 - 1/p, is orthogonal to all functions b and b. Therefore

$$0 = \int_{X} b(x)g_{0}(x) dx = \int_{X} dx g_{0}(x) \int_{T} f(\theta_{t}x) \phi(t) dt$$
$$= \int_{T} dt \phi(t) \int_{X} f(\theta_{t}x)g_{0}(x) dx,$$

for any infinitely differentiable function $\phi(t)$ with compact support in T and vanishing integral. This implies that the integral

$$(2) \qquad \int_{X} f(\theta_{t} x) g_{0}(x) dx$$

is equal to a certain constant a for almost all t, in fact, for all t by virtue of (D). In order to prove that this constant a is actually equal to zero we consider

the sequence

$$f_n(x) = \frac{1}{|D_n|} \int_{D_n} f(\theta_s x) \, ds.$$

This sequence is bounded in L^p and consequently, it contains a subsequence which converges weakly to a certain function l(x). For simplicity of notation we assume that the whole sequence f_n converges weakly to l. Then for every t the sequence of functions $f_n(\theta_t x)$ converges weakly to $l(\theta_t x)$. It will follow that the limit function l(x) is an invariant function if we show that the difference $f_n(\theta_t x) - f_n(x)$ converges weakly to zero.

Let g(x) be any function in $L^q(X)$. Then

$$\left| \int_{X} (f_{n}(\theta_{t}x) - f_{n}(x)) g(x) dx \right|$$

$$= \left| \frac{1}{|D_{n}|} \int_{X} dx g(x) \left(\int_{D_{n}} f(\theta_{t+s}x) ds - \int_{D_{n}} f(\theta_{s}x) ds \right) \right|$$

$$= \frac{1}{|D_{n}|} \left| \left(\int_{t+D_{n}} - \int_{D_{n}} \right) ds \int_{X} f(\theta_{s}x) g(x) dx \right|$$

$$\leq \|f\|_{p} \|g\|_{q} |(t+D_{n}) \Delta D_{n}|/|D_{n}|,$$

and the last expression tends to zero as $n \to \infty$, by virtue of (B). Since $g_0(x)$ is orthogonal to all invariant functions the sequence

$$\int_X f_n(x) g_0(x) dx$$

tends to zero as $n \to \infty$, A simple computation shows that each member of this sequence is equal to a, so that a=0. Making t=0 in (2) we see that $\int_X f(x) g_0(x) dx = 0$ for any bounded function f(x) with support of finite measure. Then $g_0(x) = 0$ for almost all x, which proves the density in $L^p(X)$ of the linear span of the functions b and l and thus concludes the proof of Theorem 2.

One final remark is in order with regard to the assumptions we made on the family of regions D_{α} . Let us denote by K^{u}_{α} the set of all points in R^{k} whose distance to the complement of D_{α} is not less than the positive number u. We wish to show that the family of regions D_{α} satisfies condition (B) provided that the following holds.

(B')
$$\lim_{\alpha \to \infty} \frac{|K_{\alpha}^{u}|}{|D_{\alpha}|} = 1 \quad \text{for every positive number } u.$$

The proof is simple. Given t in R^k let us choose a number u which exceeds the length of the vector t. Then K^u_{α} is contained both in D_{α} and $t+D_{\alpha}$. If we denote by $A \setminus B$ the points in A not in B, we have

$$\frac{|D_{\alpha}\Delta(t+D_{\alpha})|}{|D_{\alpha}|} = \frac{|D_{\alpha}\backslash(t+D_{\alpha})| + |(t+D_{\alpha})\backslash D_{\alpha}|}{|D_{\alpha}|}$$

$$\leq \frac{|D_{\alpha}\backslash K_{\alpha}^{u}| + |(t+D_{\alpha})\backslash K_{\alpha}^{u}|}{|D_{\alpha}|} = 2\left(1 - \frac{|K_{\alpha}^{u}|}{|D_{\alpha}|}\right).$$

Condition (B') is readily verified in the case of most of the familiar figures of geometry. In fact, Professor N. M. Rivière has proved that (B') holds if the regions D_a are convex.

Let now D^u_{α} be the set of points in R^k whose distance to D_{α} does not exceed u. We claim that both hypotheses (B) and (C) can be replaced by a single one, namely

(S)
$$\lim_{\alpha \to \infty} \frac{|K_{\alpha}^{u}|}{|D_{\alpha}^{u}|} = 1 \quad \text{for every positive number } u.$$

On the one hand (S) clearly implies (B'). Since $|B_{K,\alpha}| \leq |D_{\alpha}^{u}| - |K_{\alpha}^{u}|$ with u = diameter of K, it also implies (C).

Acknowledgement. The author would like to thank Professor N. M. Rivière for many stimulating conversations concerning the subject of this paper.

REFERENCES

- 1. A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U. S. A. 59 (1968), 349-353. MR 37 #2939.
- 2. M. Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105-167. MR 18, 893.
- 3. N. A. Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271-288.
- 4. N. M. Rivière, On singular integrals, Bull. Amer. Math. Soc. 75 (1969), 843-847. MR 39 #4711.
- 5. A. Zygmund, Trigonometrical series, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #2554.

FACULTAD DE CIENCIAS EXACTAS Y NATURALES, UNIVERSIDAD DE BUENOS AIRES, BUENOS AIRES, ARGENTINA

Current address: Rivera Indarte 168, Buenos Aires, Argentina