DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC EQUATIONS(1)

RY

AVNER FRIEDMAN AND MARK A. PINSKY

ABSTRACT. Let L_0 be a degenerate second order elliptic operator with no zeroth order term in an m-dimensional domain G, and let $L=L_0+c$. One divides the boundary of G into disjoint sets Σ_1 , Σ_2 , Σ_3 ; Σ_3 is the noncharacteristic part, and on Σ_2 the "drift" is outward. When c is negative, the following Dirichlet problem has been considered in the literature: Lu=0 in G, u is prescribed on $\Sigma_2 \cup \Sigma_3$. In the present work it is assume that $c \le 0$. Assuming additional boundary conditions on a certain finite number of points of Σ_1 , a unique solution of the Dirichlet problem is established.

Introduction. Consider the second order degenerate elliptic operator with smooth coefficients

(0.1)
$$Lu = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{m} b_{i}(x) \frac{\partial u}{\partial x_{i}}$$

in a smoothly bounded domain G in R^m . The Dirichlet problem for the equation Lu + c(x)u = 0 in G has been treated by many authors (see [5] and the references contained therein). In all of these approaches, the boundary ∂G is decomposed as follows:

$$\Sigma_{3} = \left\{ x \in \partial G; \sum_{i,j=1}^{m} a_{ij}(x) \nu_{i} \nu_{j} > 0 \right\} \quad ((\nu_{i}) = \text{outward normal}),$$

$$\Sigma_{2} = \left\{ x \in \partial G \setminus \Sigma_{3}; \sum_{i=1}^{m} \left(b_{i}(x) - \frac{1}{2} \sum_{j=1}^{m} \frac{\partial a_{ij}}{\partial x_{j}} (x) \right) \nu_{i} > 0 \right\},$$

$$\Sigma_1 = \left\{ x \in \partial G \backslash \Sigma_3; \sum_{i=1}^m \left(b_i(x) - \frac{1}{2} \sum_{j=1}^m \frac{\partial a_{ij}}{\partial x_j}(x) \right) \nu_i \leq 0 \right\}.$$

A typical result of these theories asserts that the equation Lu + c(x)u = 0 has a unique solution in some function space when data are prescribed on

Received by the editors September 11, 1972.

AMS (MOS) subject classifications (1970). Primary 35J25; Secondary 35J70, 60H10, 31A10.

Key words and phrases. Dirichlet problem, degenerate elliptic operator, weak solution, stochastic differential equations, stochastic integrals, exit time.

⁽¹⁾ This work was partially supported by National Science Foundation grants GP 28484 and GP 28576.

 $\Sigma_2 \cup \Sigma_3$ and when it is further required that $c(x) \le c_0 < 0$ in G. In case $c_0 = 0$, Stroock and Varadhan [7] have shown that the Dirichlet problem in R^m has a unique solution with data prescribed on $\Sigma_2 \cup \Sigma_3$ provided that the paths of the associated diffusion process exit G "sufficiently fast." We intend to show that, if this last condition fails, we can still find a unique solution provided that we assign data also on a certain portion of Σ_1 . This possibility was never considered before, to the best of our knowledge. Our method is entirely probabilistic, inspired by our previous work [3], [4] on the stability properties of stochastic differential equations.

The points of Σ_1 at which we must assign data are precisely the points to which the associated Markov process converges when $t \to \infty$. These "distinguished boundary points" are defined in terms of the normal and tangential behavior of the diffusion process, in contrast to $\Sigma_2 \cup \Sigma_3$ which only depends on the normal components of diffusion and drift. For technical reasons we will only consider cases where there exist a finite number of distinguished boundary points, together with an arbitrary configuration of $\Sigma_2 \cup \Sigma_3$. We denote by Σ_1^- the component of ∂G containing all of the distinguished boundary points.

In \$\$2-5 we consider the case m=2, and in \$6 we consider the case $m\geq 2$. \$\$1 and 2 contain preliminary results on the boundary behavior of solutions x(t) of the stochastic equations

$$dx_i = \sum_{r=1}^n \sigma_{ir}(x) dw^r + b_i(x) dt$$
 $(1 \le i \le 2)$

in a special domain in the plane. For technical reasons we assume that when σ and b vanish simultaneously on Σ_1^- , they do not vanish faster than a linear function. In §3 we consider a general domain in the plane and show that either $\kappa(t)$ attains $\Sigma_2 \cup \Sigma_3$ in finite time or else converges to some distinguished boundary point while remaining inside G for all $t < \infty$. In §4 we prove the differentiability (as a function of the starting point) of the probability that the process will converge to a given distinguished boundary point. Finally in §5 we consider the Dirichlet problem in a general domain in the plane, combining the results of the previous sections with known results [6] on the behavior of the diffusion process near $\Sigma_2 \cup \Sigma_3$.

The results of \$2-5 can be extended to $m \ge 3$; this is briefly discussed in \$6. However, the main result of \$6 is a theorem which even for m=2 is not included in \$2-5.

1. Boundary behavior of stochastic solutions in annular domains. Consider a system of two stochastic differential equations

(1.1)
$$dx_i = \sum_{s=1}^n \sigma_{is}(x) dw^s + b_i(x) dt \quad (i = 1, 2)$$

where $w^1(t), \dots, w^n(t)$ are independent Brownian motions. Let $a = (a_{ij}) = \sigma \sigma^*$ where $\sigma = (\sigma_{is}), \sigma^* = \text{transpose of } \sigma$. We assume

(A) The functions $\sigma_{is}(x)$, $b_{i}(x)$ and their first two derivatives are continuous and bounded in R^{2} .

Let G be a bounded domain in R^2 . For simplicity we first take

$$G = \{x; 1 < |x| < 2\}.$$

Denote by ∂G the boundary of G. We shall assume (B) On ∂G ,

(1.2)
$$\sum_{i,j=1}^{2} a_{ij} \nu_i \nu_j = 0,$$

(1.3)
$$\sum_{i=1}^{2} \left[b_i - \frac{1}{2} \sum_{j=1}^{2} \frac{\partial a_{ij}}{\partial x_i} \right] v_i \le 0$$

where ν is the outward normal to ∂G (with respect to G).

Let R(x) be a positive C^2 function in G, which coincides with dist $(x, \partial G)$ when the latter is sufficiently small. Let

$$\mathcal{C} = \sum_{i,j=1}^{2} a_{ij} \frac{\partial R}{\partial x_i} \frac{\partial R}{\partial x_j},$$

$$\mathcal{B} = \sum_{i=1}^{2} b_i \frac{\partial R}{\partial x_i} + \frac{1}{2} \sum_{i,j=1}^{2} a_{ij} \frac{\partial^2 R}{\partial x_i \partial x_j}, \quad Q = \frac{1}{R} \left(\mathcal{B} - \frac{\mathcal{C}}{2R} \right).$$

(C) For some $\mu > 0$ sufficiently small,

$$Q(x) \le -\theta_0 < 0 \quad \text{if } 1 < |x| \le 1 + \mu \qquad (\theta_0 \text{ constant}),$$

$$Q(x) \ge \theta_0 > 0 \quad \text{if } 2 - \mu \le |x| < 2,$$

$$Q(x) > 0 \quad \text{if } 1 + \mu \le |x| \le 2 - \mu, \quad \nabla_x R(x) \ne 0,$$

$$\sum_{i=1}^2 a_{ij}(x) \frac{\partial^2 R}{\partial x_i \partial x_i} < 0 \quad \text{if } 1 + \mu \le |x| \le 2 - \mu, \quad \nabla_x R(x) = 0.$$

By Theorem 1.1 of [4] and by slightly modifying the proof of Theorem 2.1 of [4] we get

Lemma 1.1. If (A)-(C) hold then, for any solution x(t) of (1.1) with $x(0) \in G$,

$$P\{x(t) \in G \text{ for all } t > 0\} = 1, \quad P\{|x(t)| \to 1 \text{ as } t \to \infty\} = 1.$$

It is actually sufficient to assume that σ_{ij} are continuously differentiable in R^2 and twice continuously differentiable in a neighborhood of ∂G .

We shall now analyze the limit set of x(t) on |x| = 1 (as $t \to \infty$). For this,

we introduce polar coordinates (r, ϕ) as in [4]. We find that

$$(1.4) dr = \sum_{s=1}^{n} \widetilde{\sigma}_{s}(r, \phi) dw^{s} + \widetilde{b}(r, \phi) dt, \qquad d\phi = \sum_{s=1}^{n} \widetilde{\sigma}_{s}(r, \phi) dw^{s} + \widetilde{b}(r, \phi) dt$$

where

$$\begin{split} \widetilde{\sigma}_{s}(r,\,\phi) &= \sigma_{1s}\,\cos\phi + \sigma_{2s}\,\sin\phi, \quad \widetilde{b}(r,\,\phi) = b_{1}\,\cos\phi + b_{2}\,\sin\phi + \frac{1}{2r}\langle a(x)\lambda^{\perp},\,\lambda^{\perp}\rangle, \\ \widetilde{\widetilde{\sigma}}_{s}(r,\,\phi) &= -\frac{\sin\phi}{r}\sigma_{1s} + \frac{\cos\phi}{r}\sigma_{2s}, \quad \widetilde{\widetilde{b}}(r,\,\phi) = -\frac{\sin\phi}{r}b_{1} + \frac{\cos\phi}{r}b_{2} - \frac{1}{r^{2}}\langle a(x)\lambda,\,\lambda^{\perp}\rangle; \\ \text{here} \end{split}$$

$$\lambda = (\cos \phi, \sin \phi), \quad \lambda^{\perp} = (-\sin \phi, \cos \phi)$$

and

$$\langle a(x)\mu, \nu \rangle = \sum a_{ij}(x)\mu_i\nu_i \qquad (\mu = (\mu_1, \mu_2), \nu = (\nu_1, \nu_2)).$$

Thus, if $(r(t), \phi(t))$ is a solution of (1.4) and if we define $x_1(t) = r(t) \cos \phi(t)$, $x_2(t) = r(t) \sin \phi(t)$, then $x(t) = (x_1(t), x_2(t))$ is a solution of (1.1).

The system (1.4) can also be written in the form (see [4])

(1.5)
$$d\tau = r \left[\sum_{s=1}^{n} \widetilde{\sigma}_{s}(\phi) dw^{s} + \widetilde{b}(\phi) dt \right] + \left[\sum_{s=1}^{n} R_{s} dw^{s} + R_{0} dt \right]$$

$$d\phi = \left[\sum_{s=1}^{n} \widetilde{\sigma}_{s}(\phi) dw^{s} + \widetilde{b}(\phi) dt \right] + \left[\sum_{s=1}^{n} \Theta_{s} dw^{s} + \Theta_{0} dt \right]$$

where $R_s = o(r)$, $\Theta_s = o(1)$ $(0 \le s \le n)$ as $r \to 1$, uniformly with respect to ϕ . It is useful to compare $\phi(t)$ with the solution of the single equation

$$(1.6) d\phi = \sigma(\phi)dw + b(\phi)dt$$

where $\sigma(\phi) = \{\sum_{s=1}^{n} \left[\overset{\approx}{\sigma}_{s}(\phi) \right]^{2} \}^{\frac{1}{2}}$, $b(\phi) = \overset{\approx}{b}(\phi)$. In case $\sigma(\phi) \neq 0$ for all ϕ and $\int_{0}^{2\pi} b(z)/\sigma^{2}(z) dz \neq 0$, it was proved in [4] that the algebraic angle $\phi(t)$ (i.e., the component $\phi(t)$ of the solution $(r(t), \phi(t))$ of (1.4)) satisfies

(1.7)
$$P\left\{\lim_{t\to\infty}\frac{\phi(t)}{t}=c\right\}=1 \quad (c \text{ constant } \neq 0).$$

Suppose $\sigma(z)$ is degenerate, but it has only a finite number of zeros $\alpha_1, \dots, \alpha_k$ $(k \ge 1)$ in the interval $[0, 2\pi)$. Then the conclusion (1.7) is still valid [4] provided $b(\alpha_i) > 0$ for all j, or $b(\alpha_i) < 0$ for all j, and provided the following condition holds:

(i) For some $\overline{\epsilon} > 0$,

$$\sum_{s=1}^{n} \left[\overset{\sim}{\sigma}_{s}(r,\phi) \right]^{2} = \sum_{s=1}^{n} \left[\overset{\sim}{\sigma}_{s}(\phi) \right]^{2} \left[1 + \eta(r,\phi) \right] \qquad (1 \leq r \leq 1 + \overline{\epsilon})$$

where $\eta(r, \phi) \to 0$ if $r \to 1$, uniformly with respect to ϕ .

We shall now consider the degenerate case in situations where the $b(\alpha_i)$ may

vanish. The condition (i) will not be assumed in the sequel.

Our basic assumptions are:

- (D) If $b(\alpha_j) = 0$ for some j $(1 \le j \le k)$ then there is a simple C^3 curve Δ_{α_j} given by $r = r^*(t)$, $\phi = \phi^*(t)$ $(t_1 \le t \le t_2)$ such that $(r^*(t_1), \phi^*(t_1)) = (1, \alpha_j)$, $(r^*(t_2), \phi^*(t_2))$ lies outside \overline{G} , and $(r^*(\widetilde{t}), \phi^*(\widetilde{t}))$, for some $t_1 < \widetilde{t} < t_2$, is a point on ∂G different from $(1, \alpha_j)$, and such that
- (i) a part $\{(r^*(t), \phi^*(t)); t_1 \le t \le t_1 + \epsilon_1\}$ coincides with the segment $1 \le r \le 1 + \overline{\epsilon}$, $\phi = \alpha_i$, and
 - (ii) the following relations hold at each point of Δ_{a_i} :

(1.8)
$$\sum_{i,j=1}^{2} a_{ij} \nu_{i} \nu_{j} = 0, \quad \sum_{i=1}^{2} \left[b_{i} - \frac{1}{2} \sum_{i} \frac{\partial a_{ij}}{\partial x_{i}} \right] \nu_{i} = 0$$

where (ν_1, ν_2) is the normal to Δ_{a_i} .

Finally, if $b(\alpha_j) = b(\alpha_b) = 0$ and $b(\alpha_i) \neq 0$ for all α_i between α_j and α_b , then the points (r, ϕ) with $r = 1 + \overline{\epsilon}$, ϕ in the interval (α_j, α_b) cannot be connected (in G) to points (r, ϕ) with $r = 1 + \overline{\epsilon}$, ϕ outside the interval (α_j, α_b) , without crossing either Δ_{α_i} or Δ_{α_k} .

Note that the conditions in (1.8) along the ray $1 \le r \le 1 + \epsilon$, $\phi = \alpha$, hold if and only if

$$\partial_s^s(r, \alpha_i) = 0 \quad (1 \le s \le n), \quad \partial_t^s(r, \alpha_i) = 0 \quad \text{for } 1 \le r \le 1 + \overline{\epsilon}.$$

(E) If $b(\alpha_j) = 0$ for some j $(1 \le j \le k)$, then b(z), $\sigma(z)$ vanish at $z = \alpha_j$ to the first order only, and

$$Q_{a_j} \equiv \lim_{z \to a_j} \frac{2(z - a_j)b(z)}{\sigma^2(z)} \neq 1.$$

Note that the limit exists since b(z), $\sigma(z)$ are continuously differentiable. We first consider the case where b(z) vanishes at two consecutive points, say $\alpha = \alpha_b$, $\beta = \alpha_{b+1}$. Introduce straight segments

$$l_{\alpha} = \{(r, \alpha); 1 \le r \le 1 + \overline{\epsilon}\}, \qquad l_{\beta} = \{(r, \beta); 1 \le r \le 1 + \overline{\epsilon}\}.$$

Denote by m_{η} $(\eta \geq 0)$ the curve $\{(r, \phi); r = 1 + \eta, \alpha \leq \phi \leq \beta\}$, and by Ω_{η} $(\eta > 0)$ the domain bounded by m_0 , m_{η} , l_{α} , l_{β} . Denote by $A_{\alpha\beta}$ the set of points in the probability space for which $\alpha \leq \phi(t) \leq \beta$ for a sequence of t's converging to ∞ . By (D), and the proof of Theorem 1.1 (or rather Theorem 1.1) of [4], if $x(0) \notin (\Delta_{\alpha} \cup \Delta_{\beta})$ then the solution $(r(t), \phi(t))$ never intersects $\Delta_{\alpha} \cup \Delta_{\beta}$. It follows (by the last part of (D)) that on the set $A_{\alpha\beta}$

$$(1.9) a < \phi(t) < \beta$$

for all t sufficiently large.

Lemma 1.2. Let (A)-(E) hold and let $x(0) \notin (\Delta_{\alpha} \cup \Delta_{\beta})$. If $Q_{\alpha} > 1$, $Q_{\beta} < 1$ then, a.s. on the set $A_{\alpha\beta}$, $\phi(t) \rightarrow \beta$ if $t \rightarrow \infty$

Proof.' Consider the function

(1.10)
$$g(x) = \int_{\alpha^*}^{x} \frac{1}{\beta(y)} \left[\int_{y}^{\alpha^*} \frac{2\beta(z)}{\sigma^2(z)} dz \right] dy \quad \text{in } (\alpha + \epsilon_0, \beta - \epsilon_0)$$

for some small $\epsilon_0 > 0$, where

$$\beta(y) = \exp\left\{\int_{a^*}^{y} \frac{2b(z)}{\sigma^2(z)} dz\right\}.$$

It is easily seen that

$$\hat{L}_g = \frac{1}{2}\sigma^2(x)g''(x) + b(x)g'(x) = -1 \quad \text{in } (\alpha + \epsilon_0, \beta - \epsilon_0).$$

Further,

$$(1.11) g'(x) > 0 at x = \alpha + \epsilon_0,$$

$$< 0$$
 at $x = \beta - \epsilon_0$

if $\alpha + \epsilon_0 < \alpha^* < \beta - \epsilon_0$;

(1.12)
$$g'(x) > 0 \quad \text{at } x = \alpha + \epsilon_0, \ x = \beta - \epsilon_0$$

if $\alpha < \alpha^* < \alpha + \epsilon_0$;

(1.13)
$$g'(x) < 0 \quad \text{at } x = \alpha + \epsilon_0, \ x = \beta - \epsilon_0$$

if
$$\beta - \epsilon_0 < \alpha^* < \beta$$
.

Set

$$f(x) = \begin{cases} -A_1 \log(x - \alpha) + B_1 & \text{in } (\alpha, \alpha + \epsilon_0), \\ A_2 \log(\beta - x) + B_2 & \text{in } (\beta - \epsilon_0, \beta), \\ g(x) & \text{in } [\alpha + \epsilon_0, \beta - \epsilon_0]. \end{cases}$$

If $A_1>0$, $A_2>0$ then, by using the assumptions $Q_\alpha>1$, $Q_\beta<1$ we find that $\widehat{L}f(x)\leq -\nu<0$ in $(\alpha,\alpha+\epsilon_0)$, $(\beta-\epsilon_0,\beta)$ where ν is a positive constant, provided ϵ_0 is sufficiently small. Choose α^* so that (1.13) holds, and determine the constants A_i , B_i in such a way that f(x) is continuously differentiable at $x=\alpha+\epsilon_0$, $x=\beta-\epsilon_0$. We then find that $A_1>0$, $A_2>0$.

Let $\{F_m\}$ be a sequence of continuous functions which approximate f'' in the following manner:

$$F_m(x) = f''(x)$$
 if $|x - (\alpha + \epsilon_0)| > 1/m$, $|x - (\beta - \epsilon_0)| > 1/m$,

and $F_m(x)$ connects linearly $\int_0^{\infty} (\alpha + \epsilon_0 - 1/m)$ to $\int_0^{\infty} (\alpha + \epsilon_0 + 1/m)$ and $\int_0^{\infty} (\beta - \epsilon_0 - 1/m)$ to $\int_0^{\infty} (\beta - \epsilon_0 + 1/m)$. Let

$$f_m(x) = f(\alpha^*) + f'(\alpha^*)(x - \alpha^*) + \int_{\alpha^*}^x \int_{\alpha^*}^y F_m(z) dz dy.$$

Then $f_m(x) - f(x) \to 0$, $f_m'(x) - f'(x) \to 0$ uniformly in the interval (α, β) , and $f_m''(x) - f''(x) = 0$ outside the intervals with centers $\alpha + \epsilon_0$, $\beta - \epsilon_0$ and length 2/m.

Denote by $f_m^{\delta}(x)$, $f^{\delta}(x)$ any C^2 (2π) -periodic functions of $x \in R^1$ which coincide, respectively, with $f_m(x)$ and f(x) in $(\alpha + \delta, \beta - \delta)$; δ is any positive number smaller than ϵ_0 . Denote by R(r) any C^2 function satisfying

$$R(r) = 1$$
 if $1 < r < 1 + \eta_0$, $R(r) = 0$ if $1 + \eta_1 < r < \infty$,

where $0 < \eta_0 < \eta_1$ and $\eta_1 < \overline{\epsilon}$. Let

$$\widetilde{\widetilde{\sigma}}_{s}^{\epsilon}(r,\phi) = \{ [\widetilde{\widetilde{\sigma}}_{s}(r,\phi)]^{2} + \epsilon \}^{\frac{1}{2}} \quad (\epsilon > 0).$$

Denote by $(r^{\epsilon}, \phi^{\epsilon})$ the solution of (1.4) when σ_s is replaced by σ_s^{ϵ} . Denote by L_{ϵ} the elliptic generator corresponding to the process $(r^{\epsilon}, \phi^{\epsilon})$. Set

$$\Phi_m^{\delta}(r,\phi) = R(r)f_m^{\delta}(\phi), \quad \Phi^{\delta}(r,\phi) = R(r)f^{\delta}(\phi).$$

By Itô's formula,

$$\Phi_m^{\delta}(r^{\epsilon}(t), \phi^{\epsilon}(t)) - \Phi_m^{\delta}(r^{\epsilon}(0), \phi^{\epsilon}(0))$$

$$(1.14) \qquad = \int_0^t \nabla \Phi_m^{\delta}(r^{\epsilon}(\tau), \ \sigma^{\epsilon}(\tau)) \cdot \sigma^{\epsilon}(r^{\epsilon}(\tau), \ \phi^{\epsilon}(\tau)) \ dw(\tau) + \int_0^t L_{\epsilon} \Phi_m^{\delta}(r^{\epsilon}(\tau), \ \phi^{\epsilon}(\tau)) \ d\tau$$

where $\nabla \Phi$ is the gradient of Φ and $\sigma^{\epsilon}(r, \phi)$ is the matrix corresponding to $\widetilde{\sigma}_{s}(r, \phi)$, $\widetilde{\sigma}_{s}^{\epsilon}(r, \phi)$. Since L_{ϵ} is uniformly elliptic, with bounded and uniformly Hölder continuous coefficients, the corresponding parabolic operator has a fundamental solution (see [2]). We can therefore go to the limit with $m \to \infty$ in (1.14) (cf. [4]) and conclude that

$$R(r(t))f^{\delta}(\phi(t)) = R(r(0))f^{\delta}(\phi(0)).$$

$$(1.15) = \int_0^t \nabla \Phi^{\delta}(r^{\epsilon}(r), \phi^{\epsilon}(r)) \cdot o^{\epsilon}(r^{\epsilon}(r), \phi^{\epsilon}(r)) dw(r) + \int_0^t L_{\epsilon} \Phi^{\delta}(r^{\epsilon}(r), \phi^{\epsilon}(r)) dr.$$

We shall now consider the behavior of $(r^{\epsilon}(\tau), \phi^{\epsilon}(\tau))$ on the set $A_{\alpha\beta}$. Given $0 < \eta < \eta_0$, let T_{η} be the last time $(r(t), \phi(t))$ is outside $\Omega_{\eta/2}$. With t fixed, and a.s. in $A_{\alpha\beta}$,

$$(r^{\epsilon}(r), \phi^{\epsilon}(r)) \rightarrow (r(r), \phi(r))$$
 uniformly in $r, 0 \le r \le t$,

for a subsequence $\epsilon = \epsilon' \setminus 0$. Hence, if $T_{\eta} \leq r \leq t$, $(r^{\epsilon}(r), \phi^{\epsilon}(r)) \in \Omega_{\eta}$ for all $\epsilon = \epsilon' \leq \epsilon*(\omega)$. Given $\delta \leq \delta*(\omega)$ sufficiently small, we have for any $\epsilon = \epsilon'$ sufficiently small and for any $\gamma > 0$,

$$\begin{split} \int_{T_{\eta}}^{t} L_{\epsilon} \Phi^{\delta}(r^{\epsilon}(r), \phi^{\epsilon}(r)) dr &= \int_{T_{\eta}}^{t} L_{\epsilon} \Phi(r^{\epsilon}(r), \phi^{\epsilon}(r)) dr \\ &= \int_{T_{\eta}}^{t} (L_{\epsilon}f)(r^{\epsilon}(r), \phi^{\epsilon}(r)) dr \\ &= \int_{T_{\eta}}^{t} \left\{ \left[\frac{1}{2} \sum_{s=1}^{n} \left[\widetilde{\sigma}_{s}^{s}(r^{\epsilon}, \phi^{\epsilon}) \right]^{2} + \epsilon \right] f''(\phi^{\epsilon}) + \widetilde{b}(r^{\epsilon}, \phi^{\epsilon}) f'(\phi^{\epsilon}) \right\} dr \\ &= \int_{T_{\eta}}^{t} \left\{ \left[\frac{1}{2} \sigma^{2}(\phi^{\epsilon}) + \epsilon \right] f''(\phi^{\epsilon}) + b(\phi^{\epsilon}) f'(\phi^{\epsilon}) + \theta \gamma \right\} dr \\ &\leq -(t - T_{\eta}) \nu + \int_{T_{\eta}}^{t} \epsilon f''(\phi^{\epsilon}) dr + \overline{\theta} \gamma (t - T_{\eta}) \end{split}$$

where $|\theta| \le 1$, $|\overline{\theta}| \le 1$, provided $\eta \le \eta^*(\gamma)$. Here ν is any positive number such that $Lf(x) \le -\nu$ for all $x \ne \alpha + \epsilon_0$, $x \ne \beta - \epsilon_0$. It follows that

(1.16)
$$\overline{\lim}_{\epsilon=\epsilon' \searrow 0} \int_{T_{\eta}}^{t} L_{\epsilon} \Phi^{\delta}(r^{\epsilon}(\tau), \phi^{\epsilon}(\tau)) d\tau \leq -(t - T_{\eta}) \frac{\nu}{2}$$

if $\gamma < \nu/2$. Since $(r(\tau), \phi(\tau))$ does not intersect the set $l_{\alpha} \cup l_{\beta}$ for $\tau \ge 0$, $f''(\phi^{\epsilon}(\tau))$ $(0 \le \tau \le T_{\eta})$ remains bounded as $\epsilon = \epsilon' \setminus 0$. We conclude that

(1.17)
$$\overline{\lim}_{\epsilon = \epsilon' \setminus 0} \int_0^t L_{\epsilon} \Phi^{\delta}(r^{\epsilon}(r), \phi^{\epsilon}(r)) dr \leq C - \frac{\nu}{2} t$$

where C is a.s. finite valued random variable.

Consider next the stochastic integral in (1.15). If $T_{\eta} \leq r \leq t$, then the vector

(1.18)
$$b_{\epsilon}^{\delta}(r) \equiv \nabla \Phi^{\delta}(r^{\epsilon}(r), \phi^{\epsilon}(r)) \cdot \sigma^{\epsilon}(r^{\epsilon}(r), \phi^{\epsilon}(r))$$

has components $\{(d/d\phi)f^{\delta}(\phi^{\epsilon}(\tau))\}\{[\overset{\sim}{\sigma}_{s}(r^{\epsilon}(\tau), \phi^{\epsilon}(\tau))]^{2} + \epsilon\}^{\frac{1}{2}}$. If we let $\epsilon = \epsilon' \downarrow 0$ through an appropriate subsequence ϵ'' , then we obtain a.s. (cf. [4, §2])

(1.19)
$$\lim_{\epsilon = \epsilon'' \setminus 0} \int_{T_{\eta}}^{t} h_{\epsilon}^{\delta}(r) \cdot dw(r) = \int_{T_{\eta}}^{t} h^{\delta}(r) \cdot dw(r) = \int_{T_{\eta}}^{t} h^{0}(r) \cdot dw(r)$$
$$= \sum_{s=1}^{n} \int_{T_{\eta}}^{t} f'(\phi(r)) \overset{\approx}{\sigma}_{s}(r(r), \phi(r)) dw^{s}(r)$$

where $b^0(\tau)$ is defined by (1.18) with Φ^{δ} replaced by Φ and with $\epsilon = 0$. If $0 \le \tau \le T_{\eta}$, then as $\epsilon \searrow 0$ through an appropriate subsequence of ϵ'' ,

$$\int_0^{T_\eta} b_\epsilon^\delta(r) \cdot dw(r) \longrightarrow \int_0^{T_\eta} b^\delta(r) \cdot dw(r) = \int_0^{T_\eta} b^0(r) \cdot dw(r) \equiv \hat{C}$$

where $b^{0}(r)$ has a more complicated expression than in (1.19) (involving R(r)

and its first derivative); \hat{C} is a.s. finite. We conclude from this and from (1.15), (1.17), (1.19) that, a.s. on $A_{\alpha\beta}$,

$$f(\phi(t)) - f(\phi(0)) \leq C - \frac{\nu}{2}t + \hat{C} + \sum_{s=1}^{n} \int_{T_{\eta}}^{t} f'(\phi(r)) \tilde{\sigma}_{s}(r(r), \phi(r)) dw^{s}(r).$$

By Lemma 1.3 of [3], the last integral is o(t). Hence

$$\overline{\lim_{t\to\infty}} \frac{f(\phi(t))}{t} \le -\frac{\nu}{2} < 0 \quad \text{a.s. in } A_{\alpha\beta}.$$

This implies that $\phi(t) \to \beta$ as $t \to \infty$, a.s. in $A_{\alpha\beta}$.

2. Boundary behavior of stochastic solutions (continued). Divide the zeros a_1, \ldots, a_k of $\sigma(z)$ in $\{0, 2\pi\}$ into blocks

$$B_{j} = \{\alpha_{j,1}, \dots, \alpha_{j,k_{j}}\} \quad (k_{j} > 1)$$

where $\alpha_{j,i} < \alpha_{j,i+1}$, $\alpha_{j,k_j} = \alpha_{j+1,1}$. (Here we agree that $\alpha_k < \alpha_1$.) For each block B_j , $b(\alpha_{j,1}) = 0$, $b(\alpha_{j,k_j}) = 0$, and $b(\alpha_{j,i}) \neq 0$ if $2 \leq i \leq k_j - 1$. Let

$$A_j = \{\omega; \alpha_{j,1} < \phi(t) < \alpha_{j,k_j} \text{ for all } t \text{ sufficiently large}\}.$$

In view of the Lemma 1.1 and the fact that $(r(t), \phi(t))$ never crosses the segments $\{(r, \alpha_{i,1}); 1 \le r \le 1 + \overline{\epsilon}\}$ we conclude that $\sum P(A_i) = 1$.

Consider now a block B_i , and set $\alpha = \alpha_{i,1}$, $\beta = \alpha_{i,k_i}$. Suppose

(2.1)
$$b(\alpha) = 0, b(\beta) = 0, b(\alpha_{j,1}) > 0 (2 \le i \le k_i - 1),$$

$$Q_{\alpha} > 1, \quad Q_{\beta} < 1.$$

Lemma 2.1. Let (A)-(E) and (2.1), (2.2) hold. If $x(0) \notin (\Delta_{\alpha} \cup \Delta_{\beta})$, then a.s. in A_i , $\phi(t) \to \beta$ as $t \to \infty$.

Proof. Let

$$f(x) = \begin{cases} -A_1 \log(x - \alpha) + B_1 & \text{in } (\alpha, \alpha + \epsilon_0), \\ A_2 \log(\beta - x) + B_2 & \text{in } (\beta - \epsilon_0, \beta), \\ g(x) & \text{in } [\alpha + \epsilon_0, \beta - \epsilon_0]; \end{cases}$$

the function g(x) consists of three parts:

$$\begin{split} A_{3}g_{1}(x) + B_{3} & \text{ in } [\alpha + \epsilon_{0}, \alpha_{j, 2} - \epsilon'), \\ A_{4}g_{2}(x) + B_{4} & \text{ in } [\alpha_{j, 2} - \epsilon', \alpha_{j, k_{j} - 1} + \epsilon'], \\ g_{3}(x) & \text{ in } (\alpha_{j, k_{j} - 1} + \epsilon', \beta - \epsilon_{0}] \end{split}$$

where $\epsilon'>0$ is sufficiently small. The function g_2 is constructed as the function f in the proof of Theorem 3.2 in [3]; thus $Lg_2 \leq -\nu < 0$ in $[\alpha_{j,2} - \epsilon', \alpha_{j,k_j-1} + \epsilon']$ and g'(x) < 0 at the endpoints. The function g_1 is defined as the function g in (1.10), (1.13) with β replaced by $\alpha_{j,2} - \epsilon'$. Finally, the function g_3 is defined as the function g in (1.10), (1.13) with α replaced by $\alpha_{j,k_j-1} + \epsilon' = 0$. We can choose the constants A_i , B_i so that f(x) is continuously differentiable; the A_i are all positive.

We can now proceed similarly to the proof of Lemma 1.2.

Suppose now that (2.1), (2.2) are replaced by

(2.3)
$$b(\alpha) = 0, b(\beta) = 0, b(\alpha_{i,j}) > 0 (2 \le i \le k, -1),$$

(2.4)
$$Q_a < 1, \quad Q_B > 1.$$

Lemma 2.2. Let (A)-(E) and (2.3), (2.4) hold. If $x(0) \notin (\Delta_{\alpha} \cup \Delta_{\beta})$, then a.s. in A_i , $\phi(t) \to \alpha$ as $t \to \infty$.

The proof is similar to the proof of Lemma 2.1. Here one takes $f(x) = A_1 \log(x - \alpha) + B_1$ in $(\alpha, \alpha + \epsilon_0)$, $f(x) = -A_2 \log(\beta - x) + B_2$ in $(\beta - \epsilon_0, \beta)$. Consider next the cases where

(2.5)
$$b(\alpha) = 0, b(\beta) = 0, Q_{\alpha} < 1, Q_{\beta} < 1.$$

We further assume that one of the following three conditions holds:

(2.6)
$$b(\alpha_{i,i}) > 0 \quad (2 \le i \le k_i - 1),$$

(2.7)
$$b(\alpha_{j,i}) < 0 \qquad (2 \le i \le k_j - 1),$$

$$b(\alpha_{j,i}) < 0 \qquad (2 \le i \le i_0),$$

(2.8)
$$b(a_{j,i}) > 0 (i_0 + 1 \le i \le k_j - 1).$$

Lemma 2.3. Let (A)–(E) and (2.5) hold, and let one of the conditions (2.6), (2.7), (2.8) hold. If $x(0) \notin (\Delta_{\alpha} \cup \Delta_{\beta})$, then a.s. in A_j , either $\lim_{t\to\infty} \phi(t) = \alpha$ or $\lim_{t\to\infty} \phi(t) = \beta$.

The proof is similar to the proof of Lemma 2.1. One takes $f(x) = A_1 \log(x - \alpha) + B_1$ in $(\alpha, \alpha + \epsilon_0)$, $f(x) = A_2 \log(\beta - x) + B_2$ in $(\beta - \epsilon_0, \beta)$. In case (2.8) holds one takes g_2 to be the function occurring in the proof of Theorem 4.2 in [3].

The case $b(\alpha) = 0$, $b(\beta) = 0$, $Q_{\alpha} > 1$, $Q_{\beta} < 1$ will not be considered in this paper. In this case $\phi(t)$ may oscillate between α and β without having a limit, as suggested by the case of linear equations [3].

3. Behavior of solutions in general domains. We shall now extend the results of $\S 2$ to a general bounded domain G. A point x_0 on the boundary ∂G of G is said to belong to Σ_3 if $\Sigma_{i,j} a_{ij}(x_0) \nu_i \nu_j > 0$. It belongs to Σ_2 if (1.2) and

$$\sum_{i} \left[b_{i} - \frac{1}{2} \sum_{j} \frac{\partial a_{ij}}{\partial x_{j}} \right] \nu_{i} > 0 \quad \text{at } x_{0}$$

hold. Finally, x_0 belongs to Σ_1 if (1.2), (1.3) hold at x_0 .

Denote by R(x) a continuous function in \overline{G} , C^2 and positive in $G \cup \Sigma_2 \cup \Sigma_3$, that coincide with dist (x, Σ_1) when the latter is sufficiently small. With R(x) fixed from now on, we define \mathcal{C} , \mathcal{B} , Q as in $\S 1$.

We shall need the following assumption:

(P) ∂G consists of a finite number of curves $\Gamma_1, \cdots, \Gamma_q$. Each curve belongs entirely to either $\Sigma_2 \cup \Sigma_3$ or to Σ_1 . A curve Γ_j of $\Sigma_2 \cup \Sigma_3$ is in C^2 , and a curve Γ_j of Σ_1 is in C^3 . There is a positive constant μ such that if a curve Γ_i belongs to Σ_1 then either (i) $Q(x) \le -\theta_0 < 0$ (θ_0 constant) for all $x \in G$ whose distance to Γ_i is $\le \mu$ [we then say that Γ_i belongs to Σ_1^-], or (ii) $Q(x) \ge \theta_0 > 0$ (θ_0 constant) for all $x \in G$ whose distance to Γ_i is $\le \mu$ [we then say that Γ_i belongs to Σ_1^+]. Finally, Σ_1^- is nonempty.

We shall maintain the assumptions (A), drop the assumption (B), and replace (C) by

(C*)
$$\mathfrak{A}(x) > 0$$
 for all $x \in G$ with $\operatorname{dist}(x, \Sigma_1) \ge \mu$, $\nabla_x R(x) \ne 0$;

$$\sum_{i,j=1}^{2} a_{ij}(x) \frac{\partial^{2} R}{\partial x_{i} \partial x_{j}} < 0 \text{ for all } x \in G \text{ with dist}(x, \Sigma_{1}) \ge \mu,$$

$$\nabla_{\mathbf{x}} R(\mathbf{x}) = 0.$$

By slightly modifying the construction of R(x) in the proof of Lemma 2.1 of [4], one can show that if the exterior boundary of G is not in Σ_1 then there actually exists a function R(x) with $\nabla_x R(x) \neq 0$ everywhere in G.

The proof of Theorem 2.2 of [4] can be modified to yield the following extension of Lemma 1.1.

Theorem 3.1. Let (A), (P), (C*) hold. Then, with probability 1, either (i) x(t) exits G in finite time by crossing $\Sigma_2 \cup \Sigma_3$, or (ii) $x(t) \in G$ for all t > 0 and $dist(x(t), \Sigma_1^-) \to 0$ as $t \to \infty$.

Suppose for definiteness that $\Gamma_1 \subset \Sigma_1^-$, and Γ_1 is not the outer boundary of G. If $x_1 = f(\tau)$, $x_2 = g(\tau)$ are parametric equations for Γ_1 (τ = length parameter), then we can introduce new variables

$$y_1 = (1 + \rho)\cos(2\pi\tau/L), \quad y_2 = (1 + \rho)\sin(2\pi\tau/L) \quad (L = \text{length of } \Gamma_1)$$

where the "polar coordinates" ρ , τ are defined by

$$x_1 = f(r) + \rho \dot{g}(r), \quad x_2 = g(r) - \rho \dot{f}(r).$$

As in [4] we can extend this mapping into a diffeomorphism from the exterior of Γ_1 onto the set $\{y: |y| \ge 1\}$. In the new coordinates

$$\begin{split} d\rho &= \sum_{s=1}^{n} \widetilde{\sigma}_{s} dw^{s} + \widetilde{b} dt, \\ d\phi &= \sum_{s=1}^{n} \widetilde{\sigma}_{s} dw^{s} + \widetilde{b} dt \quad \left(\phi = \frac{2\pi\tau}{L}\right), \end{split}$$

and

$$\frac{L}{2\pi}\ddot{\sigma}_{s}(0, \phi) = /\sigma_{1s} + \dot{g}\sigma_{2s},$$

$$\frac{L}{2\pi} \overset{\mathfrak{H}}{b} (0,\,\phi) = (\dot{f}b_1 + \dot{g}b_2) - (\dot{g},\,-\dot{f}) \begin{pmatrix} \Sigma \sigma_{1s}^2 & \Sigma \sigma_{1s}\sigma_{2s} \\ \\ \Sigma \sigma_{1s}\sigma_{2s} & \Sigma \sigma_{2s}^2 \end{pmatrix} \begin{pmatrix} \dot{f} \\ \dot{g} \end{pmatrix}.$$

Set $\sigma(\phi) = \{\sum_{s=1}^{n} [\overset{\approx}{\sigma}_{s}(0, \phi)]^{2}\}^{\frac{1}{2}}, \ b(\phi) = \overset{\approx}{b}(0, \phi).$

We now assume:

- (D') The condition (D) holds with $r = 1 + \rho$. More precisely: $\sigma(z)$ vanishes at a finite number of points $\alpha_1, \dots, \alpha_k$ $(k \ge 1)$. If $b(\alpha_j) = 0$ for some j, then there is a simple C^3 curve $\Delta^1_{\alpha_j}$ given by $x = x^*(t)$ $(t_1 \le t \le t_2)$ such that $x^*(t_1) = (f(\alpha_j), g(\alpha_j)), x^*(t_2)$ lies outside \overline{G} , and $x^*(\widetilde{t})$, for some $\widetilde{t} \in (t_1, t_2)$,
- lies on ∂G and is different from $(f(\alpha_j), g(\alpha_j))$, and such that

 (i) a part $\{x^*(t), t_1 < t \le t_1 + \epsilon\}$ of $\Delta_{\alpha_j}^{l}$ lies in G and is nontangential to ∂G at $t=t_1$;
- (ii) the relations (1.8) hold along Δ_{a}^1 . Finally, if $b(\alpha_i) = b(\alpha_i) = 0$ and $b(\alpha_i) \neq 0'$ for all the α_i between α_i and α_i , then points of G corresponding to (ρ, ϕ) with $\rho = \epsilon$, ϕ in the interval (α_i, α_h) $[\epsilon > 0]$ small], cannot be connected (in G) to points of G corresponding to $(
 ho,\phi)$ with $\rho = \epsilon$, ϕ outside the interval (a_j, a_b) , without crossing either $\Delta^1_{a_j}$ or $\Delta^1_{a_b}$. (E') The condition (E) holds. Furthermore, $b(a_j) = 0$ for at least one value
- of j.

Suppose (A), (P), (C*) and (D'), (E') hold. Denote by A¹ the set where $x(t) \in G$ for all t > 0 and dist $(x(t), \Gamma_1) \to 0$. Let A_i^1 be the subset of A^1 for which $\alpha_{j,1} < \phi(t) < \alpha_{j,k_j}$ holds for all t sufficiently large. Suppose a portion of each $\Delta^1_{\alpha_j}$ initiating at $(f(\alpha_j), g(\alpha_j))$ coincides with the normal to ∂G at that point. Then the proof of Lemmas 2.1-2.3 remain valid (in the y-coordinates). Here we use the fact that the diffeomorphism $x \rightarrow y$ given above does not affect the condition (D'), i.e., the conditions in (1.8) are invariant under a diffeomorphism. If $\Delta^1_{\alpha_i}$ does not contain the normal, then we perform a different local diffeomorphism from the x-space onto the y-space, such that Γ_1 is mapped onto the unit circle

and such that the image of a portion of $\Delta^1_{\alpha_j}$ does coincide with the normal to this circle. The new diffeomorphism does not affect the tangential stochastic equation, i.e., the functions $o(\phi)$, $b(\phi)$ remain the same.

We conclude: If $x \not\in \bigcup_j \Delta_{\alpha_{i,1}}$ then almost surely on A_j^1 , either

- (i) $\phi(t) \rightarrow \beta$ if (2.1), (2.2) hold; or
- (ii) $\phi(t) \rightarrow \alpha$ if (2.3), (2.4) hold; or
- (iii) $\phi(t) \rightarrow \alpha$ or $\phi(t) \rightarrow \beta$ if (2.5) and one of the conditions (2.6), (2.7), (2.8) hold.

In what follows we assume:

(Q) For each block B_j , either (2.1), (2.2) or (2.3), (2.4) or (2.5) and one of the conditions (2.6), (2.7), (2.8) hold.

The segment $\{(\rho, \phi); \phi = \alpha_{j,1}, 0 \le \rho \le \overline{\epsilon}\}$ in the y-space is mapped onto an arc l_j in the x-space. l_j initiates at a point γ_{j1} on Γ_1 , is nontangential to Γ_1 at γ_{j1} , it is contained in $\Delta^1_{\alpha_{j,1}}$, and it lies in the interior of G (with the exception of its endpoint γ_{j1}). It divides a small G-neighborhood N_j of γ_{j1} into domains: N_{j1}^+ and N_{j1}^- .

Definition. The point γ_{j1} is called a distinguished boundary point of G if at the corresponding point $\alpha_{j,1}$, $Q_{\alpha_{j-1}} < 1$.

If $\Gamma_1 \subset \Sigma_1^-$ and the interior of Γ_1 contains G, then the above considerations remain valid with trivial changes; the assertions (i)-(iii) are unchanged.

Consider now the general case. We index the Γ_i so that

$$\begin{split} \Sigma_1^- &= \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_p, \\ \Sigma_1^+ &= \Gamma_{p+1} \cup \cdots \cup \Gamma_{p+h}, \\ \Sigma_2^- \cup \Sigma_3^- &= \Gamma_{p+h+1}^- \cup \cdots \cup \Gamma_q. \end{split}$$

We assume

- (D*) The condition (D') holds for each Γ_i , $1 \le j \le p$.
- (E*) The condition (E') holds for each Γ_i , $1 \le i \le p$.
- (Q*) The condition (Q) holds for each Γ_i , $1 \le i \le p$.

We define distinguished boundary points on $\Gamma_2, \dots, \Gamma_p$ in the same way as for Γ_1 . Denote by ζ_j $(1 \le j \le k)$ the set of all distinguished boundary points on Σ_1^- . With each ζ_i we associate two ''half'' G-neighborhoods N_j^+ , N_j^- of ζ_j , in the same way that we have associated N_{j-1}^+ , N_{j-1}^- with γ_{j1} .

In the condition (D*) there appear curves Δ_a^l $(1 \le l \le p)$ defined analogously to the curves Δ_a^l . Denote these curves by Δ_j $(1 \le j \le l)$ and set $\Lambda_j = \Delta_j \cap \overline{G}$. Each ζ_j is an endpoint of some Λ_j .

We sum up the previous considerations in the following theorem.

Theorem 3.2. Let the conditions (A), (P), (C*) and (D*), (E*), (Q*) hold. If $x \notin \bigcup_{i=1}^{l} \Lambda_i$, then the probability space is a finite disjoint union

$$\Omega_0 \cup \left(\bigcup_{j=1}^k \Omega_j^+\right) \cup \left(\bigcup_{j=1}^k \Omega_j^-\right),$$

such that the following holds almost surely: if $\omega \in \Omega_0$, x(t) exits from G in finite time by crossing $\Sigma_2 \cup \Sigma_3$; if $\omega \in \Omega_j^+$ then $x(t) \in G$ for all t > 0, and $x(t) \in N_j^+$, $x(t) \to \zeta_i$ as $t \to \infty$; if $\omega \in \Omega_j^-$ then $x(t) \in G$ for all t > 0, and $x(t) \in N_j^-$, $x(t) \to \zeta_i$ as $t \to \infty$. The decomposition (3.1) depends on x(0).

Definition. If $x(t) \in G$ for all t > 0, and $x(t) \in N_i^+$, $x(t) \to \zeta_i$ as $t \to \infty$, then we shall write: $x(t) \to \zeta_i^+$ as $t \to \infty$. Similarly we define the concept: $x(t) \to \zeta_i^-$ as $t \to \infty$. We denote by $p_i^+(x)$ $(p_i^-(x))$ the probability that $x(t) \to \zeta_i^+$ $(x(t) \to \zeta_i^-)$ as $t \to \infty$, given $x(0) = x \in G$.

Clearly $p_i^+(x) \ge 0$, $p_i^-(x) \ge 0$, $\sum_{i=1}^k p_i^+(x) + \sum_{i=1}^k p_i^-(x) \le 1$. If $\sum_2 \cup \sum_3$ is empty, then the last sum is equal to 1 (by Theorem 3.2) if $x \notin \bigcup_{i=1}^l \Lambda_i$.

Definition. Denote by $q_i(x)$ $(1 \le i \le p)$ the probability that $x(t) \in G$ for all t > 0 and $dist(x(t), \Gamma_i) \to 0$ as $t \to \infty$, given $z(0) = x \in G$.

Theorem 3.3. Let the conditions (A), (P), (C*) hold. Then $q_i(x) \to 1$ if $\operatorname{dist}(x, \Gamma_i) \to 0$ $(1 \le i \le p)$.

Proof. For any $\lambda > 0$ sufficiently small, let $\Gamma_{i\lambda}$ be the curve in G parallel to Γ_i at a distant λ . Denote by G_{λ} the domain bounded by Γ_i , $\Gamma_{i\lambda}$. Denote by L the elliptic operator corresponding to the diffusion process (1.1). Then

$$L[R(x)]^{\epsilon} = [\epsilon^2 C/2R^2 + \epsilon Q][R(x)]^{\epsilon} \qquad (\epsilon > 0).$$

Since $\mathcal{C} = O(R^2)$ in G_{λ} , $LR \leq 0$ in G_{λ} provided λ and ϵ are sufficiently small. Denote by τ_{λ} the exit time from G_{λ} . Then, by Itô's formula,

$$E[R(x(r_{\lambda}))]^{\epsilon}-[R(x)]^{\epsilon}=E\int_{0}^{r_{\lambda}}L[R(x(r))]^{\epsilon}dr\leq 0.$$

Since $x(\tau_{\lambda}) \in \Gamma_{i\lambda}$, $R(x(\tau_{\lambda})) = \lambda$. Hence

$$[1-q_{\epsilon}(x)]\lambda^{\epsilon} \leq [R(x)]^{\epsilon} = [\operatorname{dist}(x, \Gamma_{\epsilon})]^{\epsilon},$$

and the assertion follows.

The above proof is valid also in any number of dimensions.

4. Regularity of the functions $p_i^{\pm}(x)$. Let

(4.1)
$$Lu = \frac{1}{2} \sum_{i,j=1}^{2} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{2} b_{i}(x) \frac{\partial u}{\partial x_{i}}.$$

Let $\Lambda'_1, \dots, \Lambda'_{l'}$ be disjoint C^3 curves (the endpoints are included) lying in G, and set

$$\Lambda = \bigcup_{i=1}^{l} \Lambda_i, \quad \Lambda' = \bigcup_{i=1}^{l'} \Lambda'_i.$$

The elliptic operator L will be allowed to degenerate in G only at the points of $\Lambda \cup \Lambda'$. We shall call Λ , a "boundary spoke" and Λ' , an "interior spoke."

Consider a parametric representation for Λ'_{i} :

(4.2)
$$x_1 = f(s), \quad x_2 = g(s) \quad (0 \le s \le L_i)$$

where s is the length parameter. Let

(4.3)
$$b_{j}^{*}(s) = (\dot{j}b_{2} - \dot{g}b_{1}) - \frac{1}{2}(\dot{j}\ddot{g} - \dot{g}\ddot{f}) \sum_{r=1}^{n} (\dot{j}\sigma_{1r} + \dot{g}\sigma_{2r})^{2}$$

where the argument of b_i , σ_{ir} is (x_1, x_2) given by (4.2).

We shall need the following assumption regarding the degeneracy of L in G:

(G) On each Λ'_j , $b^*_j(s) \neq 0$ for $0 \leq s \leq L_j$. The elliptic operator L may degenerate on each arc Λ_i , and in a sufficiently small δ_0 -neighborhood of each Λ'_j ; at all the remaining points of G, L is nondegenerate.

The number δ_0 is positive and depends only on upper bounds on the first derivatives of σ_{ik} , b_i , and on a positive lower bound on the $|b_j^*(s)|$. Its precise nature will emerge from the proof of Theorem 4.1 below. Denote by Λ'_{δ_0} the δ_0 -neighborhood of Λ' .

Theorem 4.1. Let the conditions (A), (P), (C*) and (G) hold. Then $p_i^{\pm}(x)$ $(1 \le i \le p)$ are Lipschitz continuous functions in $G - \Lambda$, and C^2 solutions of Lu = 0 in $G - (\Lambda \cup \Lambda'_{S_0})$.

Proof. We shall combine classical regularity theorems with the method of Freidlin [1]. Denote by $p_i(x)$ any one of the functions $p_i^{\pm}(x)$. Consider first a point $x_0 \in G$ where L is nondegenerate. Let N be a small disc with center x_0 such that L is nondegenerate in \overline{N} . By the strong Markov property, for any $x \in N$,

(4.4)
$$p_{i}(x) = E_{x}\{p_{i}(x_{\tau_{N}})\} = \int_{\partial N} p_{i}(y)P_{x}(x_{\tau_{N}} \in dS_{y})$$

where τ_N is the exit time from N, and dS_y is the length element on ∂N . Note, by a standard argument, that $p_i(y)$ is a Borel function on ∂N .

Let A be an interval on ∂N . Denote by I_A the characteristic function of A, and by η , ζ the endpoints of A. By classical theorems [2], there exists a unique solution u of

$$Lu = 0$$
 in N , $u \in C^2(N)$, $u(x) \to I_A(y)$ if $x \to y \in \partial N$, $y \neq \eta$, $y \neq \zeta$, $u(x)$ remains bounded as $x \to \eta$, or $x \to \zeta$.

We can write u in terms of Green's function [2]

(4.5)
$$u(x) = \int_{A} \frac{\partial G(x, y)}{\partial \nu_{y}} dS_{y}$$

where ν_y is the inward normal. Denote by N_ϵ the disc with center x_0 and radius = $r_0 - \epsilon$, where r_0 is the radius of N. Let r_{N_ϵ} be the exit time from N_ϵ . By Itô's formula,

(4.6)
$$u(x) = E_x\{u(x_{\tau_{N_{\epsilon}}})\} \quad (\epsilon > 0).$$

Since L is nondegenerate in \overline{N} , x(t) exists N at ζ or at η with probability 0. Hence, taking $\epsilon \to 0$ in (4.6), we arrive at the formula

$$u(x) = E_x\{u(x_{\tau_N})\} = E_x\{I_A(x_{\tau_N})\} = P_x(x_{\tau_N} \in A).$$

Comparing this with (4.5), we conclude that

$$P_x(x_{\tau_N} \in A) = \int_A \frac{\partial G(x, y)}{\partial \nu_y} dS_y.$$

This implies that

$$P_x(x_{r_N} \in dS_y) = \frac{\partial G(x, y)}{\partial v_y} dS_y$$

Hence (4.4) gives

(4.7)
$$p_i(x) = \int_{\partial N} p_i(y) \frac{\partial G(x, y)}{\partial \nu_y} dS_y.$$

This shows that $p_i(x)$ is continuous in N. By decreasing N we may assume that $p_i(x)$ is continuous in \widehat{N} .

The solution v of Lv=0 in N, $v=p_i$ on ∂N is also given by the right-hand side of (4.7). Hence $v=p_i$ in N. Since v belongs to $C^2(N)$, the same is true of p_i . This completes the proof of the second assertion of Theorem 4.1.

To prove the first assertion, consider first the case of an interior spoke Λ'_j having the form $\phi = \phi_0$, $r_0 \le r \le r_1$. Let B_{δ} be the domain $|\phi - \phi_0| \le \delta$, $r_0 \le r \le r_1$. The condition $b_j^*(s) \ne 0$ reduces to $b(r, \phi) \ne 0$ where $b(r, \phi)$ is defined as in §1. Suppose, for definiteness, that $b(r, \phi) \ge \beta > 0$ inside B_{δ} . By Itô's formula we have

$$\phi(t) = \phi_0 + \sum_{s=1}^n \int_0^t \tilde{\sigma}_s(r,\phi) dw^s + \int_0^t \tilde{b}(r,\phi) dr,$$

and hence

$$\phi(t \wedge r_{B_{\delta}}) \ge \phi_0 + \sum_{s=1}^n \int_0^{t \wedge r_{B_{\delta}}} \tilde{\sigma}_s(r, \phi) dw^s + \beta(t \wedge r_{B_{\delta}}).$$

Thus

$$\beta E_x(t \wedge r_{B_{\delta}}) \leq \sup_{\phi \in B_{\delta}} |\phi - \phi_0| = \delta.$$

It follows that

(4.8)
$$E_{x}(r_{B_{\delta}}) \leq \delta/\beta = C \quad (x \in B_{\delta}).$$

By a standard iteration argument it follows that $P_x(r_{B_\delta} \ge nt_0) \le (C/t_0)^n$ $(n = 1, 2, \dots)$. Consequently,

$$P_x(r_{B_{\hat{x}}} \ge t) \le e^{-\alpha t}, \quad \alpha = -(1/t_0) \log (C/t_0).$$

Taking $t_0 = e$ we get

$$(4.9) P_{x}(\tau_{B_{2}} \geq t) \leq e^{-\alpha t}, \alpha = (1/e) \log (\beta e/\delta).$$

We may choose $\delta > 0$ sufficiently small to apply the following result of Freidlin [1, p. 1349] (which we state only in R^2):

Theorem. Suppose σ_{ij} , b_i are continuously differentiable in R^2 with

$$\max_{i,j,k} \left\{ \left| \frac{\partial \sigma_{ij}}{\partial x_k} \right|, \left| \frac{\partial b_i}{\partial x_k} \right| \right\} = K.$$

Let $\alpha_1 = 8K^2 + 4K$. Suppose the boundary is uniformly normally regular, and the boundary function ψ is the restriction to ∂B_{δ} of a C^2 function in a neighborhood of ∂B_{δ} . Then the function $E_{\mathbf{x}}\{\psi(\mathbf{x}_{TB_{\delta}})\}$ is Lipschitz continuous in B_{δ} , provided $\alpha > \alpha_1$.

By choosing δ_0 (in the condition (G)) sufficiently small we can ensure that, for some $\delta > \delta_0$, L is nondegenerate on the boundary of B_{δ} , and $\alpha > \alpha_1$. The uniform normal regularity of ∂B_{δ} means that $E_x(r_{B_{\delta}}) \leq C_0|x-x_0|$ for all $x_0 \in \partial B_{\delta}$, $x \in B_{\delta}$ where C_0 is a constant. This property is guaranteed by the nonvanishing of the normal diffusion on ∂B_{δ} (see [1]). Further, since L is nondegenerate on ∂B_{δ} , $p_i(x)$ is C^2 in a neighborhood of ∂B_{δ} . Hence we can apply Freidlin's theorem to deduce (upon recalling the first equation of (4.4), which holds for $N = B_{\delta}$) that $p_i(x)$ is Lipschitz continuous in B_{δ} .

To handle the case of a general spoke Λ'_{j} , we introduce new coordinates (ρ, s) by the equations

$$x_1 = f(s) + \rho \dot{g}(s), \quad x_2 = g(s) - \rho \dot{f}(s)$$

where $-\rho_0 < \rho < \rho_0$ (ρ_0 is positive and sufficiently small) and f, g are as in (4.2). The stochastic differentials ds, $d\rho$ are given by the formulas

$$d\rho = \sum_{r=1}^{n} \widetilde{\sigma}_{r} dw^{r} + \widetilde{b} dt,$$

$$d\phi = \sum_{r=1}^{n} \stackrel{\partial}{\partial_r} dw^r + \stackrel{\partial}{\partial_r} dt \quad (\phi = 2\pi s/L_j).$$

Explicit calculation gives (cf. [4]) $\widetilde{b}(0, \phi) = 2\pi b_j^*(s)/L_j$ where $b_j^*(s)$ is defined in (4.3). Since $b_j^*(s) \neq 0$, we can repeat the argument given in the previous special case.

Remark. Suppose σ_{ij} , b_i belong to $C^m(R^2)$. Using Theorem 3 of Freidlin [1] (instead of the above quoted theorem of [1]) we conclude that the $p_i^{\pm}(x)$ have m-1 Lipschitz continuous derivatives in $G-\Lambda$. Here the constant δ_0 occurring in the condition (G) depends also on m.

Definition. If $x \to \zeta_i$, $x \in N_i^+$ then we write $x \to \zeta_i^+$. Similarly we write $x \to \zeta_i^-$ if $x \to \zeta_i$, $x \in N_i^-$.

Theorem 4.2. Let the conditions (A), (P), (C*) and (D*), (E*), (Q*) hold. Then $p_i^+(x) \to 1$ if $x \to \zeta_i^+$, and $p_i^-(x) \to 1$ if $x \to \zeta_i^-$.

This theorem is of the same type as Theorem 3.3. The method of proof is also the same as for Theorem 3.3.

Proof. It suffices to prove the assertion for $p_i^+(x)$. Consider first the special case where the distinguished boundary point ζ_i lies in some Γ_j , say Γ_1 , which is the circle r=1, and G lies in the exterior of Γ_1 . Let N be "half G-neighborhood" of ζ_i given by $\zeta_i < \phi < \phi_1$, $1 < r < 1 + \delta$. Consider the function

$$f(R, \phi) = R^{\epsilon} + (\phi - \zeta_i)^{\epsilon}$$
 in N

where R = r - 1, and $\epsilon > 0$ is sufficiently small. It is easily seen that $Lf \leq 0$ if δ and ϵ are sufficiently small. Let r be the exit time from N. By Itô's formula

(4.10)
$$E\{f(R(t \wedge \tau), \phi(t \wedge \tau))\} \leq f(R(0), \phi(0)) \quad (t > 0).$$

Now, x(t) cannot leave N in finite time by crossing either R=0 or $\phi=\zeta_{i^*}$ On the other hand, on the remaining boundary of N, $f(R,\phi)$ is bounded below by some constant $\gamma>0$ (γ depends on δ , ϵ). Hence, taking $t\to\infty$ in (4.10), we obtain the inequality

$$\gamma P_x(r < \infty) \le f(R(0), \phi(0)) \qquad (x = x(0)).$$

Since $f(R(0), \phi(0)) \to 0$ if $x \to \zeta_i^+$, we conclude that

$$P_{x}(r < \infty) \rightarrow 0 \text{ if } x \rightarrow \zeta_{i}^{+}$$

Since, by Theorem 3.2, $p_i^+(x) = 1 - P_x(\tau < \infty)$, the proof is complete.

Remark. By Theorem 4.2, the $p_i^{\pm}(x)$ are discontinuous at the points of the boundary spoke initiating at ζ_i , which are in some small neighborhood of ζ_i .

5. The Dirichlet problem.

Lemma 5.1. Let $x(t) = (x_1(t), \dots, x_l(t))$ be a solution of a system of l stochastic equations of the form (1.1), with uniformly Lipschitz continuous coefficients σ_{ij} , b_i . Let τ be any finite valued random variable. Suppose the range of x(t), $0 \le t \le \tau$, is contained in an open set $D \subset R^l$. Let f(x) be a C^2 function in D. Then $It\hat{\sigma}$'s formula holds:

$$f(x(\tau)) - f(x(0)) = \sum_{i=1}^{l} \sum_{j=1}^{n} \int_{0}^{\tau} f_{x_{i}}(x(s)) \sigma_{ij}(x(s)) dw^{j} + \int_{0}^{\tau} Lf(x(s)) ds$$

where

$$Lf(x) = \frac{1}{2} \sum_{i,j=1}^{l} a_{ij}(x) \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{i=1}^{l} b_i(x) \frac{\partial u}{\partial x_i} \quad [(a_{ij}) = \sigma \sigma^*].$$

Proof. For any $\delta > 0$, modify f into a function $f^{\delta}(x)$ in $C^{2}(R^{l})$, coinciding with f(x) if dist $(x, R^{l} - D) > \delta$. Apply Itô's formula to $f^{\delta}(x(t))$, substitute t = r, and take $\delta \setminus 0$.

Now let the assumptions of Theorem 4.2 hold. Consider the Dirichlet problem

$$(5.1) Lu = 0 in G - \Lambda.$$

$$(5.2) u = g on \Sigma_2 \cup \Sigma_3,$$

(5.3)
$$\begin{cases} u(x) \to f_i^+ & \text{if } x \to \zeta_i^+, \\ u(x) \to f_i^- & \text{if } x \to \zeta_i^- & (1 \le i \le k). \end{cases}$$

Here L is defined by (4.1), g is a given continuous function on $\Sigma_2 \cup \Sigma_3$, and f_i^{\pm} are given numbers.

If u is continuous in $(G \cup \Sigma_2 \cup \Sigma_3) - \Lambda$ and is in $C^2(G - \Lambda)$, and if it satisfies (5.1)-(5.3), then we call it a classical solution of the Dirichlet problem (5.1)-(5.3). Notice that u is not required to be continuous on $\Sigma_1^- \cup \Sigma_1^+ \cup \Lambda$. Since $u(x) \to f_i^{\pm}$ as $x \to \zeta_i^{\pm}$, u cannot be continuous at the points of Λ near ζ_i if $f_i^{\dagger} \neq f_i^-$.

We shall prove in this section the existence and uniqueness of a classical solution.

Theorem 5.2. Let (A), (P), (C*) and (D*), (E*), (Q*) bold. Then there exists at most one classical solution of the Dirichlet problem.

Proof. Let $G_{\epsilon} = \{x \in G, \operatorname{dist}(x, \partial G) > \epsilon\}$, $\epsilon > 0$. Denote by r the exit time from G, and denote by r_{ϵ} the exit time from G_{ϵ} . Let u be a classical solution. Since x(t) (with $x(0) \in G - \Lambda$) remains in $G - \Lambda$ for $0 \le t \le T \wedge r_{\epsilon}$, where $T < \infty$, $\epsilon > 0$, we can apply Lemma 5.1. This gives, after taking the expectation,

$$u(x)=E_x\{u(x(T\wedge\tau_\epsilon))\}.$$

Taking $\epsilon \setminus 0$, T / ∞ and using the continuity of u at $\Sigma_2 \cup \Sigma_3$ and Theorem 3.2, we get

(5.4)
$$u(x) = E_x \{ g(x(r)) | I_{(r < \infty)} \} + \sum_{i=1}^k f_i^+ p_i^+(x) + \sum_{i=1}^k f_i^- p_i^-(x)$$

where l_A is the indicator function of A. This implies that u(x) is uniquely determined (in $G - \Lambda$).

We shall now prove the existence of a solution.

Theorem 5.3. Let (A), (P), (C*), (G), (D*), (E*), (Q*) hold, and let g be continuous on $\Sigma_2 \cup \Sigma_3$. Then the function u(x) given by (5.4) is continuous in $(G \cup \Sigma_2 \cup \Sigma_3) - \Lambda$, Lipschitz continuous in $G - \Lambda$, and C^2 in $G - (\Lambda \cup \Lambda'_{\delta_0})$, and it satisfies (5.1) in $G - (\Lambda \cup \Lambda'_{\delta_0})$ and (5.2), (5.3).

Proof. In Theorem 4.1 we proved that $p_i^{\pm}(x)$ is Lipschitz continuous in $G-\Lambda$, and is a C^2 solution of (5.1) in $G-(\Lambda\cup\Lambda'_{\delta_0})$. The same proof works also for the function $E_x\{g(x(r))l_{(r<\infty)}\}$. Hence, the function u, given by (5.4), is Lipschitz continuous in $G-\Lambda$ and is a C^2 solution of (5.1) in $G-(\Lambda\cup\Lambda'_{\delta_0})$. The assertion $u(x)\to f_i^{\pm}$ as $x\to \zeta_i^{\pm}$ follows from Theorem 4.2 and the fact that

$$\sum_{j=1}^{k} p_{j}^{+}(x) + \sum_{j=1}^{k} p_{j}^{-}(x) + E_{x}\{I_{(r < \infty)}\} = 1.$$

(This is the assertion of Theorem 3.2.) Finally, the assertion that u(x) is continuous at the points of $\Sigma_2 \cup \Sigma_3$ and it satisfies (5.2) follows from Theorem 2 of Pinsky [6].

Remark. The function u(x) is a weak solution of (5.1) in G, in the sense that

$$u(x) = \int_{\partial N} u(y) P_x(x_{\tau_N} \in dS_y)$$

where N is a disc in G, $x \in N$, and τ_N is the exit time from N. The proof is the same as for (4.4).

We shall now strengthen the assumptions of Theorem 5.3 in order to achieve a classical solution.

(G*) The condition (G) holds and σ_{ij} , b_i are in $C^2(\Lambda'_{\delta_0})$. The positive constant δ_0 occurring in the condition (G) will now be smaller; it will be as in the remark following the proof of Theorem 4.1, with m=2.

Theorem 5.4. Let (A), (P), (C*), (G*), (D*), (E*), (Q*) hold, and let g be a continuous function on $\Sigma_2 \cup \Sigma_3$. Then (5.4) is the unique classical solution of the Dirichlet problem (5.1)–(5.3).

Indeed, we only have to verify that u is in $C^2(G-\Lambda)$ and Lu=0 in $G-\Lambda$. For $p_i^{\pm}(x)$ this follows from the remark following the proof of Theorem 4.1. For $E_x\{g(x(r))|_{\{r<\infty\}}\}$ the proof is the same.

Remark. Theorems 5.2-5.4 extend to the Dirichlet problem consisting of (5.5) $Lu + c(x)u = 0 \text{ in } G - \Lambda$

and (5.2), (5.3), provided $c(x) \le 0$ in G. Instead of (5.4) we have

(5.6)
$$u(x) = E_{x} \left\{ g(x(r)) \exp \left[\int_{0}^{\tau} c(x(s)) ds \right] I_{(r < \infty)} \right\}$$

$$+ \sum_{i=1}^{k} f_{i}^{+} E_{x} \left\{ \exp \left[\int_{0}^{\infty} c(x(s)) ds \right] I_{[p_{i}^{+}(x) > 0]} \right\}$$

$$+ \sum_{i=1}^{k} f_{i}^{-} E_{x} \left\{ \exp \left[\int_{0}^{\infty} c(x(s)) ds \right] I_{[p_{i}^{-}(x) > 0]} \right\}.$$

If $c(x) \le -c_0 \le 0$ then the last two sums vanish, so that no boundary conditions on Σ_1 need to be given. This is in agreement with the treatment in [5], [7] (and the references given there) where c_0 is assumed to be positive.

- 6. The Dirichlet problem in *m*-dimensional domains. In subsection 6.1 we prove a theorem for $m \ge 2$ which even when m = 2 is not contained in \$\$2-5. In subsections 6.2, 6.3 we discuss the generalizations of the results of \$\$2-5 to $m \ge 2$.
 - 6.1. Consider a system of m stochastic equations

(6.1)
$$dx_i = \sum_{r=1}^n \sigma_{ir}(x) dw^r + b_i(x) dt \quad (1 \le i \le m)$$

and let L, given by (0.1), be the corresponding elliptic operator, i.e., $\sigma\sigma^* = (a_{ij})$. We shall denote the analogs of the conditions (A), (P), (C*) for $m \ge 2$ by (A_m) , (P_m) , (C_m^*) respectively. Assuming that these conditions hold, the assertion of Theorem 3.1 remains valid.

With G a bounded m-dimensional domain, and $\Gamma_1, \dots, \Gamma_q$ its boundary hypersurfaces, we index the Γ_i as in §3. Thus, Σ_1^- is made up of $\Gamma_1, \dots, \Gamma_p$. Denote by Γ_i^ϵ ($\epsilon > 0$) the intersection of G with ϵ -neighborhood of Γ_i . We assume

(R) On each Γ_l $(1 \le l \le p)$ there is a finite number of points ξ_{lj} such that $\sigma_{ir}(\xi_{lj}) = 0$, $b_i(\xi_{lj}) = 0$ for $1 \le i \le m$, $1 \le r \le n$. Let $R_{lj}(x) = |x - \xi_{lj}|$ if $|x - \xi_{lj}| \le \epsilon'$ (for some $\epsilon' > 0$), and define $Q_{lj}(x)$ as Q(x) in §1 when R(x) is replaced by $R_{lj}(x)$. Then

$$Q_{I,i}(x) \le -\theta_0 < 0$$
 if $|x - \xi_{I,i}| < \epsilon'$, $x \in G$.

For any $1 \le l \le p$, let $R_l^*(x)$ be a positive C^2 function for $x \in \Gamma_l^{\epsilon_0} \cup \Gamma_l$, $x \ne \xi_{lj}$ (for some $\epsilon_0 > 0$) such that $R_l^*(x) = R_{lj}(x)$ if $|x - \xi_{lj}| < \epsilon'$. We shall assume

(S) For all
$$x \in \Gamma_l^{\epsilon_0} \cup \Gamma_l$$
, $\min_i |x - \xi_{li}| > \epsilon'$ $(1 \le l \le p)$,

(6.2)
$$\sum_{i,j=1}^{m} a_{ij}(x) \frac{\partial R_{l}^{*}}{\partial x_{i}} \frac{\partial R_{l}^{*}}{\partial x_{j}} > 0 \quad \text{if } \nabla_{x} R_{l}^{*}(x) \neq 0;$$

(6.3)
$$\sum_{i,j=1}^{m} a_{ij}(x) \frac{\partial^{2} R_{l}^{*}}{\partial x_{i} \partial x_{j}} < 0 \quad \text{if } \nabla_{x} R_{l}^{*}(x) = 0.$$

Notice that $R_l^*(x)$ can be constructed such that $\nabla_x R_l^*(x)$ is nonzero if $x \in \Gamma_l^{\epsilon_0} \cup \Gamma_l$, $x \neq \xi_{lj}$, and $\nabla_x R_l^*(x)$ is not normal to Γ_l if $x \in \Gamma_l$, $x \neq \xi_{lj}$. Hence, if L is nondegenerate in $\Gamma_l^{\epsilon_0}$ and if the stochastic equations induced by (6.1) on Γ_l have a nondegenerate diffusion matrix [i.e., if the elliptic operator induced by L on Γ_l is nondegenerate] at each $x \neq \xi_{lj}$, then $\nabla_x R_l^*(x) \neq 0$ if $x \in \Gamma_l^{\epsilon_0} \cup \Gamma_l$, $x \neq \xi_{lj}$, and (6.2) holds.

So far, assuming (A_m) , (P_m) and (C_m^*) , we already know that x(t) does not intersect Σ_1 in finite time, and $\operatorname{dist}(x(t), \Sigma_1^-) \to 0$ as $t \to \infty$, provided $x(t) \in G$ for all t > 0. We now employ the assumptions (R), (S) to construct a function

$$f(x) = \Phi(R_l^*(x)) \qquad (x \in \Gamma_l^{\epsilon_0} \cup \Gamma_l, \ x \neq \xi_{lj})$$

such that $Lf \leq -\nu$ (as in Theorem 2.2 of [4]), and then use it to deduce that, on the set where $\operatorname{dist}(x(t), \Gamma_l) \to 0$, $\min_i |x(t) - \xi_{li}| \to 0$.

We shall denote the set of all the points ξ_{lj} by ξ_1, \dots, ξ_k , and call them distinguished boundary points. We pose the Dirichlet problem

$$(6.4) Lu = 0 in G,$$

$$(6.5) u = g on \Sigma_2 \cup \Sigma_3,$$

(6.6)
$$u = \int_{i}^{\infty} \operatorname{at} \zeta_{i} \quad (1 \leq i \leq k)$$

where g is a given continuous function on $\Sigma_2 \cup \Sigma_3$ and the f_i are given numbers.

Theorem 6.1. Let the conditions (A_m) , (P_m) , (C_m^*) and (R), (S) bold, and let L be nondegenerate in G. Then there exists a unique solution of the Dirichlet problem (6.4)-(6.6).

In fact, the solution is given by

(6.7)
$$u(x) = E_x \{ f(x(r)) | (r < \infty) \} + \sum_{i=1}^{k} f_i p_i(x)$$

where r is the exit time from G, and $p_i(x)$ is the probability that $x(t) \in G$ for all t > 0 and $x(t) \to \zeta_i$ as $t \to \infty$, given x(0) = x. The regularity of the terms on the right-hand side of (6.7) can be proved as in the case m = 2 (in §4).

Remark 1. Theorem 6.1 can be extended to the case where L may degenerate in a small neighborhood of a finite number of "interior spokes," as in the case m = 2. This can be proved by the same method as for m = 2.

Remark 2. Theorem 6.1 extends to the Dirichlet problem in which (6.4) is replaced by Lu + c(x)u = 0 in G, and $c(x) \le 0$; cf. the remark at the end of §5.

6.2. Let the conditions (A_m) , (P_m) , (C_m^*) hold and consider the Dirichlet problem

(6.8)
$$\begin{cases} Lu = 0 & \text{in } G, \\ u = g & \text{on } \Sigma_2 \cup \Sigma_3, \\ u = f_i & \text{on } \Gamma_i \ (1 \le i \le p) \end{cases}$$

where the f_i are constants; the Γ_i $(1 \le i \le p)$ constitute the Σ_1^- boundary of G. If L is nondegenerate in G, then the function

(6.9)
$$u(x) = E_x \{ g(x(r)) | I_{(r < \infty)} \} + \sum_{i=1}^p f_i q_i(x)$$

is the unique classical solution of the Dirichlet problem (6.8). The proof of uniqueness is the same as the proof of Theorem 5.2. The proof that u(x) is in $C^2(G)$ is the same as the corresponding proof for $p_i^{\pm}(x)$. The assertion that $u(x) \to f_i$ is $\operatorname{dist}(x, \Gamma_i) \to 0$ is a consequence of Theorem 3.3 (which holds in any number of dimensions). Finally the assertion that $u(x) \to g(y)$ if $x \to y$, $y \in \Sigma_2 \cup \Sigma_3$ follows from [6, Theorem 2].

6.3. All of the results of \S 2-5 can be generalized to the case $m \ge 3$. The conditions needed, however, take a more complicated form. In order to clarify the procedure, we shall describe only a special case, namely, m = 3 and G is a shell given by $1 \le r \le 2$. We further assume that the conditions of Lemma 1.1 hold for m = 3 so that the assertion of Lemma 1.1 is valid, with respect to the system in polar coordinates

$$d\tau = \sum_{j=1}^{n} \partial_{1j} dw^{j} + \widetilde{b}_{1} dt,$$

$$d\theta = \sum_{j=1}^{n} \partial_{2j} dw^{j} + \widetilde{b}_{2} dt,$$

$$d\phi = \sum_{j=1}^{n} \partial_{3j} dw^{j} + \widetilde{b}_{3} dt.$$

On r = 1, this system reduces to

$$d\theta = \sum_{j=1}^{n} \widetilde{\sigma}_{2j}(1, \theta, \phi) dw^{j} + \widetilde{b}_{2}(1, \theta, \phi) dt,$$
(6.11)

$$d\phi = \sum_{j=1}^{n} \widetilde{\sigma}_{3j}(1, \theta, \phi) dw^{j} + \widetilde{b}_{2}(1, \theta, \phi) dt.$$

We shall assume

 (T_1) Along the closed curve Γ : $(\theta = \theta_0, 0 \le \phi \le 2\pi)$ we have

$$\sum_{i,j=2}^{3} \widetilde{a}_{ij} \nu_i \nu_j = 0, \qquad \sum_{i=2}^{3} \left[\hat{b}_i - \frac{1}{2} \sum_{j=1}^{2} \frac{\partial \widetilde{a}_{ij}}{\partial \theta_j} \right] \nu_i = 0$$

when $\theta_1 = \theta$, $\theta_2 = \phi$, (ν_2, ν_3) is normal to Γ , and $\tilde{a} = \tilde{\alpha} \tilde{\sigma}^*$.

 (T_2) The condition (C^*) holds with x replaced by (θ_1, θ_2) and R(x) replaced by a positive function $R^*(\theta_1, \theta_2)$ coinciding with the distance function from Γ when the latter is sufficiently small.

(T₃) Define $Q(\theta_1, \theta_2)$ with respect to (6.11) and $R(\theta_1, \theta_2)$ in the same way that Q(x) was defined with respect to the system (1.2) with respect to R(x). Then $Q(\theta_1, \theta_2) \le -\nu \le 0$ ($0 \le \phi \le 2\pi$, $|\theta - \theta_0| \le \epsilon'$) for some $\epsilon' > 0$.

(T₄) No solution of (6.10) crosses the conical surface S: $\theta = \theta_0$. This is the case if and only if $\sum_{i,j=1}^3 a_{ij}\nu_i\nu_j = 0$, $\sum_{j=1}^3 [b_i - \frac{1}{2}\sum_{j=1}^3 \partial a_{ij}/\partial x_j]\nu_i = 0$ on $\theta = \theta_0$, where (ν_i) is the normal to S.

Using the condition (T_1) we can prove (as in [4]) that the solution $(\theta_0(t), \phi_0(t))$ of (6.11) never crosses Γ . Using also the conditions (T_2) , (T_3) we can construct a function $V(\theta, \phi)$ for $\theta \neq \theta_0$ such that $LV \leq -\nu < 0$ and $V \to -\infty$ if $\theta \to \theta_0$. If we apply Itô's formula to $V(\theta(t), \phi(t))$, where $(r(t), \theta(t), \phi(t))$ is a solution of the system (6.10) with $\theta(0) \neq \theta_0$, then we conclude (as in [4]) that

(6.12)
$$r(t) \to 1, \quad \theta(t) \to \theta_0 \quad (t \to \infty).$$

Next we consider the restriction of (6.11) to $\theta = \theta_0$, i.e.

$$d\phi = \sum_{j=1}^{n} \widetilde{\sigma}_{3j}(1, \, \theta_{0}, \, \phi) \, dw^{j} + \widetilde{b}_{3}(1, \, \theta_{0}, \, \phi) \, dt$$

and assume

(T₅) Conditions analogous to (D), (E) and (Q) hold for (6.11) with respect to Γ .

Thus, through each point where $\hat{\sigma}_{3j}(1, \theta_0, \phi) = 0 \ (1 \le j \le n)$ and $\hat{b}_3(1, \theta_0, \phi) = 0$ there passes a "boundary spoke" Λ_j lying in the sphere. Λ_j connects a pair of adjacent α_j 's. With the aid of the condition (T_5) , we construct a function $f(\phi)$ with $Lf \le -\nu < 0$ as in §§1 and 2. Applying Itô's formula to $f(\phi(t))$ where $(r(t), \theta(t), \phi(t))$ is a solution of (6.10), we can then show that $\phi(t) \to \alpha_i^{\pm}$

 $(1 \le i \le k)$ with probability $p_i^{\pm}(x)$ $(\sum_{i=1}^k [p_i^{+}(x) + p_i^{-}(x)] = 1)$.

The points $\zeta_i = (1, \theta_0, \alpha_i)$ are called distinguished boundary points. We can now pose the Dirichlet problem

(6.13)
$$Lu = 0 \quad \text{in } G,$$

$$u(x) \to f_i^{\pm}, \quad x \to \zeta_i^{\pm} \quad (1 \le i \le k).$$

Theorem 6.2. Let the assumptions $(T_1 - T_5)$ hold and let L be nondegenerate in G - S. Then there exists a unique solution of the Dirichlet problem (6.13). It is given by the formula

$$u(x) = \sum_{i=1}^{k} f_{i}^{\dagger} p_{i}^{\dagger}(x) + \sum_{i=1}^{k} f_{i}^{-} p_{i}^{-}(x) \qquad (x \in S).$$

This theorem extends easily to general domains G with a $\Sigma_2 \cup \Sigma_3$ boundary component.

A subsequent treatment by one of us (M.P.) shows that condition (D) is superfluous. The details will appear in a forthcoming publication.

REFERENCES

- 1. M. I. Freidlin, On the smoothness of solutions of degenerate elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1391-1413 = Math. USSR Izv. 2 (1968), 1337-1359. MR 38 #6221.
- 2. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31 #6062.
- 3. A. Friedman and M. A. Pinsky, Asymptotic behavior of solutions of linear stochastic differential systems, Trans. Amer. Math. Soc. 181 (1973), 1-22.
- 4. ———, Asymptotic stability and spiraling properties for solutions of stochastic equations, Trans. Amer. Math. Soc. 186 (1973), 331-358.
- 5. J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of the second order, Comm. Pure Appl. Math. 20 (1967), 797-872. MR 38 #2437.
- 6. M. A. Pinsky, A note on degenerate diffusion processes, Teor. Verojatnost. i Primenen. 14 (1969), 522-527=Theor. Probability Appl. 14 (1969), 502-506. MR 41 #7779.
- 7. D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math. 25 (1972), 651-714.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201