ON THE ARENS PRODUCTS AND CERTAIN BANACH ALGEBRAS

BY

PAK-KEN WONG

ABSTRACT. In this paper, we study several problems in Banach algebras concerned with the Arens products.

1. Introduction. Let A be a Banach algebra, A^{**} its second conjugate space and π_A the canonical embedding of A into A^{**} . Arens has defined two natural extensions of the product on A to A^{**} . Under either Arens product, A^{**} becomes a Banach algebra. In §3, we show that if A is a semisimple Banach algebra which is a dense two-sided ideal of a semisimple annihilator Banach algebra B, then $\pi_A(A)$ is a two-sided ideal of A^{**} (with the Arens product). In particular, a semisimple annihilator Banach algebra has such property. This result greatly generalizes some recent results obtained by the author (see [12, p. 82] and [13, p. 830]).

In $\S 4$, we study the radical R^{**} of A^{**} , where A is a semisimple annihilator Banach algebra. We show that, under either Arens product, R^{**} remains the same and it is the right annihilator of A^{**} . A similar result was obtained by Civin and Yood [5] for the group algebra of a compact abelian group.

§ 5 is devoted to the study of semisimple dual Banach algebras which are two-sided ideals of a B^* -algebra. Let A be a semisimple dual Banach algebra which is a dense subalgebra of a B^* -algebra B such that $\|\cdot\|$ majorizes $|\cdot|$ on A. We show that A is a two-sided ideal of B if and only if, for any orthogonal family of hermitian minimal idempotents $\{e_{\lambda}: \lambda \in \Lambda\}$ of B and $x \in A$, $\sum_{\lambda} xe_{\lambda}$ and $\sum_{\lambda} e_{\lambda} x$ are summable in the norm of A. This result was proved by Ogasawara and Yoshinaga [9] for weakly complete commutative dual A^* -algebras. Finally, by using the above result as well as the result in § 4, we answer a question of the author affirmatively: if A is a semisimple dual Banach algebra which is a dense two-sided ideal of a B^* -algebra, then A is Arens regular and A^{**}/R^{**} is a semisimple Banach algebra which is a dense two-sided ideal of some B^* -algebra.

Received by the editors September 5, 1972.

AMS (MOS) subject classifications (1970). Primary 46C05; Secondary 46K99. Key words and phrases. Arens products, Arens regular, annihilator and dual algebras, B*-algebras.

2. Notation and preliminaries. Definitions not explicitly given are taken from Rickart's book [10].

Let A be a Banach algebra. For each element $a \in A$, let $\operatorname{Sp}_A(a)$ denote the spectrum of a in A. If A is commutative, M_A will denote the carrier space of A and $C_0(M_A)$ the algebra of all complex-valued functions on M_A , which vanishes at infinity. If A is a commutative B^* -algebra, then $\widehat{A} = C_0(M_A)$.

Let A be a Banach algebra which is a subalgebra of a Banach algebra B. For each subset E of A, $\operatorname{cl}(E)$ (resp. $\operatorname{cl}_A(E)$) will denote the closure of E in B (resp. A). We write $\|\cdot\|$ for the norm on A and $\|\cdot\|$ for the norm on B.

For any set E in a Banach algebra A, let $l_A(E)$ and $r_A(E)$ denote the left and right annihilators of E respectively. A Banach algebra A is called an annihilator algebra if $l_A(A) = r_A(A) = (0)$ and if for every proper closed right ideal I and every proper closed left ideal I, $l_A(I) \neq (0)$ and $r_A(I) \neq (0)$. If, in addition, $r_A(l_A(I)) = I$ and $l_A(r_A(I)) = I$, then A is called a dual algebra.

An idempotent e in a Banach algebra A is said to be minimal if eAe is a division algebra. In case A is semisimple, this is equivalent to saying that Ae (eA) is a minimal left (right) ideal of A.

In this paper, all algebras and linear spaces under consideration are over the field \mathcal{C} of complex numbers.

- 3. The Arens products and annihilator algebras. Let A be a Banach algebra, A^* and A^{**} the conjugate and second conjugate spaces of A, respectively. The two Arens products on A^{**} are defined in stages according to the following rules (see [1]). Let $x, y \in A$, $f \in A^*$, $F, G \in A^{**}$.
 - (a) Define $f \circ x$ by $(f \circ x)(y) = f(xy)$. Then $f \circ x \in A^*$.
 - (b) Define $G \circ f$ by $(G \circ f)(x) = G(f \circ x)$. Then $G \circ f \in A^*$.
 - (c) Define $F \circ G$ by $(F \circ G)(f) = F(G \circ f)$. Then $F \circ G \in A^{**}$.

 A^{**} with the Arens product \circ denoted by (A^{**}, \circ) .

- (a') Define $x \circ' f$ by $(x \circ' f)(y) = f(yx)$. Then $x \circ' f \in A^*$.
- (b') Define $f \circ' F$ by $(f \circ' F)(x) = F(x \circ' f)$. Then $f \circ' F \in A^*$.
- (c') Define $F \circ' G$ by $(F \circ' G)(f) = G(f \circ' F)$. Then $F \circ G \in A^{**}$.

 A^{**} with the Arens product o' denoted by (A^{**}, \circ') .

Each of these products extends the original multiplication on A when A is canonically embedded in A^{**} . In general, \circ and \circ' are distinct on A^{**} . If they coincide on A^{**} , then A is called Arens regular.

Notation. Let A be a Banach algebra. The mapping π_A will denote the canonical embedding of A into A^{**} .

The left multiplication in (A^{**}, \circ) is weakly continuous and the right multiplication in (A^{**}, \circ') is weakly continuous (see [1, p. 842]). If $x \in A$ and $F \in A^{**}$, then $\pi_A(x) \circ F = \pi_A(x) \circ' F$ and $F \circ \pi_A(x) = F \circ' \pi_A(x)$ (see [1, p. 843]).

The following result is useful throughout the paper.

Theorem 3.1. Let A be a semisimple Banach algebra which is a dense two-sided ideal of a semisimple annihilator Banach algebra B. Then $\pi_A(A)$ is a two-sided ideal of (A^{**}, \circ) . In particular, $\pi_B(B)$ is a two-sided ideal of B^{**} (with the Arens product).

Proof. By [2, p. 3, Proposition 2.2], there exists a constant k > 0 such that $k \| \cdot \| \ge | \cdot |$ on A and hence by [2, p. 3, Theorem 2.3], there exists a constant M such that

(1)
$$||ab|| < M||a|| |b|$$
 and $||ba|| < M||a|| |b|$

for all $a \in A$, $b \in B$. Let e be a minimal idempotent of B. Since eAe = eBe = Ce, it follows that $e \in A$. Also if e is a minimal idempotent of A, then e is a minimal idempotent of B. Therefore A and B have the same minimal idempotents. Let e be a minimal idempotent. Since Ae = Be, it is easy to see that the norms $\|\cdot\|$ and $\|\cdot\|$ are equivalent on Ae. Since B is an annihilator algebra, it follows immediately from [10, p. 101, Lemma (2.8.20)] and [10, p. 104, Theorem (2.8.23)] that Be is a reflexive Banach space and hence Ae is also reflexive. Let $F \in A^{**}$. We show that $F \circ \pi_A(e) \in \pi_A(A)$. Clearly we can assume that $\|F\| = 1$. Then by Goldstine's theorem [6, p. 424, Theorem 5] there exists a net $\{x_\alpha\}$ in A such that $\|x_\alpha\| \le 1$ for all α and $\pi_A(x_\alpha) \to F$ weakly in A^{**} . Hence it follows from the weak continuity of left multiplication that $\pi_A(x_\alpha e) \to F \circ \pi_A(e)$ weakly. Since $\|x_\alpha e\| \le \|e\|$, by [6, p. 425, Theorem 7] we can assume that there exists some $y \in Ae$ such that $g(x_\alpha e) \to g(y)$ for all $g \in (Ae)^*$. Now for each $f \in A^*$, let f' be the restriction of f to Ae. Then we have

$$\pi_A(y)(f) = \lim_{\alpha} f'(x_{\alpha}e) = \lim_{\alpha} \pi_A(x_{\alpha}e)(f) = (F \circ \pi_A(e))(f).$$

Therefore, we get

$$(2) F \circ \pi_A(e) = \pi_A(y) \in \pi_A(A).$$

Let $x \in A$. Since the socle S of B is dense in B by [10, p. 100, Corollary (2.8.16)], we can write $x = \lim_{n \to \infty} x_n$, where $x_n \in S$ $(n = 1, 2, \dots)$. Since S is also the socle of A, it follows easily from (2) that

(3)
$$F \circ \pi_A(x_n) \in \pi_A(A) \quad (n = 1, 2, ...).$$

Let $f \in A^{**}$. By (1) we obtain $||a \circ f|| \le M||f|| |a|$ for all $a \in A$ and consequently

$$|(F \circ \pi_A(x_n) - F \circ \pi(x))(f)| = |F((x_n - x) \circ' f)| \le M||F|| \, ||f|| \, |x_n - x|.$$

Since $x_n \to x$ in $|\cdot|$, we have $F \circ \pi_A(x_n) \to F \circ \pi_A(x)$ in $\|\cdot\|$. Hence it follows from (3) that $F \circ \pi_A(x) \in \pi_A(A)$. Similarly we can show that $\pi_A(x) \circ F \in \pi_A(A)$. Therefore $\pi_A(A)$ is a two-sided ideal of (A^{***}, \circ) and this completes the proof.

Remark. The preceding result generalizes a part of [13, p. 830, Theorem 5.2] as well as [12, p. 82, Theorem 3.3].

Corollary 3.2. Let A be as in Theorem 3.1. Then for every minimal idempotent $e \in A$, $A^{**} \circ \pi_A(e)$ and $\pi_A(e) \circ A^{**}$ are minimal left and right ideals of (A^{**}, \circ) .

Proof. This follows immediately from Theorem 3.1 since $A^{**} \circ \pi_A(e) = \pi_A(Ae)$ and $\pi_A(e) \circ A^{**} = \pi_A(eA)$.

4. The radical of the algebra (A^{**}, \circ) . This section is devoted to the discussion of the radical of the algebra (A^{**}, \circ) . The main result in this section is useful in §5. Civin and Yood [5] had studied this problem for the group algebra of an infinite locally compact abelian group.

Throughout this section, unless otherwise stated, A will be a semisimple annihilator Banach algebra. Let R_1^{**} (resp. R_2^{**}) denote the radical of (A^{**}, \circ) (resp. (A^{**}, \circ')); R_1^{**} and R_2^{**} may not be zero (see [5, p. 857, Theorem 3.14] and [13, p. 831, Theorem 5.5]). By Theorem 3.1, $\pi_A(A)$ is a two-sided ideal of (A^{**}, \circ) .

Theorem 4.1. Let A be a semisimple annihilator Banach algebra. Then the following statements hold:

- (i) R_1^{**} is weakly closed.
- (ii) $R_1^{**} = \{F \in A^{**}: A^{**} \circ F = \{0\}\} = \{F \in A^{**}: F \circ' A^{**} = \{0\}\}.$
- (iii) R_1^{**} coincides with R_2^{**} .

Proof. Let E_A be the set of all minimal idempotents of A. For each $e \in E_A$, let $M = (1 - \pi_A(e)) \circ A^{**}$. We show that M is a maximal modular right ideal of (A^{**}, \circ) . In fact, suppose there exists a right ideal M' of (A^{**}, \circ) properly containing M. Let $F \in M'$ be such that $F \notin M$. Then $\pi_A(e) \circ F = F - (1 - \pi_A(e)) \circ F \in M'$ and $\pi_A(e) \circ F \neq 0$. Hence $(\pi_A(e) \circ A^{**}) \cap M' \neq (0)$ and consequently by Corollary 3.2 $M' \supseteq \pi_A(e) \circ A^{**}$. Hence $M' = A^{**}$. Therefore M is maximal. Let $\{G_\alpha\}$ be a net in M such that $G_\alpha \to G$ weakly for some $G \in A^{**}$. Since $\pi_A(e) \circ G_\alpha = 0$ for each α , it follows that $\pi_A(e) \circ G = 0$ and hence $G \in M$. Therefore M is weakly closed. Let

$$R = \bigcap \{ (1 - \pi_A(e)) \circ A^{**} : e \in E_A \} \text{ and } T = \{ F \in A^{**} : A^{**} \circ F = (0) \}.$$

Then R is weakly closed and $T \subset R_1^{**} \subset R$. Let $F \in R$. Then $\pi_A(e) \circ F = 0$ for all $e \in E_A$. Since the socle of A is dense in A, we have $\pi_A(A) \circ F = (0)$. Since

 $\pi_A(A)$ is weakly dense in (A^{***}, \circ) , it follows that $A^{***} \circ F = (0)$ and so $F \in T$. Consequently $R_1^{***} = R = T$. Similarly by using maximal modular left ideals, we can show that $R_2^{***} = \{F \in A^{***}: F \circ' A^{***} = (0)\}$. Let $F \in R_1^{***}, G \in A^{***}$ and $\{x_\alpha\} \subset A$ such that $\pi_A(x_\alpha) \to G$ weakly. Then $F \circ \pi_A(x_\alpha) = F \circ' \pi_A(x_\alpha) \to F \circ' G$ weakly. Since by Theorem 3.1 $F \circ \pi_A(x_\alpha) \in R_1^{***} \cap \pi_A(A) = (0)$, we have $F \circ' G = 0$ and so $F \in R_2^{***}$. Hence $R_1^{***} \subset R_2^{***}$. Similarly we can show that $R_2^{***} \subset R_1^{***}$. Therefore they are equal and this completes the proof of the theorem.

Remark 1. Theorem 4.1 (ii) is a generalization of [5, p. 857, Theorem 3.15 (i)].

Remark 2. In general, $R_1^{***} \neq \{F \in A^{***}: F \circ A^{***} = (0)\}$. In fact, let A be the group algebra of an infinite compact abelian group. Then by [5, p. 857, Theorem 3.12] $R_1^{***} \neq (0)$. By [5, p. 855, Lemma 3.8], A^{***} has a right identity. Hence it follows that $\{F \in A^{**}: F \circ A^{***} = (0)\} = (0) \neq R_1^{***}$.

Notation. In the rest of this paper, let $R^{**} = R_1^{**} = R_2^{**}$.

Corollary 4.2. Suppose A is a semisimple commutative annihilator Banach algebra and M_A its carrier space. Let Q be the closed subspace of A^* spanned by M_A and let $Q^{\perp} = \{F \in A^{**}: F(Q) = \{0\}\}$. Then $Q^{\perp} = R^{**}$.

Proof. It is well known that M_A is discrete. For each $b \in M_A$, let e_b be the minimal idempotent of A corresponding to the characteristic function of b ([10, p. 168, Theorem (3.6.3)]). For each $b \in M_A$ and $x \in A$, we have $xe_b = e_b xe_b = b(x)e_b$. Therefore $(f \circ e_b)(x) = f(e_b)b(x)$ for all $f \in A^*$. Hence $f \circ e_b = f(e_b)b$. Let $F \in A^{**}$. Then $(\pi_A(e_b) \circ F)(f) = F(f \circ e_b) = f(e_b)F(b)$ for all $f \in A^*$. Hence it follows easily that $Q^{\perp} = \{F \in A^{**}: A^{**} \circ F = \{0\}$. Therefore by Theorem 4.1, $Q^{\perp} = R^{**}$.

Remark. The above result is a generalization of [5, p. 857, Theorem 3.15 (ii)].

Corollary 4.3. Let M be a maximal modular right ideal of (A^{**}, \circ) . Then either $(l(M))^2 = (0)$ or there exists a minimal idempotent e of A such that $M = (1 - \pi_A(e)) \circ A^{**}$. In the latter case, M is weakly closed. A similar result holds for left ideals.

Proof. If $l(M) \subset R^{**}$, then by Theorem 4.1 $(l(M))^2 = (0)$. Suppose $l(M) \not\subset R^{**}$. We claim that $l(M) \cap \pi_A(A) \neq (0)$. Assume this is not so. Then $\pi_A(A) \circ l(M) \subset \pi_A(A) \cap l(M) = (0)$. Hence $A^{**} \circ l(M) = (0)$ and so by Theorem 4.1, $l(M) \subset R^{**}$. This contradiction shows that $l(M) \cap \pi_A(A) \neq (0)$. Therefore by [10, p. 98, Lemma (2.8.6)], $l(M) \cap \pi_A(A)$ contains a minimal idempotent $\pi_A(e)$ of $\pi_A(A)$. By the maximality of M, we have $M = (1 - \pi_A(e)) \circ A^{**}$. Also M is weakly closed by the proof of Theorem 4.1 and this completes the proof.

We remark that a similar result for left ideals has been obtained by Civin for the group algebra of an infinite locally compact abelian group (see [3]).

5. Banach algebras which are ideals in a B^* -algebra. In this section, we study semisimple dual Banach algebras which are two-sided ideals in a B^* -algebra. There are many examples having such properties in analysis. The algebras C_p discussed in [8] and the proper H^* -algebras are such examples. Unless otherwise stated, A will be a semisimple dual Banach algebra which is a dense subalgebra of a B^* -algebra B such that $\|\cdot\|$ majorizes $|\cdot|$ on A. It is well known that B is also a dual algebra (see [12, p. 81]).

The following result is contained in Lemma 5.1 in [7].

Lemma 5.1. A and B have the same minimal idempotents and the same socle.

Proof. Let e be a minimal idempotent of A. Then it is clear that e is a minimal idempotent of B. By the proof of [12, p. 82, Lemma 3.2] $\|\cdot\|$ and $|\cdot|$ are equivalent on Ae and Be = Ae, eA = eB. Therefore the socle S of A is a dense two-sided ideal of B. Let f be a minimal idempotent of B. Then $Sf \subseteq Bf \cap S$ and so $Bf \subseteq S \subseteq A$. Therefore f is a minimal idempotent of A. Now it is clear that S is also the socle of B.

We shall now give a characterization for A to be a two-sided ideal of B.

Theorem 5.2. Let A be a semisimple dual Banach algebra which is a dense subalgebra of a B*-algebra B such that $\|\cdot\|$ majorizes $|\cdot|$ on A. Then the following statements are equivalent:

- (i) A is a two-sided ideal of B.
- (ii) There exists a constant M>0 such that $\|\Sigma_{k=1}^n e_k x\| \leq M\|x\|$ and $\|\Sigma_{k=1}^n x e_k\| \leq M\|x\|$, where $x \in A$ and e_1, e_2, \cdots, e_n are any mutually orthogonal hermitian minimal idempotents of B.
- (iii) For any orthogonal family of hermitian minimal idempotents $\{e_{\lambda}: \lambda \in \Lambda\}$ of B and $x \in A$, Σ_{λ} xe $_{\lambda}$ and Σ_{λ} e $_{\lambda}$ x are summable in the norm of A and especially when $\{e_{\lambda}: \lambda \in \Lambda\}$ is a maximal family, $x = \Sigma_{\lambda}$ xe $_{\lambda} = \Sigma_{\lambda}$ e $_{\lambda}$ x in A.
- **Proof.** We know that B is a dual algebra and A and B have the same minimal idempotents and the same socle by Lemma 5.1.
- (i) \Rightarrow (ii). Suppose (i) holds. Then by [2, p. 3, Theorem 2.3] there exists a constant M such that $\|\Sigma_{k=1}^n e_k x\| \leq M \|\Sigma_{k=1}^n e_k\| \|x\| = M \|x\|$. Similarly, $\|\Sigma_{k=1}^n x e_k\| \leq M \|x\|$ and this proves (ii).
- (ii) \Rightarrow (iii). Suppose (ii) holds. Let $\{e_{\pmb{\lambda}} \colon \lambda \in \Lambda\}$ be an orthogonal family of hermitian minimal idempotents of B and $x \in A$. Let $\{E_{\gamma} \colon \gamma \in \Gamma\}$ be the direct set of all finite sums $e_{\pmb{\lambda}_1} + e_{\pmb{\lambda}_2} + \cdots + e_{\pmb{\lambda}_n} \ (\lambda_k \in \Lambda \text{ and } n = 1, 2, \cdots)$. Since $\|xE_{\gamma}\| < M\|x\|$ by (ii), it follows from the Alaoglu theorem that $\{\pi_A(xE_{\gamma})\}$ has

weak limit points in A^{**} . Let $F \in A^{**}$ be a weak limit point of $\{\pi_A(xE_\gamma)\}$. Then for any $y \in A$, $\pi_A(y) \circ F$ is a weak limit point of $\pi_A(yxE_\gamma)$. Since A is a dual algebra, by Theorem 3.1 $\pi_A(y) \circ F \in \pi_A(A)$. Let $\{e_\alpha\colon \alpha\in\Delta\}$ be a maximal orthogonal family of hermitian minimal idempotents of B containing $\{e_\lambda\colon \lambda\in\Lambda\}$. Then it is easy to see that $\pi_A(y) \circ F \circ \pi_A(e_\alpha) = \pi_A(yxe_\alpha)$ ($\alpha\in\Delta$). Since $\{e_\alpha\colon \alpha\in\Delta\}$ is maximal, it follows that $\pi_A(y) \circ F = \pi_A(yx)$ (see [9, p. 21]). Hence $\{yxE_\gamma\}$ converges weakly to yx and so by the Orlicz-Banach theorem [6, p. 93], $\Sigma_\lambda yxe_\lambda$ is summable in the norm of A. Since A is a dual algebra by [10, p. 91, Corollary (2.8.3) $x \in cl_A(Ax)$. Hence, for any given $\epsilon > 0$, there exists some $x \in A$ such that $\|x - xx\| < \epsilon$. Now by (ii) we have $\|xE_\gamma\| \le M\|x - xx\| + \|xxE_\gamma\| < M\epsilon + \|xxE_\gamma\|$. Since $\Sigma_\lambda xxe_\lambda$ is summable in $\|\cdot\|$ and ϵ is arbitrary, it follows that $\Sigma_\lambda xe_\lambda$ is summable in $\|\cdot\|$. If $\{e_\lambda\colon \lambda\in\Lambda\}$ is a maximal family, then it is easy to see that $x = \Sigma_\lambda xe_\lambda$. Similarly we can show that $x = \Sigma_\lambda e_\lambda x$ and this proves (iii)

(iii) \Rightarrow (i). Suppose (iii) holds. Let $x \in A$ and $y \in B$. We shall show that $xy \in B$. Since any element of B is a linear combination of positive elements, we may assume that y is a positive element. We also assume that $x \neq 0$ and $y \neq 0$. Let E be a maximal commutative *-subalgebra of B containing y. Then the carrier space M_E of E is discrete. For each $\lambda \in M_E$, let e_{λ} be the element of E corresponding to the characteristic function of λ . Then $\{e_{\lambda}: \lambda \in M_{E}\}$ is a maximal orthogonal family of hermitian minimal idempotents in B. Since $y \in E$ and $\operatorname{Sp}_{F}(y) > 0$, we have $ye_{\lambda} = \beta_{\lambda}e_{\lambda}$, where $\beta_{\lambda} \geq 0$ for all λ and $\beta_{\lambda} \leq |y|$. Since B is a dual B^* -algebra, by the proof of (ii) \Rightarrow (iii) (or [9, p. 22, Corollary 1]) $xy = \sum_{\lambda} xye_{\lambda}$ in $|\cdot|$ and so there exists only a countable number of e_{λ} for which $xye_{\lambda} \neq 0$, say e_1, e_2, \cdots . For any two positive integers $m, n \ (m < n)$, let $z_m^n = \sum_{k=m}^n xye_k = \sum_{k=m}^n \beta_k xe_k$. Then $z_m^n \in A$. We shall show that $\{\sum_{k=1}^{n} xye_k\}$ is Cauchy sequence in A. Clearly, we can assume that each z_m^n is a nonzero element. Choose $f \in A^*$ such that ||f|| = 1 and $f(z_m^n) = ||z_m^n||$ by the Hahn-Banach theorem. Then $f(z_m^n) = \sum_{k=m}^n \beta_k f(xe_k)$. Write $f(xe_k) = a_k + ib_k$, where a_k , b_k are real numbers. Then we have

$$\sum_{k=m}^{n} \beta_{k} f(xe_{k}) = \sum_{k=1}^{n} \beta_{k} a_{k} = ||z_{m}^{n}|| > 0.$$

Since $\beta_k \ge 0$, there exists some $a_k > 0$. Let $\{a_k\}_{k=m}^n$ such that $a_k > 0$. Then we have

$$\begin{split} \left\| \sum_{k=m}^{n} xy e_{k} \right\| &= \left\| z_{m}^{n} \right\| = \sum_{k=m}^{n} \beta_{k} a_{k} \leq \sum_{k'} \beta_{k'} a_{k'} \\ &\leq \left| y \right| \sum_{k'} a_{k'} \leq \left| y \right| \left| \sum_{k'} f(x e_{k'}) \right| \leq \left| y \right| \left\| f \right\| \left\| \sum_{k'} x e_{k'} \right\| = \left| y \right| \left\| \sum_{k'} x e_{k'} \right\|. \end{split}$$

Hence it follows from the assumption that $\{\sum_{i=1}^n xye_k\}$ is a Cauchy sequence in A. Therefore, there exists an element $z \in A$ such that $z = \sum_{k=1}^\infty xye_k$ in $\|\cdot\|$. Also $xy = \sum_{k=1}^\infty xye_k$ in $\|\cdot\|$. Hence it follows that $xy = z \in A$. Similarly we can show that $yx \in A$. Thus A is a two-sided ideal of B and this completes the proof of the theorem.

Remark 1. (i) \Rightarrow (iii) in the above theorem was obtained by Ogasawara and Yoshinaga for A^* -algebras (see [9, p. 30, Theorem 16]). Also (iii) \Leftrightarrow (i) was proved by them for weakly complete commutative A^* -algebras (see [9, p. 35, Theorem 2.3]). Some arguments in the proof of (ii) \Rightarrow (iii) of Theorem 5.2 are similar to those in the proof of [9, p. 30, Theorem 16].

Remark 2. If B is not a B^* -algebra, then Theorem 5.2 is not true. In fact, let G be an infinite compact group and let A be the algebra of all continuous functions on G, normed by the maximum of the absolute value. It is well known that $L_2(G)$ is an A^* -algebra and A is a dual A^* -algebra which is a dense two-sided ideal of $L_2(G)$. However condition (iii) of Theorem 5.2 is not valid for A. Since $L_2(G)$ is a proper H^* -algebra, condition (iii) holds for $L_2(G)$.

Corollary 5.3. Let A be a reflexive A^* -algebra which is a dense subalgebra of a B^* -algebra B. Then the following statements are equivalent:

- (i) A is a two-sided ideal of B.
- (ii) A is a dual algebra and, for any orthogonal family of hermitian minimal idempotents $\{e_{\lambda}: \lambda \in \Lambda\}$ of B and $x \in A$, the set $\{\sum_{k=1}^{n} e_{\lambda_{k}} x: \lambda_{k} \in \Lambda\}$ is bounded in A.
- **Proof.** (i) \Rightarrow (ii). This follows immediately from [13, p. 831, Theorem 5.4] and Theorem 5.2 (ii).
- (ii) \Rightarrow (i). Suppose (ii) holds. Since A is reflexive, $\{\sum_{k=1}^n e_{\lambda_k} x \colon \lambda_k \in \Lambda\}$ has weak limit points in A. By the proof of Theorem 5.2, it has a unique weak limit point and so $\sum_{\lambda} e_{\lambda} x$ is summable in the norm of A. Therefore A is a two-sided ideal of B by Theorem 5.2.

It is well known that a reflexive B^* -algebra is finite dimensional. The following corollary is a generalization of this result.

Corollary 5.4. Let A be a reflexive A^* -algebra which is a dense two-sided ideal of a B^* -algebra B. If A has an approximate identity, then A is finite dimensional.

Proof. It follows immediately from [5, p. 855, Lemma 3.8] and Corollary 5.3 that A is a dual algebra with an identity. Therefore A is finite dimensional.

It is well known that B is Arens regular if B is a B^* -algebra. Let A be a semisimple dual Banach algebra which is a dense two-sided ideal of a B^* -algebra B. Is A Arens regular? This question was asked in [13, p. 833]. We shall answer this question affirmatively.

Notation. In the rest of this section, B^{**} with the Arens product will be denoted by $(B^{**}, *)$.

Lemma 5.5. Suppose B is a dual B*-algebra and S its socle. Let B' be the closed subspace of B* spanned by $\pi_B(x) * g$, where $x \in S$ and $g \in B^*$. Then B* coincides with B'.

Proof. Suppose this is not true. Then there exists a nonzero linear functional $F \in B^{**}$ such that F(B') = (0). Hence, for all $x \in S$, $(F * \pi_B(x))(g) = F(\pi_B(x) * g) = 0$. Since S is weakly dense in B^{**} , it follows that $F * B^{**} = (0)$. Since B^{**} is a B^{**} -algebra, we have F = 0, a contradiction. Therefore B^{*} coincides with B'.

In the rest of this section, let A be a semisimple Banach algebra which is a dense two-sided ideal of a B^* -algebra B. By [2, p. 3, Proposition 2.2], there exists a constant k such that $k\|\cdot\| \ge |\cdot|$ on A and consequently by [2, p. 3, Theorem 2.3] there exists a constant M such that $\|ab\| \le M\|a\| \|b\|$ and $\|ba\| \le M\|a\| \|b\|$ for all $a \in A$, $b \in B$. For each $g \in B^*$, let g_A denote the restriction of g to A. Then it is easy to see that $g_A \in A^*$. For every element $F \in A^{**}$, let F be the linear functional on F defined by $F(g) = F(g_A)$ ($F(g) \in B^*$). Then $F \in B^{**}$. Let $F(g) \in B^*$. Define $F(g) \in B^*$. Since $F(g) \in B^*$, it follows that $F(g) \in B^*$.

As before, let R^{**} denote the radical of (A^{**}, \circ) .

Lemma 5.6. Suppose A is an annihilator algebra. Then the following statements hold:

- (i) For each $R \in R^{**}$ and $g \in B^{*}$, we have R(g) = 0.
- (ii) R^{**} is the left and right annihilator of (A^{**}, \circ) .

Proof. (i) Let $g \in B^*$. By Lemma 5.5, we can write $g = \lim_n g_n$ where $g_n = \sum_{i=1}^{m_n} \pi_B(x_i^n) * g_i^n$ with $x_i^n \in S$ (the socle of B) and $g_i^n \in B^*$. Clearly $x_i^n \in A$. Then for each $R \in R^{**}$, we have

$$\widetilde{R}(g) = \lim_{n} \sum_{i=1}^{m_{n}} \widetilde{R}(\pi_{B}(x_{i}^{n}) * g_{i}^{n}) = \lim_{n} \sum_{i=1}^{m_{n}} (R \circ \pi_{A}(x_{i}^{n}))((g_{i}^{n})_{A}).$$

By Theorem 4.1, we have $R \circ \pi_A(x_k^n) = 0$ and therefore R(g) = 0. This proves (i).

(ii) For each $F \in A^{**}$ and $f \in A^{*}$, define $\widetilde{f}_{F}(b) = F(f \circ b)$ $(b \in B)$. Then it is easy to see that $\widetilde{f}_{F} \in B^{*}$ and $(\widetilde{f}_{F})_{A} = F \circ f$. Then for all $R \in R^{**}$, we have $(R \circ F)(f) = R(F \circ f) = \widetilde{R}(\widetilde{f}_{F})$. Therefore by (i), $R \circ F = 0$ and so $R^{**} \circ A^{**} = (0)$. By Theorem 4.1, we also have $A^{**} \circ R^{**} = (0)$ and this completes the proof.

Now we are ready to prove the following result:

Theorem 5.7. Let A be a semisimple dual Banach algebra which is a dense two-sided ideal of a B*-algebra. Then the following statements hold:

- (i) A is Arens regular.
- (ii) A^{**}/R^{**} is a semisimple Banach algebra which is a dense two-sided ideal of some B^* -algebra.

Proof. (i) Let $\{e_{\lambda}\colon\lambda\in\Lambda\}$ be a maximal orthogonal family of hermitian minimal idempotents in B. Let $\{E_{\beta}\}$ be the direct set of all finite sums $e_{\lambda_1}+e_{\lambda_2}+\cdots+e_{\lambda_n}$ ($\lambda_n\in\Lambda$, $n=1,2,\cdots$). Let F and G be two functionals in A^{**} . Since $\|F\circ\pi_A(E_{\beta})\|\leq M\|F\|\,|E_{\beta}|=M\|F\|$, it follows from Alaoglu's theorem that $\{F\circ\pi_A(E_{\beta})\}$ has weak limit points in A^{**} . Let $\{E_{\alpha}\}$ be a subnet of $\{E_{\beta}\}$ and $F_1\in A^{**}$ such that $F\circ\pi_A(E_{\alpha})\to F_1$ weakly. By a similar argument, there exists a subnet $\{E_{\gamma}\}$ of $\{E_{\alpha}\}$ and $G_1\in A^{**}$ such that $\pi_A(E_{\gamma})\circ G\to G_1$ weakly. Let $a\in A$. Then by Theorem 5.2, $a=\Sigma_{\lambda}e_{\lambda}a$ in $\|\cdot\|$. Hence $E_{\beta}a\to a$ weakly. Thus $E_{\gamma}a\to a$ weakly. Since $F\circ\pi_A(x)=F\circ'\pi_A(x)$ for all $x\in A$, we have $F_1\circ\pi_A(a)=$ weak limit $F\circ\pi_A(E_{\gamma}a)=F\circ\pi_A(a)$. Since $\pi_A(A)$ is weakly dense in A^{**} , it follows that $(F-F_1)\circ'A^{**}=(0)$ and so by Theorem 4.1, $F-F_1\in R^{**}$. Similarly we can show that $G_1-G\in R^{**}$. Then by Lemma 5.6, we have

$$F \circ G = (F_1 + (F - F_1)) \circ G = F_1 \circ G$$

$$= \underset{\gamma}{\text{weak lim }} F \circ \pi_A(E_{\gamma}) \circ G = \underset{\gamma}{\text{weak lim }} F \circ' (\pi_A(E_{\gamma}) \circ G)$$

$$= F \circ' G_1 = F \circ' G.$$

Therefore A is Arens regular by definition and this proves (i).

(ii) Now the algebra A^{**}/R^{**} is a semisimple Banach algebra. For each $a \in A$ and $f \in A^*$, define (f*a)(b) = f(ab) $(b \in B)$. Then $f*a \in B^*$. For each $F \in A^{**}$, we write $\dot{F} = F + R^{**}$ and define a mapping Φ from A^{**}/R^{**} into B^{**} by $\Phi(\dot{F}) = \widetilde{F}$ $(F \in A^{**})$. Suppose $\Phi(\dot{F}) = 0$. Then $\widetilde{F}(f*a) = 0$ and therefore $(\pi_A(a) \circ F)(f) = 0$ for all $a \in A$ and $f \in A^*$. Consequently $F \in R^{**}$ and therefore $\dot{F} = R^{**}$. Hence it follows that Φ is an isomorphism of A^{**}/R^{**} into B^{**} . For each $g \in B^*$, we have $\|g_A\| \le k|g|$. Since by Lemma 5.5 (i), $R(g_A) = 0$ for all $R \in R^{**}$, straightforward calculations yield that $k\|F + R\| \ge |\widetilde{F}|$ for all $F \in A^{**}$. Hence $k\|\dot{F}\| \ge |\widetilde{F}|$ and consequently Φ is continuous. For each $H \in B^{**}$, define $H \circ f(a) = H(f*a)$ H(f*a) = H(f*a). Then $H \circ f \in A^*$. For each H(f*a) = H(f*a) is H(f*a) = H(f*a). Then H(f*a) = H(f*a). Then H(f*a) = H(f*a). Then H(f*a) = H(f*a). Then H(f*a) = H(f*a). For each H(f*a) = H(f*a), we have

$$\stackrel{\sim}{F}_H(g)=F((H\circ g_A))=F((H\ast g)_A)=(\stackrel{\sim}{F}\ast H)(g).$$

Therefore $\widetilde{F}*H=\widetilde{F}_H$. Consequently $\Phi(A^{**}/R^{**})$ is a two-sided ideal of B^{**} . Let Q be the norm closure of $\Phi(A^{**}/R^{**})$ in B^{**} . Then Q is a closed two-

sided ideal of B^{**} . Since B^{**} is a B^{*} -algebra, so is Q. This completes the proof of the theorem.

Remark. We know that the above result is not true for arbitrary dual A^* -algebras (see [13, p. 833, Remark]). Also if A is a dual A^* -algebra which is Arens regular, A may not be a two-sided ideal of its completion in an auxiliary norm; in fact, A can be reflexive (see [9, p. 35]).

Let $\mathfrak{A} = A^{**}/R^{**}$. Clearly, we can identify A as a closed two-sided ideal of \mathfrak{A} .

Corollary 5.8. Let A be as in Theorem 5.7. Then \mathfrak{A} coincides with A if and only if the socle of \mathfrak{A} is dense in \mathfrak{A} .

Proof. We use the notation in the proof of Theorem 5.7. Suppose the socle of \mathfrak{C} is dense in \mathfrak{C} . Then Q is a dual B^* -algebra. For each minimal idempotent $e \in Q$ and $b \in B$, we have $e = ke\pi_B(b)e \in \pi_B(B)$, where k is a constant. Hence it follows that Q = B. Now it is easy to see that $\mathfrak{C}^2 \subset A$. Since the socle of \mathfrak{C} is dense in \mathfrak{C} , $\mathfrak{C} \subset A$ and so $\mathfrak{C} = A$. The converse of the corollary is clear and this completes the proof.

If A is reflexive, then it is clear that A^{**} is semisimple. However, in general, A^{**} may not be semisimple as shown in [13, p. 831, Theorem 5.5].

Corollary 5.9. Let A be as in Theorem 5.7. Then A^{**} is semisimple if and only if A^* is spanned by $\pi_A(x) \circ f$, where $f \in A^*$ and $x \in A$.

Proof. Suppose A^* is spanned by $\pi_A(x) \circ f$. Let $F \in R^{**}$. Since $F \circ \pi_A(x) = 0$ for all $x \in A$, it follows that F(f) = 0 for all $f \in A^*$. Hence F = 0. The converse of the corollary follows immediately from the proof of Lemma 5.5.

Let A be a Banach *-algebra. For all $x \in A$, $f \in A^*$ and $F \in A^{**}$, we define

$$f^*(x) = \overline{f(x^*)}$$
 and $F^*(f) = \overline{F(f^*)}$,

where the bar denotes the complex conjugation. If A is a B^* -algebra, then A^{**} is a B^* -algebra under the involution $F \to F^*$ (see [11, p. 192]).

Corollary 5.10. Let A be a dual A^* -algebra which is a dense two-sided ideal of a B^* -algebra B. Then (A^{**}, \circ) is a *-algebra and A^{**}/R^{**} is an A^* -algebra which is a dense two-sided ideal of a B^* -algebra.

Proof. By Theorem 5.7, A is Arens regular and so A^{**} is a *-algebra under the involution $F \to F^*$ by [11, p. 186, Theorem 1]. Clearly R^{**} is a *-ideal of A^{**} . Now the corollary follows easily from Theorem 5.7.

It was asked in [13, p. 833] whether the algebra C_b^{**} is semisimple. If

 $1 , then <math>C_p$ is reflexive (see [8, p. 265]) and, therefore, it is semisimple. If p = 1, then by [12, p. 831, Theorem 5.5], C_1^{**} is not semisimple unless it is finite dimensional.

REFERENCES

- 1. R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 13, 659.
- 2. B. A. Barnes, Banach algebras which are ideals in a Banach algebra, Pacific J. Math. 38 (1971), 1-7.
- 3. P. Civin, Annihilators in the second conjugate algebra of a group algebra, Pacific J. Math. 12 (1962), 855-862. MR 26 #2894.
- 4. ———, Ideals in the second conjugate algebra of a group algebra, Math. Scand. 11 (1962), 161-174. MR 27 #5139.
- 5. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 #622.
- 6. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 7. T. Husain and P. K. Wong, Quasi-complemented algebras, Trans. Amer. Math. Soc. 174 (1972), 141-154.
 - 8. C. A. McCarthy, c_p, Israel J. Math. 5 (1967), 249-271. MR 37 #735.
- 9. T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach *-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 15-36. MR 16, 1126.
- 10. C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
- 11. M. Tomita, The second dual of a C*-algebra, Mem. Fac. Kyushu Univ. Ser. A. 21 (1967), 185-193. MR 36 #6955.
- 12. P. K. Wong, On the Arens product and annihilator algebras, Proc. Amer. Math. Soc. 30 (1971), 79-83. MR 43 #6724.
 - 13. ——, Modular annihilator A*-algebras, Pacific J. Math. 37 (1971), 825-834.
- 14. ———, The Arens product and duality in B*-algebras. II, Proc Amer. Math. Soc. 27 (1971), 535-538. MR 43 #933.
- 15. ———, On the Arens product and commutative Banach algebras, Proc. Amer. Math. Soc. 37 (1972), 111-113.

DEPARTMENT OF MATHEMATICS, SETON HALL UNIVERSITY, SOUTH ORANGE, NEW JERSEY 07079