THE LATTICE TRIPLE PACKING OF SPHERES IN EUCLIDEAN SPACE

BY

G. B. PURDY

ABSTRACT. We say that a lattice Λ in n-dimensional Euclidean space E_n provides a k-fold packing for spheres of radius 1 if, when open spheres of radius 1 are centered at the points of Λ , no point of space lies in more than k spheres. The multiple packing constant $\Delta_k^{(n)}$ is the smallest determinant of any lattice with this property. In the plane, the first three multiple packing constants $\Delta_2^{(2)}$, $\Delta_3^{(2)}$, and $\Delta_4^{(2)}$ are known, due to the work of Blundon, Few, and Heppes. In E_3 , $\Delta_2^{(3)}$ is known, because of work by Few and Kanagasabapathy, but no other multiple packing constants are known. We show that $\Delta_3^{(3)} \leq 8\sqrt{38}/27$ and give evidence that $\Delta_3^{(3)} = 8\sqrt{38}/27$. We show, in fact, that a lattice with determinant $8\sqrt{38}/27$ gives a local minimum of the determinant among lattices providing a 3-fold packing for the unit sphere in E_3 .

1. Introduction. Let Λ be an n-dimensional lattice in n-dimensional Euclidean space E_n , such that, if open spheres of radius 1 are centered at the points of Λ , then no point of space is covered more than k times. That is, for any point X in E_n there do not exist distinct points L_1, L_2, \dots, L_{k+1} of Λ such that $|X - L_1|, \dots, |X - L_{k+1}| < 1$. Then we say that Λ provides a k-fold packing for spheres of radius 1. The terms single, double and triple are synonymous with k-fold for k = 1, 2 and 3.

Let $d(\Lambda)$ denote the determinant of Λ , and let $\Delta_k^{(n)}$ denote the lower bound of $d(\Lambda)$, taken over all lattices Λ that provide a k-fold packing for spheres of radius 1. (Thus $\Delta_1^{(n)}$ is the critical determinant of a sphere of radius 2.) It is well known and easy to see (e.g., divide one generator of the lattice by k) that $\Delta_k^{(n)} \leq \Delta_1^{(n)}/k$.

It has been shown by Few [1] that $\Delta_2^{(2)} = (\frac{1}{2})\Delta_1^{(2)}$, and Heppes [5] showed that $\Delta_k^{(2)} = \Delta_1^{(2)}/k$ if and only if $k \le 4$.

In [4] Few and Kanagasabapathy determined the exact value of $\Delta_2^{(3)}$, namely $3\sqrt{3}/2$, which is less than $\Delta_1^{(3)}/2 = 2\sqrt{2}$. By constructing particular lattices they also showed that $\Delta_2^{(n)} < \Delta_1^{(n)}/2$ for every $n \ge 3$.

Few remarks in [2] that $\Delta_2^{(3)}$ is the only multiple packing constant known exactly in three dimensions or more, and in this note I shall prove that $\Delta_3^{(3)} \le$

Received by the editors September 29, 1972.

AMS (MOS) subject classifications (1970). Primary 10E30.

Key words and phrases. Spheres, lattice packing, multiple packing.

458

 $8\sqrt{38}/27 \le \Delta_1^{(3)}/3 = 4\sqrt{2}/3$ and give evidence suggesting that $\Delta_3^{(3)} = 8\sqrt{38}/27$. In fact, I prove

Theorem 1. A certain lattice Λ_0 of determinant $d_0=8\sqrt{38}/27$ provides a triple packing for the unit sphere S. Also Λ_0 has generators P, Q, R with |P|=2/3.

Theorem 2. Any lattice Λ having generators P', Q', R' with $|P'| \leq 0.95$ providing a triple packing for S must have determinant $d(\Lambda) \geq d_0$ with equality only when $\Lambda = \Lambda_0$. Hence Λ_0 gives a local minimum of $d(\Lambda)$ for triple packing of unit spheres.

Remark. There is extensive numerical evidence that $d(\Lambda)$ does not fall below d_0 for any triple packing with S.

2. An economical lattice Λ_0 .

Theorem 1. The best lattice triple packing for spheres in E^3 has determinant $d(\Lambda) \leq 8\sqrt{38}/27 = \sqrt{2432/729} = 1.82649 \cdots$, since indeed the lattice Λ_0 generated by P, Q and R where $P = (a, 0, 0) = (2/3, 0, 0), Q = (b, b, 0) = (1/3, \sqrt{3}, 0)$ and R = (g, f, c), where g = 1/3, $f = (11\sqrt{3})/27$ and $c^2 = 3 - f^2$, provides a triple packing for the unit sphere S.

Proof. Convention: The letters λ , μ and ν will denote integers. S(A, r) will be the open sphere of radius r centered at A; S(A) will denote S(A, 1); thus S = S(origin). Suppose that the point X = (x, y, z) is covered four times. Translating X by a lattice point, we may suppose that $X \in S$, and replacing X by -X if necessary we may suppose $z \geq 0$. The three other spheres covering X can be written $S(\lambda P + \mu Q + \nu R) = S + \lambda P + \mu Q + \nu R$ where $(\lambda, \mu, \nu) \neq (0, 0, 0)$. We must have $|\lambda P + \mu Q + \nu R| < 2$ since they must intersect S. Therefore

(*)
$$(\lambda a + \mu b + \nu g) + (\mu b + \nu f)^2 + \nu^2 c^2 < 4$$

and $|\nu| < 2/c$. Since c > 1, we have $\nu \in \{-1, 0, 1\}$. Now ν cannot be -1, since otherwise $|X - (\lambda P + \mu Q - R)| \ge |c + z| > 1$. Hence $\nu \in \{0, 1\}$. From (*) we also get $|\mu b + \nu f| < 2$. Since $0 \le \nu \le 1$ and $0 \le f \le b/2$ and $b = \sqrt{3} > 4/3$ this gives $-2 < \mu < 2$, $\mu \in \{-1, 0, 1\}$. We divide the proof into two parts.

Part 1. $y \ge 0$. Then $\mu \in \{0, 1\}$; in fact if $\mu = -1$, then for $X \in S(\lambda P + \mu Q + \nu R)$ we would have $|X - (\lambda P - Q + \nu R)|^2 \ge (b + y - \nu f)^2 > (16b/27)^2 = 256/243$, since $\nu \in \{0, 1\}$. Also $(\mu, \nu) \ne (1, 1)$, since $|\lambda P + Q + R|^2 \ge b^2 + c^2 > 4$. Hence $(\mu, \nu) \in \{(0, 0), (1, 0), (0, 1)\}$.

Type 1 spheres. Suppose $(\mu, \nu) = (0, 0)$. Then $\lambda P + \mu Q + \nu R = \lambda P$, and $S(\lambda P) \cap S = \emptyset$ if $|\lambda| > 2$, since |3P| = 3a = 2. The $S(\lambda P)$ such that $0 < |\lambda| \le 2$ are called Type 1 spheres.

Type 2 spheres. Suppose $(\mu, \nu) = (1, 0)$. Then $\lambda P + \mu Q + \nu R = \lambda P + Q$, and $S(\lambda P + Q) \cap S = \emptyset$ if $\lambda \notin \{0, -1\}$, since then $|\lambda P + Q|^2 = b^2 + (\lambda a + b)^2 = 3 + |2\lambda/3 + 1/3|^2 \ge 4$. The S(Q - P) and S(Q) are called Type 2 spheres.

Type 3 spheres. Suppose $(\mu, \nu) = (0, 1)$. Then $\lambda P + \mu Q + \nu R = R + \lambda P$, $S(R + \lambda P) \cap S = \emptyset$ if $\lambda \notin \{0, -1\}$. To see this, observe that if $S(R + \lambda P) \cap S \neq \emptyset$ then $(\lambda a + g)^2 + f^2 + c^2 < 4$; since $f^2 + c^2 = 3$, $|2\lambda/3 + 1/3| < 1$ and $\lambda \in \{0, -1\}$. We call S(R) and S(R - P) Type 3 spheres.

It follows from the discussion of Type 2 and Type 3 spheres that $S \cap S(\lambda P + E) = \emptyset$ if $\lambda \notin \{-1, 0\}$ where $E \notin \{R, Q\}$. In particular,

$$\emptyset = S \cap S(E+P) = S(-P) \cap S(E) = S(-2P) \cap S(E-P),$$

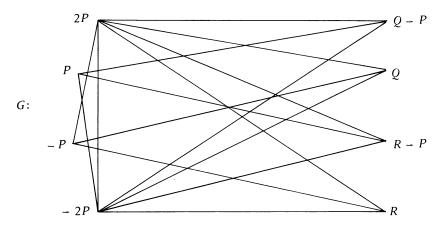
 $\emptyset = S \cap S(E+2P) = S(-2P) \cap S(E),$
 $\emptyset = S \cap S(E-2P) = S(P) \cap S(E-P) = S(2P) \cap S(E),$
 $\emptyset = S \cap S(E-3P) = S(2P) \cap S(E-P).$

From the discussion of Type 1 spheres $S \cap S(\lambda P) = \emptyset$ for $|\lambda| > 2$ so that

$$\emptyset = S \cap S(3P) = S(-P) \cap S(2P) = S(-2P) \cap S(P),$$

$$\emptyset = S \cap S(4P) = S(-2P) \cap S(2P).$$

We now draw a graph G where edges A and B are joined only if we know that $S(A) \cap S(B) = \emptyset$.



We next observe that $\emptyset = S(Q + \lambda P) \cap S \cap S(R + \lambda' P + \nu Q)$. For $|Q + \lambda P| \ge |Q| = \sqrt{b^2 + b^2} > \sqrt{3}$. Therefore the height (maximal value of the z coordinate of the closure) of $S(Q + \lambda P) \cap S$ is less than $\sqrt{1 - 3/4} = \frac{1}{2} < c - 1$, since $c = 1.5 \dots > 3/2$. Since $R + \lambda' P$ has z component c, the above intersection is void. Hence we cannot have X simultaneously inside a sphere of Type 2 and a sphere of Type 3, so

 $X \in S(\lambda_1 P) \cap S(\lambda_2 P) \cap S(E + \lambda_3 P) \quad \text{with } 0 < |\lambda_1|, \quad |\lambda_2| \le 2, \ -1 \le \lambda_3 \le 0,$ or

$$X \in S(\lambda_1 P) \cap S(E + \lambda_2 P) \cap S(E + \lambda_3 P) \quad \text{with } 0 < |\lambda_1| \le 2, \ -1 \le \lambda_2, \lambda_3 \le 0,$$

where $E \in \{R, Q\}$. Both of these contradict the graph G, and Part 1 follows.

Part 2. We now suppose that y < 0. Recall that if $S \cap S(\lambda P + \mu Q + \nu R) \neq \emptyset$, then $-1 \le \mu \le 1$ and $0 \le \nu \le 1$. For those $S(\lambda P + \mu Q + \nu R)$ containing X we must have $-1 \le \mu \le 0$. For suppose that $\mu = 1$; since X = (x, y, z), y < 0, we would have $|\lambda P + \mu Q + \nu R - X| \ge |b + \nu f - y| > b > 1$. The spheres $S(\lambda P + \mu Q + \nu R)$ containing X other than S may therefore be divided into four types, as follows:

Type 1 spheres, when $(\mu, \nu) = (0, 0)$. As before the only spheres $S(\lambda P)$ intersecting S satisfy $0 < |\lambda| \le 2$, i.e., the Type 1 spheres are S(2P), S(P), S(-P) and S(-2P).

Type 2 spheres, when $(\mu, \nu) = (-1, 0)$. If $S(\lambda P + \mu Q + \nu R)$ is to intersect S we must have $4 > |\lambda P + \mu Q + \nu R|^2 = (\lambda a - b)^2 + b^2 = (2\lambda/3 - 1/3)^2 + 3$. Hence $0 < \lambda \le 1$, i.e., the Type 2 spheres are S(-Q) and S(P-Q).

Type 3 spheres, when $(\mu, \nu) = (0, 1)$. As in Part $1, -1 \le \lambda \le 0$ if $S(\lambda P + \mu Q + \nu R)$ intersects S, i.e., the Type 3 spheres are S(R) and S(R - P).

Type 4 spheres, when $(\mu, \nu) = (-1, 1)$. If $S(\lambda P + \mu Q + \nu R)$ intersects S, then $(\lambda a + g - b)^2 + (f - b)^2 + c^2 < 4$, $4\lambda^2/9 < 4 - (b - f)^2 - c^2 = 4/9$, $\lambda^2 < 1$, $\lambda = 0$, and S(R - Q) is the only sphere of Type 4.

As we did in Part 1, we deduce several new disjoint pairs of spheres. From the discussion of Type 4 spheres, $S \cap S(-Q + R + \lambda P) = \emptyset$ if $\lambda \neq 0$, so we have $S(\lambda P) \cap S(-Q + R) = \emptyset$ if $\lambda \neq 0$. From the Type 2 spheres we have

$$\emptyset = S \cap S(-Q + 2P) = S(-P) \cap S(-Q + P) = S(-2P) \cap S(-Q),$$

 $\emptyset = S \cap S(-Q + 3P) = S(-2P) \cap S(-Q + P),$
 $\emptyset = S \cap S(-Q - P) = S(P) \cap S(-Q) = S(2P) \cap S(-Q + P),$
 $\emptyset = S \cap S(-Q - 2P) = S(2P) \cap S(-Q).$

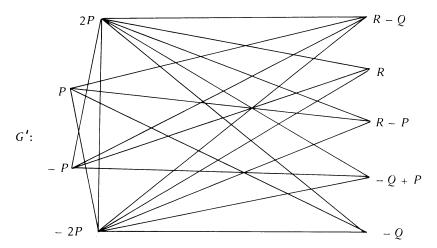
If we combine these with some of the disjoint pairs that we already know from Part 1 and draw a graph, G', in which A is joined to B only if we know $S(A) \cap S(B) = \emptyset$, we obtain the following graph.

In addition to these disjoint spheres, we observe that, for any λ and λ' , $S(-Q + \lambda P) \cap S(R + \lambda' P) \cap S = \emptyset$, since $|-Q + \lambda P| \ge |Q|$, so that the height of $S(-Q + P) \cap S$ is not greater than the height of $S(-Q + P) \cap S$ is not greater t

Also, for any λ , $\emptyset = S \cap S(Q + \lambda P) \cap S(R) = S \cap S(-Q - \lambda P) \cap S(-R) = S(R) \cap S(R - Q - \lambda P) \cap S$.

In particular,

$$S(R) \cap S(R-Q) \cap S = \emptyset.$$



The following enumeration of possibilities shows that X cannot be contained in the necessary spheres, and Theorem 1 follows:

Clearly Types 2 and 3 cannot both occur by the fourth paragraph above, and two spheres of Type 1 cannot occur with anything else by the graph G'. Again by the graph G', if two spheres of Type 2 (or two spheres of Type 3) occur, the remaining sphere cannot have Type 1. Hence the only remaining possibilities are

$$(2) X \in S(\lambda_1 P) \cap S(\lambda_2 P - Q) \cap S(R - Q), 0 < |\lambda_1| \le 2, \ 0 \le \lambda_2 \le 1,$$

(3)
$$X \in S(\lambda_1 P) \cap S(\lambda_2 P + R) \cap S(R - Q), \quad 0 < |\lambda_1| \le 2, -1 \le \lambda_2 \le 0,$$

(4)
$$X \in S(P-Q) \cap S(-Q) \cap S(R-Q), \quad \text{or} \quad$$

$$(5) X \in S(R) \cap S(-P+R) \cap S(R-Q).$$

Now (2) and (3) contradict G', and (1) excludes (5). To eliminate (4) we observe that, since $S(P) \cap S \cap S(R) \cap S(Q) = \emptyset$, we must have $S(P-Q) \cap S(-Q) \cap S(R-Q) \cap S = \emptyset$.

3. The lattice Λ_0 is locally optimal.

Remark 1. An arbitrary lattice Λ in E_3 has a basis P, Q, R where $|P| \leq |Q| \leq |R|$ are the successive minima of the unit sphere, $P = (a, 0, 0), Q = (b, b, 0), R = (g, f, c), a, b, c > 0, 0 \leq b \leq a/2, 0 \leq f \leq b/2, \text{ and } -a/2 \leq g \leq a/2.$ Such a basis is said to be reduced in the sense of Gauss or simply reduced. For a proof, see [6, p. 163 et seq., ``Seebers inequality''].

Remark 2. If Λ has a reduced basis P, Q, R with P = (a, 0, 0), Q = (b, b, 0), R = (g, f, c) and if $d(\Lambda) \leq d_0$, then $b^2 \leq b_m^2$, where $b_m^2 = a^2/6 + (2/3)\sqrt{a^4/16 + 3d_0^2/a^2}$. Proof. Using $|R^2| = g^2 + f^2 + c^2 \geq |Q|^2 = b^2 + b^2$, and the other inequalities of reduction, we have $d_0^2 \geq d^2(\Lambda) = a^2b^2c^2 \geq a^2b^2(b^2 + b^2 - g^2 - f^2) \geq a^2b^2(b^2 + b^2 - g^2 - f^2)$

 $a^2b^2(3b^2/4 - a^2/4)$. Putting $t = b^2$, we get $3a^2t^2 - a^4t - 4d_0^2 \le 0$. Hence b^2 must lie between the roots $a^2/6 - (2/3)\sqrt{a^4/16 + 3d_0^2/a^2}$ and $a^2/6 + (2/3)\sqrt{a^4/16 + 3d_0^2/a^2}$ of the quadratic.

Let ρ^+ denote max $\{0, \rho\}$.

Theorem 2. If (Λ, S) is a triple packing and P = (a, 0, 0), Q = (b, b, 0) and R = (g, f, c) gives a basis for Λ reduced in the sense of Gauss, and $a \le 1$, then

(6)
$$d(\Lambda) = abc \ge ab\sqrt{\{4 - (a+b)^2 - ((b^2 - 2ab - b^2)/(2b))^2\}^+} = f_1(a, b, b)$$

when 0 < g < h, and

(7)
$$d(\Lambda) = abc \ge ab\sqrt{(4-9a^2/4-(b^2+b^2-3ab)^2/(2b)^2)^4} = f_2(a, b, b)$$

when $-a/2 \le g \le 0$ and when $b \le g \le a/2$. Furthermore $f_1(a, b, b) \ge f_2(a, b, b)$, so that in fact

(8)
$$d(\Lambda) \ge f_2(a, b, h)$$

in all cases. Also, if $d(\Lambda) \le d_0$ and $2/3 \le a \le 0.9508$, we have

(9)
$$f_2^2(a, b, b) \ge \min\{p(a), d_0^2 + 1/100\},$$

where $p(a) = 2a^6 - 11a^4 + 12a^2$, $p(2/3) = d_0^2$, and

(10)
$$p(a) > d_0^2$$
 for $2/3 < a \le 0.9508$.

Hence $d(\Lambda) \ge d_0$ for $2/3 \le a \le 0.9508$, and with equality only if a = 2/3.

Proof. Suppose that (Λ, S) gives a triple packing and that P, Q, R form a reduced basis of Λ . From reduction, we have

(11)
$$|P| < |Q| < |R|, \ 0 < b < a/2, \ 0 \le f \le b/2, \ and \ |g| \le a/2.$$

We also have $a \ge 2/3$, since otherwise the point $(\frac{1}{2})P$ would be covered by S(-P), S, S(P) and S(2P). Observe that the center of the parallelogram with vertices P, Q, Q + P and the origin will be covered by the four spheres S, S(P), S(Q), and S(Q + P) unless one of the diagonals |Q + P|, |Q - P| is at least 2. Since $|Q + P| \ge |Q - P|$ by (11), it follows that $4 \le |Q + P|^2 = b^2 + (a + b)^2$; hence

(12)
$$b^2 > 4 - (a+b)^2$$
 and $a > 2/3$.

Case 1. In this case we assume (13) $0 \le g \le h$.

A consequence of (13) is that |R-Q-P| is not less than |R-Q+P|. They

cannot both be less than 2, since then the center of the parallelogram having vertices R, Q, Q + P, R + P would be covered four times. Hence we have

(14)
$$|R - Q - P| \ge 2$$
.

Another consequence of (13) is that |R + P| is not less than |R - P|. Considering the parallelogram with vertices P, R, R + P and the origin shows that

(15)
$$|R + P| > 2$$
.

With a view to proving (6) we imagine a, b, b to be fixed and find the point R = (g, f, c) having least nonnegative c such that (13), (14) and (15) hold and also (16) $0 \le f \le b/2$.

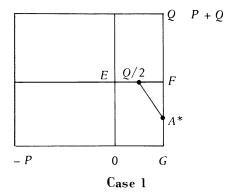
We are in fact looking for the lowest point X = (x, y, z) inside the rectangular prism given by

(17)
$$Q \le x \le b$$
, $0 \le y \le b/2$, $z \ge 0$,

subject to the additional constraint

(18)
$$|X - P - Q| > 2$$
, $|X + P| > 2$.

The problem is somewhat simplified by the fact that the centers P+Q, -P of the spheres lies on the plane z=0, outside the prism.



If the right-hand side of (6) is zero, there is nothing to prove. Let us suppose, therefore, that it is positive. We shall show that the point X^* that lies on the intersection of the boundary of S(-P,2) and S(P+Q,2) and the plane x=b is the lowest point satisfying (17) and (18). We start by finding X^* . Let $X^*=(x^*,y^*,z^*)$. Let π be the radical plane of S(-P,2) and S(P+Q,2) (the plane obtained by subtracting the equations of the two spheres). Then π passes through $\binom{1}{2}Q=(b/2,b/2,0)$, which is halfway between the center of the two spheres, and has the equation y-b/2=(-(2a+b)/b)(x-b/2). Putting $x^*=b$, we obtain $y^*=b/2-(2ab+b^2)/(2b)$. We must show that $0 \le y^*$ so that (17) is satisfied. By (12) we have $b^2 \ge 4-(a+b)^2 \ge 2ab+b^2+\frac{1}{2}$, since $b \le a/2$; hence $2by^*=b^2-(2ab+b^2)>0$ and (17) follows. We see that $z^*=\sqrt{4-(a+b)^2-((b^2-2ab-b^2)/(2b))^2}>0$ by a previous assumption.

The first step in showing that X^* is optimal is to show that the bottom of the prism is covered by S(-P, 2) and S(P+Q, 2). This means that there is no X satisfying (17) and (18) with z=0. Let $A^*=(x^*, y^*, 0)$, E=(0, b/2, 0), F=(b, b/2, 0) and G=(b, 0, 0). Then $2=|P+Q-X^*|>|P+Q-A^*|>|P+Q-F|$, and also $|P+Q-(\frac{1}{2})Q|<2$, since the spheres S(-P, 2) and S(P+Q, 2) intersect and S(P+Q, 2) intersect and S(P+Q, 2) intersect and S(P+Q, 2) intersect and S(P+Q, 2).

Similarly, $2 = |-P - X^*| > |-P - A^*| \ge |-P - G| \ge |-P|$ and $2 > |-P - (\frac{1}{2})Q| \ge |-P - E|$ so that the convex pentagon with vertices G, A^* , $(\frac{1}{2})Q$, E and the origin lies in the interior of S(-P, 2). Hence the bottom of the prism is covered.

We now let $X_1 = (x_1, y_1, z_1)$ be a lowest point satisfying (17) and (18). We know that X_1 exists, because the set of solutions is nonempty and closed. The point X_1 must be on the boundary of S(-P, 2) or S(P+Q, 2) since otherwise it could be lowered and still satisfy (18).

Let us suppose first that X_1 is on the boundary of S(-P, 2). We shall deduce that X_1 is on the boundary of S(P+Q, 2). Suppose not. Then (x_1, y_1) must be the point satisfying (17) that is farthest from -P, namely (b, b/2). But then the point $X_1 = (b, b/2, \sqrt{4 - (b+a)^2 - b^2/4})$ is easily seen to be inside S(P+Q, 2), contrary to (18).

Suppose that X_1 is not on the boundary of S(-P, 2). Then $|X_1 - P - Q| = 2$, and $X_1 = (0, 0, \sqrt{4 - (a+b)^2 - b^2})$ lies inside S(-P, 2) contrary to (18).

Hence X_1 lies on the arc of the intersection of S(-P, 2) and S(P+Q, 2) with $z \ge 0$. The highest point of the arc is the point directly above $(\frac{1}{2})Q$, which is on the boundary of the prism, and the lowest point in the prism is X^* , where the arc cuts the x = b plane. Hence $X_1 = X^*$ and (6) follows.

Case 2. Assume

$$(19) - a/2 \le g \le 0.$$

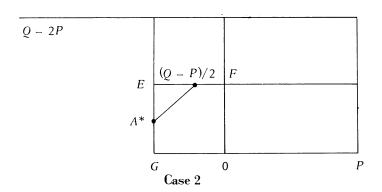
Since the center of the parallelogram with vertices R, Q-P, R+P, Q must not be covered four times, we know that one of its two diagonals |R-Q|, |R-Q+2P| must be at least 2. Assuming Gauss reduction, we always have $|R-Q+2P| \ge |R-Q|$, since the vectors R-Q+2P and R-Q differ only in the first component, and $|g-b+2a| \ge 2a-|g|-b \ge a \ge |g-b|$. Hence $|R-Q+2P| \ge 2$.

As in Case 1, one of |R+P|, |R-P| must be at least 2, and from (19) we know that $|R-P| \ge |R+P|$ so that $|R-P| \ge 2$.

In a manner similar to Case 1, we are looking for the lowest point X = (x, y, z) inside the rectangular prism given by

$$(20) - a/2 \le x \le 0$$
, $0 \le y \le b/2$, $z \ge 0$, such that

(21)
$$|X - P| \ge 2$$
, and $|X - Q + 2P| \ge 2$.



The procedure is the same as in Case 1. We may suppose that the right-hand side of (7) is positive. Let $X^* = (x^*, y^*, z^*)$ be the point on the two spheres and the plane x = -a/2, with $z^* > 0$.

The radical plane π of the two spheres passes through $(\frac{1}{2})(Q-P)$. The equation of π is $2(b-3a)x+2by=b^2+(b-3a)(b-a)$. Putting $x=x^*=-a/2$ yields $y^*=(b^2+b^2-3ab)/(2b)$. We must show that $0 \le y \le b/2$. Now $b^2 \ge 4-(a+b)^2$ for a triple packing; hence $2by^*=b^2+b^2-3ab \ge 4-a^2-5ab \ge \frac{1}{2}$. On the other hand $b^2 \le ab/2 \le 3ab$, $2by^*=b^2+b^2-3ab \le b^2$, $y^* \le b/2$. We see that $z^*=\sqrt{4-(3a/2)^2-((b^2+b^2-3ab)/(2b))^2}>0$ by assumption.

We now show that the bottom of the prism is covered by the two spheres S(P, 2) and S(Q - 2P, 2). Let $A^* = (x^*, y^*, 0)$, E = (-a/2, b/2, 0), F = (0, b/2, 0) and G = (-a/2, 0, 0). Then $2 = |Q - 2P - A| > |Q - 2P - A^*| \ge |Q - 2P - E|$, and also $|(Q - 2P) - (\frac{1}{2})(Q - P)| < 2$ since the spheres S(P, 2) and S(Q - P, 2) intersect and $(\frac{1}{2})(Q - P)$ is halfway between their centers, Hence the triangle with vertices $(\frac{1}{2})(Q - P)$, E, A^* lies in the interior of S(Q - 2P, 2). Similarly $2 > |P - (\frac{1}{2})(Q - P)| \ge |P - F| \ge |P|$ and $2 > |P - A^*| \ge |P - G|$, so that the convex pentagon with vertices G, A^* , $(\frac{1}{2})(Q - P)$, F, and the origin lies in the interior of S(P, 2). Hence the bottom of the prism is covered.

We now let $X_1 = (x_1, y_1, z_1)$ be a lowest point satisfying (20) and (21); X_1 exists because the set of points satisfying (20) and (21) is closed and nonempty. Since $z_1 > 0$, X_1 must be on the boundary of one of the spheres. We suppose first that $|X_1 - P| = 2$, and $|X_1 - Q + 2P| > 2$. Then (x_1, y_1) must be as far from (a, 0) as possible still satisfying (20). Hence $X_1 = (-a/2, b/2, \sqrt{4 - b^2/4 - (3a/2)^2})$, and calculation shows that $|X_1 - Q + 2P| < 2$, which is a contradiction.

Suppose now that $|X_1 - P| > 2$, so that $|X_1 - Q + 2P| = 2$. Then (x_1, y_1) must be as far as possible from (b - 2a, b) and still satisfy (20). Now $-2a \le b - 2a \le -(3/2)a < -a/2$. Hence $X_1 = (0, 0, \sqrt{4 - (b - 2a)^2 - b^2})$. Hence $|X_1 - P|^2 = a^2 + 4 - (b - 2a)^2 - b^2 < a^2 + 4 - 9a^2/4 < 4$, which is a contradiction.

Hence X_1 must be on the boundary of both spheres. In a manner similar to Case 1, X_1 lies on a circular arc whose highest point $(\frac{1}{2})(Q - P)$ is on the boundary of the prism and whose lowest point inside the prism is X^* . Hence $X_1 = X^*$ and (7) is proved for this case.

Case 3. Assume

(22)
$$b \le g \le a/2$$
.

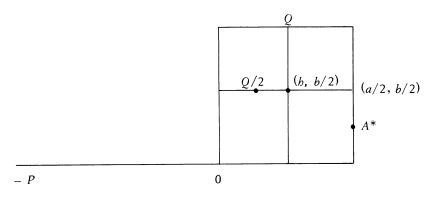
The vectors R-Q+P, R-Q-P differ only in the first component and, by (22), $|g-b+a| \ge |g-b-a|$. Since the center of the parallelogram with vertices P, R-Q, R-Q+P and the origin must not be covered four times, we conclude that |R-Q+P| > 2. On the other hand, as in Case 1, $|R+P| \ge 2$.

We are seeking the lowest point X_1 of the prism

(23)
$$b \le x \le a/2$$
, $0 \le y \le b/2$, $z \ge 0$,

such that

(24)
$$|X + P| \ge 2$$
, $|X - Q + P| \ge 2$.



Case 3

If the right-hand side of (7) is zero, there is nothing to prove. Let us suppose that it is positive. Let X be the point on the two spheres and the plane x = a/2. To find X = (x, y, z) we solve $9a^2/4 + y^2 + z^2 = 4$, $(3a/2 - b)^2 + (y - b)^2 + z^2 = 4$, and obtain $x^* = a/2$, $y^* = (b^2 + b^2 - 3ab)/(2b)$, and $z^* = \sqrt{4 - 9a^2/4 - (y^*)^2}$. This is the same y^* that appears in Case 2, so $0 \le y^* \le b/2$ and X^* satisfies (23) and (24).

Now let X_1 be a lowest point satisfying (23) and (24), and we shall show that $X_1 = X^*$.

We must show that the bottom of the prism is covered. Since x = a/2 maximizes the horizontal distance from both -P and Q - P, it is sufficient to show that the line segment $\{(a/2, t, 0): 0 \le t \le b/2\}$ is covered. The spheres S(-P, 2) and S(Q - P, 2) intersect the plane x = a/2 in circles which intersect at $(a/2, y^*, z^*)$. Since $z^* > 0$, the segment is covered.

For a lowest point X_1 we must have $x_1 = a/2$. Since the spheres intersect

the x = a/2 plane in circles whose centers have y components 0 and b respectively, it is clear that $X_1 = X^*$ and inequality (7) holds. This finishes Case 3.

Hence $d(\Lambda) \ge \min\{f_1, f_2\}$. We observe immediately that $f_1 \ge f_2$. This would follow if $\psi(b) \ge 0$ where $\psi(b) = 9a^2/4 + (b/2 - (3a - b)b/(2b))^2 - (b + a)^2 - \{(b/2 - (b/2)(b + 2a)/b)\}^2$. Now $\psi(0) = 9a^2/4 - a^2 = (5/4)a^2 > 0$ and $\psi(a/2) = 0$. Differentiating, we have $\psi'(b) = -\{(5a)/(2b^2)\}(b^2 + 3b^2 - ab) < 0$ since $b^2 > a^2 - b^2 > (3/4)a^2$.

We now prove

(9)
$$f_2^2 \ge \min\{d_0^2 + 1/100, 2a^6 - 11a^4 + 12a^2\}$$

under the hypothesis that $d(\Lambda) \le d_0$ and $2/3 \le a \le 0.9508$. Write $F(a, b, b) = f_2^2 = a^2 b^2 \{4 - 9a^2/4 - (b/2 + b(b - 3a)/(2b))^2\}$ and put $t = b^2$. Clearly $\partial^2 F/\partial t^2 = -a^2/2 < 0$. Hence $F(a, b, b) \ge \min \{\phi(a, b), \psi(a, b)\}$, where $\phi(a, b) = F(a, b, \sqrt{4 - (a + b)^2})$, and $\psi(a, b) = F(a, b, b_m)$, where b_m was defined in Remark 2. Now

$$\phi(a, h) = a^{2} \{4 - (a+h)^{2} \} \{4 - 9a^{2}/4 - (\frac{1}{4})(4 - (a+h)^{2}) - (\frac{1}{2})b(h-3a) \} - (a^{2}/4)h^{2}(h-3a)^{2}$$

and calculation shows that $\frac{\partial^2 \phi}{\partial b^2} = -8a^2 - 8a^4 < 0$. Since $\phi(a, 0) = \phi(a, a/2) = p(a)$ where $p(x) = 2x^6 - 11x^4 + 12x^2$, we have $\phi \ge p(a)$.

To complete the proof of (9), we will show that $\psi(a, h) \ge d_0 + 1/100$. Now

$$\psi(a, b) = F(a, b, b_m) = a^2 b_m^2 \{4 - 9a^2/4 - (b_m/2 + b(b - 3a)/(2b_m))^2 \}$$

and calculation shows that $\partial^2 \psi/\partial h^2 = -a^2 b_m^2 + 3a^2 h^2 - 9a^3 h + 9a^4/4$. We shall show that $\partial^2 \psi/\partial h^2 < 0$, so that $\psi(a, h)$ is a concave function of b._____

We digress for a moment to show that $b \geq b_m(a)$, where $b_m = \sqrt{4 - b_m^2} - a$. To see this, recall that for triple packing we must have $b^2 \geq 4 - (a+b)^2$, whereas $b^2 \leq b_m^2$, since $d(\Lambda) \leq d_0$. The juxtaposition $b_m^2 \geq 4 - (a+b)^2$ yields $b \geq b_m$. Putting b = a/2 we see that $b_m \leq a/2$. It is conceivable that b_m is negative, even though b never is. For what follows, it is useful to know that $b_m \geq -a/2$. To see this, note that

$$b_m^2 = a^2/6 + (2/3)\sqrt{a^4/16 + 3d_0^2/a^2} < 1/6 + (2/3)\sqrt{1/16 + 27} < 3.64,$$

since $2/3 \le a \le 1$ and $3 < d_0^2 < 4$, so that $4 - b_m^2 > \frac{1}{4} \ge a^2/4$, $b_m + a = \sqrt{4 - b_m^2} > a/2$, and $b_m > -a/2$.

We now return to showing that $\psi(a, h)$ is a concave function of h for $h_m \le h \le a/2$. Since $\partial^3 \psi/\partial h^3 = 6a^2h - 9a^3 \le 3a^3 - 9a^3 = -6a^3 < 0$, it is enough to show that $f(a) = (1/a^2)\partial^2 \psi/\partial h^2|_{h=h_m} < 0$.

Since f(a) is a rather complicated function of the single variable a, we shall simply find an upper bound for its derivative as a function of a and use a computer to evaluate it on a fine grid.

Let $F(x, y, z) = -z + 3y^2 - 9xy + 9x^2/4$ so that $F(a, b_m, b_m^2) = f(a)$. Then $|f'(a)| \le \left| \frac{\partial F}{\partial x} \right|_0 + \left| \frac{\partial F}{\partial y} \right|_0 \left| \frac{db_m}{da} \right| + \left| \frac{\partial F}{\partial z} \right|_0 \left| \frac{d}{da} b_m^2 \right|,$

where the subscript 0 indicates that the partial derivatives are evaluated at $(x, y, z) = (a, b_m, b_m^2)$.

Then

$$\left| \frac{\partial F}{\partial x} \right|_{0} = \left| -9h_{m} + 9a/2 \right| \le 9a \le 9, \quad \left| \frac{\partial F}{\partial y} \right|_{0} \le \left| 6h_{m} \right| + 9a \le 12, \quad \text{and} \quad \left| \frac{\partial F}{\partial z} \right|_{0} = 1.$$
Let $u = a^{2}$, $g(u) = b_{m}^{2} = u/6 + (2/3)\sqrt{u^{2}/16 + 3d_{0}^{2}/u}$. Then
$$g'(u) = 1/6 + (1/3)(u/8 - 3d_{0}^{2}/u^{2})/\sqrt{u^{2}/16 + 3d_{0}^{2}/u},$$

and

$$|g'(u)| \le 1/6 + (1/3)(1/8 + 3 \times 4/(4/9)^2)/\sqrt{(4/9)^2/16 + 9}$$

= $1/6 + (1/3)(1/8 + 243/4)/\sqrt{9} < 7$.

Therefore $|dg(a^2)/da| = |2ag'(a^2)| < 14$. That is, $|db_m^2/da| < 14$. Finally, $b_m = \sqrt{4 - b_m^2} - a$, $db_m/da = -1 - (\frac{1}{2})(db_m^2/da)/\sqrt{4 - b_m^2}$, and $|db_m/da| \le 1 + 7\{4 - b_m^2\}^{-\frac{1}{2}} < 1 + 7\{0.36\}^{-\frac{1}{2}} < 13$, since $b_m^2 < 3.64$. Hence

$$|f'(a)| \le 9 + 12 \times 13 + 1 \times 14 = 179.$$

Using a computer we verified that (allowing for roundoff error) $f(a_i) < 0.2$ at the points $2/3 = a_0 < a_1 < \cdots < a_n = 1$, where n = 500, and $|a_{i-1} - a_i| < 1/1200$ for $1 \le i \le n$.

Let a be an arbitrary number in the interval [2/3, 1]. Then $a \in [a_{i-1}, a_i]$ for some i, and therefore

$$f(a) = f(a_{i-1}) + \int_{a_{i-1}}^{a} f'(t) dt \le -0.2 + \frac{179}{1200} < -0.05.$$

Hence $\psi(a, b)$ is a concave function of b as claimed, so $\psi(a, b) \ge \min\{\psi(a, b_m), \psi(a, a/2)\}.$

The functions $\psi(a, b_m)$ and $\psi(a, a/2)$ are also rather complicated functions of the single variable a, and they are both above $d_0^2 + 1/100$. We shall simply find an upper bound for their derivatives as functions of a^2 or a and use a computer to evaluate them on a fine mesh.

Let $u = a^2$ and $f(u) = \psi(a, a/2)$. Then $f(u) = ug(u)\Omega(u, g(u)) - 25u^3/64$ where $g(u) = b_m^2 = u/6 + (2/3)\sqrt{u^2/16 + 3d_0^2/u}$, and $\Omega(u, v) = 4 - (9/4)u - v/4 + (5/8)u$. Then $f'(u) = g(u)\Omega(u, g(u)) + ug'(u)\Omega(u, g(u)) + ug(u)\{\partial\Omega/\partial u + g'(u)\partial\Omega/\partial v\} - 75u^2/64$.

To estimate |f'(u)|, we must estimate g, Ω , and their derivatives. We have $|g(u)| \le 3.64 < 4$ from before and $|g(u)| \ge u/3$, trivially. Hence $|\Omega(u, g(u))| \le 1$

 $4+13u/8+|g(u)/4| \le 4+13/8+1 \le 7$. We also have $|g'(u)| \le 7$ from before. On the other hand $|\partial\Omega/\partial u|=|13/8|<2$ and $|\partial\Omega/\partial v|=\frac{1}{4}$. Putting the estimates together, $|f'(u)| \le 4\times 7+7\times 7+4\times 2+5+2=92$.

We will show that $f(u) \geq d_0^2 + 1/100$ for $4/9 \leq u \leq 1$. Let us suppose that a computing machine has verified that $f(u_i) \geq d_0^2 + 1/50 + \epsilon$ for $4/9 = u_0 < u_1 < \cdots < u_n = 1$, where $|u_{i-1} - u_i| < (50 \times 92)^{-1}$. It then follows that $f(u) \geq d_0^2 + \epsilon$ for $4/9 \leq u \leq 1$. For $u \in [u_{i-1}, u_i]$ for some i, and

$$|f(u)| \ge |f(u_{i-1})| - \left| \int_{u_{i-1}}^{u} f'(t) dt \right|$$

$$\geq d_0^2 + 1/50 + \epsilon - 92|u_{i-1} - u_i| \geq d_0 + \epsilon.$$

A computing machine was programmed to find the minimum value of $f(u_i)$ for $1 \le i \le 8251$, where $u_i = 4/9 + (i-1)/14850$, and the answer was 3.51822.

Had there been no roundoff error, we could say that $f(u_i) \ge d_0^2 + 1/6$. It is certainly safe to say that $f(u) \ge d_0^2 + 1/50 + 1/100$. Hence $\psi(a, a/2) = f(a^2) > d_0^2 + 1/100$ for $2/3 \le a \le 1$.

We shall use the same method for $\psi(a, b_m)$. Let us rename $f(a) = \psi(a, b_m) = a^2b_m^2\{4-(9/4)a^2-b_m^2/4-b_m(b_m-3a)/2\}-a^2b_m^2(b_m-3a)^2/4$. It is unfortunate that $\psi(a, b_m)$ cannot be written simply as a function of a^2 ; all our functions are now functions of a. Let $g_1(a)=b_m^2=g(a^2)$, and let $b(a)=b_m$. Put $\Phi(x,y,z)=4-(9/4)x^2-y/4-z(z-3x)/2$ and $\Theta(x,z)=-x^2z^2(z-3x)^2/4$. Then

$$f(a) = a^2 g_1(a) \Phi(a, g_1(a), h(a)) - \Theta(a, h(a)),$$

and

$$f'(a) = 2ag_{1}(a)\Phi(a, g_{1}(a), h(a)) + a^{2}g'_{1}(a)\Phi(a, g_{1}(a), h(a))$$
$$+ a^{2}g_{1}(a)\{\partial\Phi/\partial x + (\partial\Phi/\partial y)g'_{1}(a) + (\partial\Phi/\partial z)h'(a)\} - \partial\Theta/\partial x - (\partial\Theta/\partial z)h'(a).$$

Using some of the estimates from before and making some new ones, we see that $|g_1(a)| = |g(a^2)| < 4, \ |b(a)| = |\sqrt{4-b_m^2} - a| \le \frac{1}{2}, \ |\Phi| \le 4 + 9/4 + 1 + b^2(a)/2 + 3|b(a)|/2 \le 1/8 + 28/4 < 8, \ |g_1'(a)| < 14, \ \partial\Phi/\partial x = 9x/2 + 3z/2, \ |\partial\Phi/\partial x| \le 9/2 + (3/2) \times \frac{1}{2} < 6, \ |\partial\Phi/\partial y| = \frac{1}{4}, \ |\partial\Phi/\partial z| = |-z+3x/2| \le \frac{1}{2} + 3/2 = 2, \ \text{and} \ |b'(a)| < 13.$ By calculation, $\partial\Theta/\partial x = xz^2(z^2 - 9xz + 18x^2)/2. \ \text{Taking the maximum of the positive and negative parts, } |\partial\Theta/\partial x| \le \frac{b_n^2}{2} \times \max\{b_m^2 + 18a^2, 9b_m\} \le (1/8)\max\{\frac{1}{4} + 13, 9/2\} < 3.$ Similarly, $\partial\Theta/\partial z = -x^2z(z^2 - 6zx + 9x^2 + z^2 - 3zx)/2, \ \text{and } |\partial\Theta/\partial z| \le (b_m/2)\max\{\frac{1}{4} + 9, 9b_m\} < 3.$ Putting these estimates together, $|f'(a)| \le 2 \times 4 \times 8 + 14 \times 13 + 4(6 + 14/4 + 2 \times 13) + 3 + 3 \times 13 = 430. \ \text{To show that } f(a) \ge d_0^2 + \epsilon, \ \text{therefore, it is enough to show that } f(a_i) \ge d_0^2 + 1/50 + \epsilon$ for $2/3 = a_0 < \cdots < a_n = 1$ where $|a_{i-1} - a_i| < 1/25,000$.

A computing machine was programmed to find the minimum value of $f(a_i)$ for $1 \le i \le 100,001$ where $a_i = 2/3 + i/300,000$, and the answer was 3.40344...

Had there been no roundoff error we could say that $f(a_i) \geq d_0^2 + 1/15$. It is certainly safe to say that $f(a_i) \geq d_0 + 1/50 + 1/100$ so that $\psi(a, b_m) = f(a) \geq d_0^2 + 1/100$ for $2/3 \leq a \leq 1$. Therefore $\psi(a, b) \geq \min\{\psi(a, a/2), \psi(a, b_m)\} \geq d_0^2 + 1/100$ and $f_2^2 \geq \min\{\psi(a, b), \phi(a, b)\} \geq \min\{d_0^2 + 1/100, p(a)\}$ as claimed. Thus (9) is proved. We now prove (10). Let $f(t) = 2t^3 - 11t^2 + 12t - d_0^2$. Then $f'(t) = 6t^2 - 22t + 11/100$

We now prove (10). Let $f(t) = 2t^3 - 11t^2 + 12t - d_0^2$. Then $f'(t) = 6t^2 - 22t + 12$ and f''(t) = 12t - 22 < 0 for $0 \le t \le 1$. Hence f(t) is a concave function and has at most two zeroes in the range [0, 1]. In fact, f(4/9) = 0, and $f(\alpha^2) = 0$ where $\alpha^2 = 0.90402...$ and f(t) > 0 for $4/9 < t < \alpha^2$. Since $f(a^2) = p(a) - d_0^2$, we conclude that $p(a) > d_0^2$ for $2/3 < a < \alpha = 0.950802...$ and (10) is proved.

It now follows from (8), (9) and (10) that $d(\Lambda) \ge d_0$ for $2/3 \le a \le 0.9508$ with equality only when a = 2/3.

REFERENCES

- 1. L. Few, Ph. D. Thesis, London, 1953.
- 2. ____, Multiple packing of spheres: A survey, Proc. Colloq. on Convexity (Copenhagen, 1965), Københavns Univ. Mat. Inst., Copenhagen, 1967, 88-93. MR 35 #6036.
- 3. ——, The double packing of spheres, J. London Math. Soc. 28 (1953), 297-304. MR 14, 1115.
- 4. L. Few and P. Kanagasabapathy, The double packing of spheres, J. London Math. Soc. 44 (1969), 141-146. MR 39 #4752.
- 5. A. Heppes, Mehrfache gitterförmige Kreislargerungen in der Ebene, Acta Math. Acad. Sci. Hungar. 10 (1959), 141-148. MR 21 #3812.
- 6. L. E. Dickson, Studies in the theory of numbers, Univ. of Chicago Press, Chicago, III., 1939.

CENTER FOR ADVANCED COMPUTATION, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801