C²-PRESERVING STRONGLY CONTINUOUS MARKOVIAN SEMIGROUPS

RY

W. M. PRIESTLEY

ABSTRACT. Let X be a compact C^2 -manifold. Let $\| \| \| \| \| \| \| \|$ denote the supremum norm and the C^2 -norm, respectively, and let $\{P^t\}$ be a Markovian semigroup on C(X). The semigroup's infinitesimal generator A, with domain \mathfrak{D} , is defined by $Af = \lim_{t \to 0} t^{-1}(P^t f - f)$, whenever the limit exists in $\| \| \|$.

Theorem. Assume that $\{P^t\}$ preserves C^2 -functions and that the restriction of $\{P^t\}$ to $C^2(X)$, $\| \ \|'$ is strongly continuous. Then $C^2(X) \subset \mathbb{D}$ and A is a bounded operator from $C^2(X)$, $\| \ \|'$ to C(X), $\| \ \|$.

From the conclusion is obtained a representation of $Af \cdot (x)$ as an integrodifferential operator on $C^2(X)$. The representation reduces to that obtained by Hunt [Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293] in case X is a Lie group and P^t commutes with translations.

Actually, a stronger result is proved having the above theorem among its corollaries.

1. Introduction. G. A. Hunt showed in [3] that all C^2 -functions lie in the domain of the infinitesimal generator of a translation-invariant strongly continuous Markovian semigroup on C(X), where X is a Lie group. From this Hunt went on to obtain a representation of the infinitesimal generator as an integro-differential operator of a certain type. Hunt then considered the converse question of which integro-differential operators generate semigroups of the class he was considering. He thus characterized all such semigroups by writing down explicitly the general form of their generators.

Translation-invariance means, roughly speaking, that the semigroup sends smooth functions nicely into smooth functions and that the associated stochastic process on X is a homogeneous one. We undertake to obtain results similar to those of Hunt's under less restrictive hypotheses, viz., when there is no group structure on X (and therefore no notion of homogeneity) but only a notion of smooth functions. We take X to be a compact C^2 -manifold, assume that the Markovian

Received by the editors August 3, 1972.

AMS (MOS) subject classifications (1970). Primary 47D05, 60J25; Secondary 31B05, 47G05.

Key words and phrases. C^2 -function, C^2 -manifold, Markovian operator, strong derivative, Banach-Steinhaus theorem, Markovian semigroup, infinitesimal generator, integro-differential operator, normal derivative of harmonic extension.

semigroup sends $C^2(X)$ into itself in a strongly continuous fashion, and prove in Theorem 2 that all C^2 -functions lie in the domain of the infinitesimal generator, which is an integro-differential operator on $C^2(X)$. We do not consider the converse question of which such operators generate such semigroups.

For related results, see Nelson [5], in addition to [3]. See also Dynkin [1, Theorem 5.7, p. 152].

This paper is a condensed version of the first chapter of the writer's doctoral thesis [6], written under the direction of Edward Nelson.

2. Main Theorem. We prove a stronger result than that mentioned in the Introduction, a result which has other applications as well. A Markovian operator P is a positivity-preserving endomorphism of C(X) such that P1 = 1.

Theorem 1. Let X be a compact C^2 -manifold and let P(t) be a function from $[0, \delta)$ to the Markovian operators on C(X), with P(0) = I. If the domain $\mathfrak D$ of the strong derivative P'(0) contains a subset $\mathfrak D'$ dense in $C^2(X)$, $\| \ \|'$, then

- (i) $C^2(X) \subset \mathfrak{D}$,
- (ii) P'(0) is a bounded operator from $C^2(X)$, $\| \|'$ to C(X), $\| \|$,
- (iii) $P'(0)f \cdot (x)$ can be represented as the following integro-differential operator (*), for f in $C^2(X)$:

$$\sum a_{ij}(x) D_{i} D_{j} f \cdot (x) + \sum b_{i}(x) D_{i} f \cdot (x) + \int_{X \setminus \{x\}} f(y) - f(x) - \sum D_{i} f \cdot (x) (x_{i}(y) - x_{i}(x)) \mu_{x}(dy),$$

where x_1, x_2, \dots, x_n are local coordinates near x, b_i is continuous, a_{ij} is continuous or of Baire class 1, $\{a_{ij}(x)\}$ is a positive semidefinite $n \times n$ matrix, and μ_x is a positive (possibly unbounded) measure on $X \setminus \{x\}$ for which $\int_X (f(y) - f(x))^2 \mu_x(dy)$ is finite.

Proof. Conclusions (i) and (ii) will follow from the Banach-Steinhaus theorem, once its hypotheses are seen to be met. Conclusion (iii) will then follow by a slight modification of Hunt's argument in [3].

The machinations which follow are designed to obtain the bound required in order to invoke the Banach-Steinhaus theorem. Choose and fix a coordinate neighborhood U in X with coordinate functions x_1, x_2, \cdots, x_n . Without loss of generality we may assume that, for $1 \leq i \leq n$, x_i is a C^2 -function defined on all of X with $\|x_i\| < 4$ and that $x_i(U)$ contains the open interval (-3, 3). Moreover, we may assume that each of the coordinate functions belongs to D as well. This last follows since D' is in any case dense in $C^2(X)$, $\|\cdot\|'$ so that we may choose n functions in D' sufficiently close in $\|\cdot\|'$ to the n coordinate functions respectively that these new functions could serve as coordinates in U.

If it were apparent at this stage that the squares of the coordinate functions

also belong to \mathfrak{D} , then our argument could be considerably shortened. As it is, we must construct functions in \mathfrak{D} , each of which behaves like the square of the distance from a fixed point in X. For abbreviative purposes we set

$$U_r = \{ y \in U : |x_i(y)| < r, 1 \le i \le n \},$$

and we construct a family of functions $\{\phi_x\}_{x\in U_1}$ that satisfies

$$\phi_{x} \ge 1 \text{ on } X \setminus U_{2},$$

(2)
$$\sup_{t>0, x \in U_1} |t^{-1} P(t) \phi_x \cdot (x)| < \infty,$$

(3)
$$\phi_x(y) \ge (3/4) \sum_{i} (x_i(y) - x_i(x))^2$$
 if $y \in U_2$.

To carry out this construction, choose and fix some C^2 -function $f\colon X\to \mathbf{R}$ satisfying (a) $f(y)=\sum x_i(y)^2$ if $y\in U_1$, (b) f(y)>15n+4 if $y\notin U_2$, (c) $D_iD_jf\cdot (y)=0$ if $i\neq j$ and $y\in U_2$, (d) $D_iD_if\cdot (y)\geq 2$ if $y\in U_2$. We are free to choose functions in \mathfrak{D}' as close to f in $\|\cdot\|'$ as we please. Choose ϕ in \mathfrak{D}' so close to f that $\|f-\phi\|'<1$ and, for arbitrary real numbers ξ_1,ξ_2,\cdots,ξ_n , we have $y\in U_2$ implies

(4)
$$\sum D_i D_j \phi \cdot (y) \xi_i \xi_j \ge (3/2) \sum \xi_i^2.$$

It is possible to find such a ϕ since (c) and (d) guarantee that f satisfies the inequality similar to (4) with "2" replacing "3/2". Now, for x in U_1 , we define functions $\phi_x = \phi_x(y)$ by

$$\phi_x = \phi - \sum D_i \phi \cdot (x) x_i - \phi(x) + \sum D_i \phi \cdot (x) x_i(x).$$

For brevity we write $\phi_x = \phi - \alpha_x - \beta_x + \gamma_x$, where, of course, β_x and γ_x are constants, for fixed x. Since $\|x_i\| \le 4$ and $\|D_if - D_i\phi\| \le 1$ it follows that for $y \notin U_2$ we have $|\alpha_x(y)| \le 12n$, $|\beta_x| \le 2$, $|\gamma_x| \le 3n$. By (b) we have $\phi(y) > 15n + 3$ if $y \notin U_2$. Hence $\phi_x \cdot (y) \ge 1$ if $y \notin U_2$, proving (1).

Since $\phi_{\kappa}(x) = 0$ we have

$$P(t)\phi_{x} \cdot (x) = (P(t)\phi_{x} - \phi_{x}) \cdot (x)$$

$$= (P(t)\phi - \phi) \cdot (x) - \sum D_{i}\phi \cdot (x) (P(t)x_{i} - x_{i}) \cdot (x).$$

Dividing by t > 0 and taking the limit as $t \to 0$ shows that $\lim_{t \to 0} t^{-1} P(t) \phi_x \cdot (x) = P'(0) \phi \cdot (x) - \sum_{i} p_i \phi \cdot (x) P'(0) x_i \cdot (x)$, and (2) follows.

To verify (3), note that ϕ_x and its gradient vanish at x. Also note that $D_i D_j \phi_x \cdot (y) = D_i D_j \phi \cdot (y)$ if $y \in U$. These facts and Taylor's theorem imply that for $z \in U_2$ there is some $y \in U_2$ such that

$$\phi_x(z) = 2^{-1} \sum_i D_i \phi \cdot (y) (x_i(z) - x_i(x)) (x_j(z) - x_j(x)).$$

This and (4) imply (3).

With the aid of the functions just constructed, we may obtain the bound we seek. Let g be a C^2 -function, let x be in U_1 and let $g_x = g - g(x) - \sum D_i g \cdot (x)(x_i - x_i(x))$. Since g_x vanishes to second order at x, there is some N such that $y \in U_2$ implies

$$-N \sum_{i} (x_{i}(y) - x_{i}(x))^{2} \leq g_{x}(y) \leq N \sum_{i} (x_{i}(y) - x_{i}(x))^{2}.$$

We cannot expect this inequality to hold for all y in X, since the x_i 's are only local coordinates. However, this local inequality and (3) imply that on U_2 we have the functional inequality

$$-(4/3) N \phi_x \le g - g(x) - \sum D_i g \cdot (x) (x_i - x_i(x)) \le (4/3) N \phi_x$$

The function in the middle here is bounded on X (independently of x in U_1), and $\phi_x \geq 1$ outside U_2 , so by adjusting N appropriately we may regard the preceding inequality as a global one, holding for each x in U_1 , with N independent of x. This inequality is then preserved if we apply P(t) to each member, divide by t>0, and evaluate the terms of the resulting inequality at x, from which it follows that

$$|t^{-1}(P(t)g - g)(x) - \sum_{i} D_{i}g \cdot (x) t^{-1}(P(t)x_{i} - x_{i}) \cdot (x)|$$

$$< (4/3) Nt^{-1} P(t) \phi_{x} \cdot (x).$$

Now (2) shows that the expression inside the absolute value sign is bounded independently of x in U_1 and t>0. So is $\sum D_i g \cdot (x) t^{-1} (P(t) x_i - x_i) \cdot (x)$ since $x_i \in \mathfrak{D}$ and $\|D_i g\| < \infty$. It follows that $g \in C^2(X)$ implies

(5)
$$\sup_{t>0, x \in U_1} |t^{-1}(P(t)g-g) \cdot (x)| < \infty.$$

In (5), " U_1 " may be replaced by "X", since X is compact. By the principle of uniform boundedness there is some M such that

$$\sup_{t>0, x \in X} |t^{-1}(P(t)g-g) \cdot (x)| \leq M \|g\|'.$$

Thus M is a uniform bound for the norms of the continuous linear maps $A(t) = t^{-1}(P(t) - I)$ from $C^2(X)$, $\| \|'$ to C(X), $\| \|$. Since $A(t)g \to P'(0)g$ for each g in a dense subset of $C^2(X)$, the Banach-Steinhaus theorem [2, p. 41] implies conclusions (i) and (ii) of Theorem 1.

To prove (iii) we follow Hunt [3]. Let ψ_x be some C^2 -function bounded away from zero on the complement of U and agreeing with $\sum (x_i - x_i(x))^2$ on U. The mapping which sends f to $P'(0)(f\psi_x) \cdot (x)$ is readily seen to be defined on $C^2(X)$ and to be a positive, hence bounded, linear functional on $C^2(X)$, $\| \cdot \|$. It therefore admits a unique extension to C(X) since $C^2(X)$ is dense in C(X).

By the Riesz-Markoff theorem this extended mapping is implemented by some finite positive regular Borel measure ν_{τ} on X so that

$$P'(0) (f \psi_x) \cdot (x) = \int_X f(y) \nu_x (dy).$$

We define a positive (possibly unbounded) measure μ_x on $X \setminus \{x\}$ by $\mu_x = \psi_x^{-1} \nu_x$. For f in $C^2(X)$, let f_x be the Taylor polynomial with terms up to and including order two of f, expanded at x. Then $f - f_x = b\psi_x$ for some b in C(X) with b(x) = 0 so that

$$P'(0)(f-f_x)\cdot (x) = P'(0)(b\psi_x)\cdot (x) = \int_{X\setminus \{x\}} b(y)\nu_x(dy).$$

Hence

$$P'(0) f \cdot (x) = P'(0) f_x \cdot (x) + P'(0) (f - f_x) \cdot (x)$$

$$= \sum_{i} c_{ij}(x) D_i D_j f \cdot (x) + \sum_{i} b_i(x) D_i f \cdot (x) + \int_{X} \sum_{i} (f(y) - f_x(y)) \mu_x(dy)$$

where

$$b_{i}(x) = P'(0)x_{i} \cdot (x)$$

and

$$2c_{ij}(x) = P'(0) [(x_i - x_i(x)) (x_j - x_j(x))] \cdot (x).$$

By (ii) of Theorem 1, b_i and c_{ij} are continuous. When $f_x(y)$ is written out explicitly in the integrand, one sees that the second order term in it is integrable with respect to μ_x , and this term can therefore be deleted, provided we adjust the coefficient functions c_{ij} appropriately. (*) results. The new coefficient functions a_{ij} are such that $\{a_{ij}(x)\}$ is a positive semidefinite $n \times n$ matrix, as may be shown just as in [3].

By now the only assertion in Theorem 1 which is not yet obvious is that a_{ij} is the pointwise limit of a sequence of continuous functions. To see this, let $r_x = (x_i - x_i(x))(x_j - x_j(x))$ so that r_x is in $C^2(X)$. From (*) it follows that $2a_{ij}(x) = \lim_{n \to \infty} q_n(x)$, where $q_n(x) = P'(0)[r_x \exp(-n\psi_x)] \cdot (x)$. We can easily arrange to choose the functions $\{\psi_x\}$ in such a way that $\|\psi_x - \psi_y\|' \to 0$ as $y \to x$. Since $\|r_x - r_y\|' \to 0$ as $y \to x$ it follows that

$$\|r_x \exp(-n\psi_x) - r_y \exp(-n\psi_y)\|' \rightarrow 0$$

as $y \rightarrow x$. By (ii) of Theorem 1 we then have

$$||P'(0)[r_x \exp(-n\psi_x)] - P'(0)[r_y \exp(-n\psi_y)]|| \to 0$$

as $y \to x$, from which it follows that $q_n(y) \to q_n(x)$ as $y \to x$. Hence a_{ij} is a pointwise limit of a sequence of continuous functions. (In case

i=j, the sequence $\{q_n\}$ is monotonically decreasing. Hence a_{ii} is upper semicontinuous.) This completes the proof of Theorem 1.

On pp. 18-21 of [6] we present an example which shows that a_{ij} need not be continuous.

3. C^2 -preserving Markovian semigroups. The following theorem is known [3] in case X is a Lie group and P^t commutes with translations, in which case hypotheses (a) and (b) are automatically fulfilled.

Theorem 2. Let X be a compact C^2 -manifold and let A, with domain \mathfrak{D} , be the infinitesimal generator of a Markovian semigroup $\{P^t\}$ on C(X) satisfying

- (a) P^t : $C^2(X)$, $|| ||' \to C^2(X)$, || ||' is continuous, t > 0,
- (b) $||P^t f f||' \to 0$ for each f in $C^2(X)$.

Then

- (i) $C^2(X) \subset \mathfrak{D}$,
- (ii) A is a bounded operator from $C^2(X)$, $\| \|'$ to C(X), $\| \|$,
- (iii) Af \cdot (x) may be represented by (*) for f in $C^2(X)$,
- (iv) $\{P^t\}$ is determined by the restriction of A to $C^2(X)$.

Proof. The infinitesimal generator A is of course just the strong derivative at 0 of the mapping $t \to P^t$. Hypotheses (a) and (b), as is well known [2, p. 307], imply the existence of a dense subspace \mathfrak{D}' of $C^2(X)$, $\| \|'$ such that $t^{-1}(P^tf - f)$ converges in $\| \|'$ -and a fortiori in $\| \|$ -for f in \mathfrak{D}' . Hence Theorem 1 implies (i), (ii), (iii). The proof of Theorem 5.4 of [4] proves (iv), since we are assuming $C^2(X)$ invariant under $\{P^t\}$.

4. Normal derivatives of harmonic extensions. As a second application of Theorem 1, we give a new proof of a known result.

Theorem 3. Let S^n be the unit sphere in \mathbb{R}^{n+1} , and let f be in $C^2(S^n)$. Let \widetilde{f} be the continuous function on the closed unit ball that is harmonic in the interior of the ball and agrees with f on the boundary. Then $\partial \widetilde{f}/\partial n$, the derivative of \widetilde{f} in the direction of the inward normal, exists and is continuous throughout S^n .

Proof. For f in $C(S^n)$, Q in S^n , let P(t) be defined by

$$P(t)f\cdot(\mathbf{0})=\bigcap_{t=0}^{\infty}((1-t)\mathbf{0}).$$

Thus P(0) = I and P(t) is a strongly continuous function from [0, 1) to the Markovian operators on $C(S^n)$. The existence of P'(0)f obviously implies the existence and continuity of $\partial f'/\partial n$. Hence, to prove the theorem, we need only show that $C^2(S^n) \subset \mathcal{D}$, where \mathcal{D} is the domain of P'(0).

Let \mathfrak{D}' be the set of all functions in $C(S^n)$ which are the restrictions to S^n of harmonic functions whose domains are open sets containing the closed unit ball. Obviously we have $\mathfrak{D}'\subset \mathfrak{D}$, and it is easy to see that P(t)f is in \mathfrak{D}' if t>0. Moreover, if f is in $C^2(S^n)$ then $\|P(t)f-f\|'\to 0$ as $t\to 0$, because P(t) is strongly continuous and commutes with each rotation of S^n . Therefore \mathfrak{D}' is dense in $C^2(S^n)$, $\| \ \|'$. By Theorem 1 we have $C^2(S^n)\subset \mathfrak{D}$, completing the proof.

The normal derivative of f may be represented by the integro-differential operator (*). However, it is also possible, and more desirable, to represent the normal derivative as a singular integral operator acting on f. For an explicit formula in spherical coordinates when n = 2, see [6, p. 94].

REFERENCES

- 1. E. B. Dynkin, Markov processes. Vol. 1, Fizmatgiz, Moscow, 1963; English transl., Die Grundlehren der math. Wissenschaften, Band 122, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 33 #1886; #1887.
- 2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664.
- 3. G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264-293. MR 18, 54.
- 4. E. Nelson, Dynamical theories of Brownian motion, Princeton Univ. Press, Princeton, N. J., 1967. MR 35 #5001.
- 5. Representation of a Markovian semigroup and its infinitesimal generator, J. Math. Mech. 7 (1958), 977-987. MR 20 #7224.
- 6. W. M. Priestley, Markovian semigroups on non-commutative C*-algebras: An elementary study, Ph.D. Thesis, Princeton University, University Microfilms, Ann Arbor, Mich., 1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF THE SOUTH, SEWANEE, TENNESSEE 37375

Current address: Department of Mathematics, Indiana University, Bloomington, Indiana 47401