WEIGHTED GROTHENDIECK SUBSPACES

RY

JOAO B. PROLLA AND SILVIO MACHADO

ABSTRACT. Let V be a family of nonnegative upper semicontinuous functions on a completely regular Hausdorff space X. For a locally convex Hausdorff space E, let $CV_{\infty}(X;E)$ be the corresponding Nachbin space, that is, the vector space of all continuous functions f from X into E such that vf vanishes at infinity for all $v \in V$, endowed with the topology given by the seminorms of the type $f \mapsto \sup \{v(x) \overline{p(f(x))}; x \in X\}$, where $v \in V$ and p is a continuous seminorm on E. Given a vector subspace E of E of the set of all pairs $x, y \in X$ such that either E of E of the set of all pairs E of E of the set of all pairs E of the set of E of the set of all pairs E of the set of E of the set of all pairs E of the set of E of the set of all pairs E of the set of E of the set of all pairs E of the set of E of the set of all pairs E of the subset of the set of all pairs E of the subset of the sub

1. Introduction. Let X be a completely regular Hausdorff space, and let E be a locally convex Hausdorff space, not reduced to $\{0\}$. The vector space of all E-valued continuous functions on X will be denoted by C(X; E), while $C_b(X; E)$ denotes the subspace of all $f \in C(X; E)$ which are bounded. A weight on X is a nonnegative upper semicontinuous function on X. A set V of weights on X is directed if, for all u, $v \in V$, there are $w \in V$ and t > 0 such that $u \le tw$ and $v \le tw$ pointwise. All sets of weights considered will be directed and V > 0, i.e., given $x \in X$ there is $v \in V$ such that v(x) > 0. Given such a V the Nachbin space $CV_{\infty}(X; E)$ is the vector subspace of all $f \in C(X; E)$ such that vf vanishes at infinity, for every $v \in V$, endowed with the topology determined by the seminorms $f \mapsto \sup \{v(x) p(f(x)); x \in X\}$, where $v \in V$, and $p \in s(E)$, a fixed

Received by the editors April 7, 1973.

AMS (MOS) subject classifications (1970). Primary 46A05, 46E10; Secondary 46E40, 46M05.

Key words and phrases. Nachbin spaces of continuous vector-valued functions, Grothendieck spaces, Kakutani-Stone spaces, Weierstrass-Stone spaces, polynomial algebras, latticial subspaces, Lindenstrauss-Wulbert subspaces, compact mappings.

determining set of continuous seminorms on E. The following definitions are from Blatter [2].

Let L be a vector subspace of $CV_{\infty}(X; E)$. The set G_L of all pairs $x, y \in X$ such that either $0 = \delta_x | L = \delta_y | L$ or there exists $t \in \mathbb{R}$, $t \neq 0$, such that $0 \neq \delta_x | L = t\delta_y | L$, is an equivalence relation for X, and we define a map $g: G_L \longrightarrow \mathbb{R}$ as follows:

$$g(x, y) = 0, \quad \text{if } 0 = \delta_x | L = \delta_y | L;$$

$$g(x, y) = t, \quad \text{if } 0 \neq \delta_x | L = t\delta_y | L.$$

The sets KS_L and WS_L of all pairs $(x, y) \in G_L$ such that $g(x, y) \geq 0$ and $g(x, y) \in \{0, 1\}$, respectively, are likewise equivalence relations for X. Let $\Delta \in \{G, KS, WS\}$. The vector subspace $\Delta(L) = \{f \in CV_{\infty}(X; E); f(x) = g(x, y)f(y)\}$ for all $(x, y) \in \Delta_L\}$ is called the Δ -bull of L in $CV_{\infty}(X; E)$, and L is called a Δ -space is $\Delta(L)$ is the closure of L in $CV_{\infty}(X; E)$. Notice that, by the hypothesis made on V, the closure of L is always contained in $\Delta(L)$. The letters G, KS, and WS stand for Grothendieck, Kakutani-Stone, and Weierstrass-Stone respectively.

The object of the present paper is to characterize, by invariance properties, those subspaces L which are Δ -spaces. Our results are as follows. Let $A(\Delta)$ be the algebra of all $b \in C_b(X; \mathbb{R})$ which are constant on the equivalence classes modulo Δ_L . Assume that $A(\Delta)$ separates the equivalence classes modulo Δ_L . (This is automatically satisfied in the case $\Delta = WS$.) Let $M = \{u^*(f); u^* \in E^*, f \in L\}$. Then:

- (1) L is a WS-space, if L is a polynomial algebra such that M is localizable under itself in $CV_{\infty}(X; \mathbb{K})$.
 - (2) L is a KS-space, if L is a latticial subspace.
- (3) L is a G-space, if L is a Lindenstrauss-Wulbert subspace (see Definition 3.10).

In the spirit of Stone's paper [11], we apply some of these results to reobtain vector-valued versions of some classical theorems.

The following elementary result will be used many times.

- 1.1 Lemma. Let L be a vector subspace of $CV_{\infty}(X; E)$. The following statements are equivalent.
- (1) $M = \{u^*(f); u^* \in E^*, f \in L\}$ is a vector subspace of $CV_{\infty}(X; \mathbb{K})$ and $M \otimes E \subset L$. If L is closed, M is closed, too.
 - (2) Given $u^* \in E^*$, $f \in L$, and $u \in E$, then $u^*(f)u \in L$.

Proof. It is obvious that (1) implies (2). Conversely, assume (2). M is clearly invariant under scalar multiplication. Let u^* , $v^* \in E^*$, and f, $b \in L$ be given. We may assume that u^* and v^* are linearly independent. Choose u, $v \in E$ such that $u^*(u) = v^*(v) = 1$, $u^*(v) = v^*(u) = 0$. By (2), $k = u^*(f)u + v^*(b)v$ belongs

to L. Let $w^* = u^* + v^*$. Then $u^*(f) + v^*(b) = w^*(k) \in M$. Obviously $M \otimes E \subset L$. Suppose now that L is closed. Let f be in the closure of M. Choose $u^* \in E^*$ and $u \in E$ such that $u^*(u) = 1$. Set $b = f \otimes u$. Given $v \in V$, $p \in s(E)$, and $\epsilon > 0$, there exists $w^*(k) \in M$ such that $v(x)|f(x) - w^*(k(x))| < \epsilon/(1 + p(u))$ for all $x \in X$. Then $w^*(k)u \in L$ and $v(x)p(b(x) - w^*(k(x))u) < \epsilon$ for all $x \in X$. Since L is closed, $b \in L$. Therefore, $f = u^*(b) \in M$, and M is closed.

2. Weierstrass-Stone spaces.

- 2.1 Definition. Let E and F be two nonzero topological vector spaces. For each integer $n \ge 1$, $P_f(^nE; F)$ denotes the vector subspace of C(E; F) generated by the set of all maps of the form $x \mapsto u^*(x)^n u$, where $u^* \in E^*$, the topological dual of E, and $u \in F$. The elements of $P_f(^nE; F)$ are called n-bomogeneous continuous polynomials of finite type from E into F. The vector subspace generated by the union of all $P_f(^nE; F)$, $n \ge 1$, and the constant maps, is denoted by $P_f(E; F)$. Similarly, $L_f(^nE; F)$, for each integer $n \ge 1$, denotes the vector space generated by the set of all maps of the form $(x_1, \dots, x_n) \mapsto u_1^*(x_1) \dots u_n^*(x_n)u$ where $u_1^*, \dots, u_n^* \in E^*$ and $u \in F$. The elements of $L_f(^nE; F)$ are called n-linear continuous mappings of finite type from E^n into F.
- 2.2 Lemma. Let L be a vector subspace of $CV_{\infty}(X; E)$. The following statements are equivalent.
- (1) Given $b_1, \dots, b_n \in L$ and $T \in L_f(^nE; E)$, where $n \ge 1$, then $T(b_1, \dots, b_n) \in L$.
 - (2) Given $b \in L$ and $p \in P_{\rho}(^{n}E; E)$, where $n \ge 1$, then $p(b) \in L$.
- (3) $M = \{u^*(b); u^* \in E^*, b \in L\}$ is an algebra contained in $CV_{\infty}(X; \mathbb{K})$ such that $M \otimes E \subset L$.
 - (4) (a) Given $b \in L$, $u^* \in E^*$, and $u \in E$, then $u^*(b)u \in L$.
- (b) There exists a continuous map $T: E \times E \to E$ such that $T(v, v) \neq 0$ for some $v \in E$ for which T(av, bv) = abT(v, v) for all $a, b \in K$ and $T(b, k) \in L$ for all $b, k \in L$.

Proof. It is obvious that (1) implies (2). Assume (2). By the Lemma 1.1 the set M is a vector subspace of $CV_{\infty}(X; K)$ such that $M \otimes E \subset L$. Since $4u^*(b)v^*(k) = [\dot{u}^*(b) + v^*(k)]^2 - [u^*(b) - v^*(k)]^2$, all that remains to prove is that $u^*(b)^2$ belongs to M for any $u^* \in E^*$ and $b \in L$. If $u^* = 0$, there is nothing to prove. Let $u \in E$ be such that $u^*(u) = 1$, and define $p(t) = u^*(t)^2u$ for all $t \in E$. By (2), $k = p(b) \in L$. Since $u^*(k) = u^*(b)^2$, the set M is an algebra. Assume now (3). Part (a) follows immediately. To prove part (b) of (4), consider $u^* \in E^*$ and $v \in E$ with $u^*(v) = 1$. Define $T(s, t) = u^*(s) u^*(t)v$ for all $s, t \in E$. Then T satisfies all requirements. Finally, assume (4). Let $b_1, \dots, b_n \in L$, $u_1^*, \dots, u_n^* \in E^*$, and $u \in E$ be given. We claim that $u_1^*(b_1) \dots u_n^*(b_n)u \in L$.

- The proof is by induction. If n=1, the conclusion follows from part (a). Assume that the conclusion is true for m. Then, given b_i , u_i^* , $i=1,\dots,m+1$, we have $u_1^*(b_1)\dots u_m^*(b_m)v\in L$. Call it b. Let $k=u_{m+1}^*(b_{m+1})v$. Then $k\in L$, by part (a), and $T(b, k)\in L$, by part (b). Choose $v^*\in E^*$ such that $v^*(T(v, v))=1$. By part (a), $v^*(T(b, k))u=u_1^*(b_1)\dots u_{m+1}^*(b_{m+1})u\in L$, and the proof is complete.
- 2.3 Definition. A vector subspace $L \subset CV_{\infty}(X; E)$ is called a polynomial algebra if any of the equivalent statements (1)-(4) is true.
- 2.4 Remark. The name "polynomial algebra" was introduced by Wulbert (unpublished) for vector subspaces satisfying (2), when one allows all continuous polynomials and not just those of finite type. Subspaces L of C(X; E), for X compact and E a real Banach space, satisfying (1) were considered by Pel'czyński [9], but he allowed T to be any multilinear continuous mapping and L contained the constants. Blatter, in [2], considered subspaces of $C_{\infty}(X; E)$, for X locally compact and E a real Banach space, satisfying (4).
- 2.5 Remark. When E = K, $L \subset CV_{\infty}(X; K)$ satisfies (1)-(4) if, and only if, L is an algebra under pointwise operations, and the equivalence relation WS_L is just the usual equivalence relation X/L defined by $x \sim y$ if, and only if, b(x) = b(y) for all $b \in L$. We recall that, in this case, L is called localizable under itself in $CV_{\infty}(X; K)$ (see Nachbin [7]) when the following condition holds true: A function $f \in CV_{\infty}(X; K)$ is in the closure of L if (and always if), for any $v \in V$, any $\epsilon > 0$, and any equivalence class $Y \subset X$ modulo X/L, there exists $b \in L$ such that $v(x)|f(x) b(x)| < \epsilon$ for all $x \in Y$. It is immediate that L is localizable if, and only if, L is a WS-space. Theorem 4 of Nachbin [7] gives a sufficient condition for L to be localizable in $CV_{\infty}(X; K)$.
- 2.6 Proposition. Suppose that $CV_{\infty}(X; E)$ is a polynomial algebra and let L be a vector subspace of $CV_{\infty}(X; E)$. The WS-hull of L is a polynomial algebra such that $M = \{u^*(h); u^* \in E^*, h \in WS(L)\}$ is localizable in $CV_{\infty}(X; K)$.
- Proof. Let $b \in WS(L)$, $u^* \in E^*$, $u \in E$, and $n \ge 1$ be given. Let $k = u^*(b)^n u$. Since $CV_{\infty}(X; E)$ is a polynomial algebra, $k \in CV_{\infty}(X; E)$. Let $(x, y) \in WS_L$. Then $k(x) = u^*(b(x))^n u = u^*(g(x, y) b(y))^n u = g(x, y) k(y)$, since $g(x, y) \in \{0, 1\}$. Hence $k \in WS(L)$, and therefore WS(L) is a polynomial algebra. On the other hand, let $f \in CV_{\infty}(X; K)$ belong to WS(M). Choose $u \in E$ and $u^* \in E^*$ such that $u^*(u) = 1$. Then $b = f \otimes u$ belongs to WS(L), because the formation of WS-hulls is idempotent. Therefore, $u^*(b) = f \in M$, and M is localizable in $CV_{\infty}(X; K)$.
- 2.7 Corollary. Suppose that $CV_{\infty}(X; E)$ is a polynomial algebra and let L be a Weierstrass-Stone space contained in $CV_{\infty}(X; E)$. Then its closure is a poly-

nomial algebra and $M = \{u^*(b); u^* \in E^*, b \in L\}$ is localizable in $CV_{\infty}(X; K)$.

2.8 Lemma. Let A be a selfadjoint subalgebra of $C(X; \mathbf{K})$ such that every $b \in A$ is bounded on the support of every $v \in V$, and let L be a vector subspace of $CV_{\infty}(X; E)$ which is an A-module. Then, $f \in CV_{\infty}(X; E)$ is in the closure of L if (and always only if), for every equivalence class $Y \subset X$ modulo X/A, every $v \in V$, every $p \in s(E)$, and every $\epsilon > 0$, there is $k \in L$ such that for all $x \in Y$, $v(x)p(f(x) - k(x)) < \epsilon$.

Proof. This is an immediate corollary to Theorem 2 of [8].

- 2.9 Theorem. Let L be a vector subspace of $CV_{\infty}(X; E)$ which is a polynomial algebra such that $M = \{u^*(b); u^* \in E^*, b \in L\}$ is localizable in $CV_{\infty}(X; K)$. Then L is a WS-space.
- Proof. Let A = A(WS) be the algebra of all $f \in C_b(X; \mathbb{R})$ which are constant on the equivalence classes modulo WS_L . Notice that WS(M) is an A-module. Therefore, since M is localizable, \overline{M} is an A-module. Let $b \in WS(L)$. Let $Y \subset X$ be an equivalence class modulo X/A, let $v \in V$, $p \in s(E)$, and $\epsilon > 0$ be given. Since M and A define the same equivalence relation on X, namely WS_L , b is constant on Y. Let $u \in E$ be this constant value. If u = 0, then $0 \in M \otimes E$ is such that $v(x)p(b(x)-0)=0 < \epsilon$ for all $x \in Y$. If $u \neq 0$, there exists $f \in L$ whose constant value on Y, say t, is not zero. Let $u^* \in E^*$ be such that $u^*(t)=1$. Then $k=u^*(f)u$ belongs to $M \otimes E$ and $v(x)p(b(x)-k(x))=0 < \epsilon$ for all $x \in Y$. By Lemma 2.8, b belongs to the closure of $\overline{M} \otimes E$. Since $\overline{M} \otimes E$ is contained in the closure of L, L is a Weierstrass-Stone space.
- 2.10 Remark. A subset L of $CV_{\infty}(X; E)$ is called separating if for any $x, y \in X$ with $x \neq y$, there is $h \in L$ such that $h(x) \neq h(y)$, i.e., if WS_L reduces to the diagonal. In this case, WS(L) is precisely the set of all $h \in CV_{\infty}(X; E)$ which vanish on the subset $Z(L) = \{x \in X; f(x) = 0 \text{ for all } f \in L\}$. When $Z(L) = \emptyset$, we say that L is everywhere different from zero.
- 2.11 Corollary. Let L be as in Theorem 2.9. Suppose that L is separating. Then, $f \in CV_{\infty}(X; E)$ belongs to the closure of L if, and only if, f vanishes on the set Z(L).
- 2.12 Corollary. Let L be as in Theorem 2.9. Suppose that L is separating and everywhere different from zero. Then L is dense in $CV_{\infty}(X; E)$.
- 3. Kakutani-Stone and Grothendieck spaces. In this paragraph E is a real locally convex Hausdorff space.
- 3.1 Definition. A subset $M \subset C(X; \mathbb{R})$ is a lattice if $\sup (f, h) \in M$ and $\inf (f, h) \in M$ whenever $f, h \in M$.

- 3.2 Theorem (Nachbin [7]). Let M be a sublattice of $CV_{\infty}(X; \mathbf{R})$. A function $f \in CV_{\infty}(X; \mathbf{R})$ is in the closure of M if, and only if, for every pair x, $y \in X$ and every $\epsilon > 0$, there exists $b \in M$ such that $|b(x) f(x)| < \epsilon$ and $|b(y) f(y)| < \epsilon$.
- 3.3 Remark. It follows from Definition 3.1 that the KS-hull of any vector subspace M of $CV_{\infty}(X; \mathbb{R})$ is a vector lattice.
 - 3.4 Theorem. Any vector sublattice of $CV_{\infty}(X; \mathbb{R})$ is a Kakutani-Stone space.

Proof. Let M be a vector sublattice of $CV_{\infty}(X; \mathbb{R})$ and let $h \in KS(M)$. Let $x, y \in X$ be given arbitrarily.

Case I. $0 = \delta_x | M$ or $0 = \delta_y | M$. Suppose $0 = \delta_x | M$. Then g(x, x) = 0 and b(x) = 0. If $(x, y) \in KS_M$, then b(y) = 0 too, and $0 \in M$ agrees with b at x and y. If $(x, y) \notin KS_M$, then there is some $f \in M$ such that f(x) = 0 = b(x) and f(y) = b(y). The case $0 = \delta_y | M$ is analogous.

Case II. $0 \neq \delta_x | M$ and $0 \neq \delta_y | M$. If $(x, y) \in KS_M$, then $0 \neq \delta_x | M = r\delta_y | M$ for some r > 0. Choose $f \in M$ such that f(x) = b(x). Then f(y) = b(y), because both f and h belong to KS(M). If $(x, y) \notin KS_M$, $\delta_x | M \neq r\delta_y | M$ for all r > 0. Choose $f_x \in M$ such that $f_x(x) = 1$. If $f_x(y) \leq 0$, we can in fact suppose $f_x(y) = 0$, by taking sup $(f_x, 0) \in M$, if necessary. Choose $f_y \in M$ with $f_y(y) = 1$. Then, the function $f = (b(x) - b(y)f_y(x))f_x + b(y)f_y$ belongs to M and is such that f(x) = b(x) and f(y) = b(y). If $f_x(y) > 0$, there is $h_y \in M$ such that $h_y(x) \neq (f_x(y))^{-1}h_y(y)$. Hence the system

$$af_{x}(x) + bb_{y}(x) = b(x), \quad af_{x}(y) + bb_{y}(y) = b(y)$$

can be solved for a and b. Then $f = af_x + bb_y \in M$ agrees with b at x and y. From Theorem 3.2, b belongs to the closure of M, and therefore, M is a Kakutani-Stone space.

- 3.5 Corollary. Let M be a closed vector subspace of $CV_{\infty}(X; \mathbf{R})$. Then, M is a KS-space if, and only if, M is a vector sublattice.
- 3.6 Proposition. A vector subspace M of $CV_{\infty}(X; \mathbf{R})$ is a G-space if, and only if, $\overline{\mathbf{M}}$ is determined by its restrictions to the two-point subsets of X.
- **Proof.** For any vector subspace M of $CV_{\infty}(X; \mathbb{R})$, it follows from the definition of G(M) that G(M) is determined by its restrictions to the two-point subsets of X. Conversely, if \overline{M} is determined by its restrictions to the two-point subsets of X, then an obvious modification of the argument presented in the proof of Theorem 3.4 proves that M is a G-space.
- 3.7 Remark. For any vector subspace M of $CV_{\infty}(X; \mathbb{R})$, it follows from the definition of G(M) that G(M) contains the function $\sup (0, f, b) + \inf (0, f, b)$, whenever it contains f and b.

- 3.8 Theorem. Let M be a vector subspace of $CV_{\infty}(X; \mathbf{R})$ such that M contains $\sup (0, f, b) + \inf (0, f, b)$ whenever it contains f and b. Then M is a Grothendieck space.
- **Proof.** This result can be proved by modifying conveniently the argument of Lindenstrauss and Wulbert presented in the proof of Theorem 2' of [5], making use of the fact that, for each $f \in CV_{\infty}(X; \mathbb{R})$, $v \in V$, and $\epsilon > 0$, the set $K = \{x \in X; v(x) | f(x) | \geq \epsilon \}$ is compact.
- 3.9 Remark. It follows from the above results that, if M is an algebra contained in $CV_{\infty}(X; \mathbb{R})$ such that its closure is a lattice, then M is localizable. More generally, if the closure of M is a G-space, then M is localizable.
- 3.10 Definition. A vector subspace $L \subset CV_{\infty}(X; E)$ is called a latticial subspace (respectively a Lindenstrauss-Wulbert subspace) if it satisfies the following conditions:
 - (a) For each $u^* \in E^*$, $u \in E$, and $b \in L$, then $u^*(b)u \in L$.
- (b) There exists a continuous mapping $T: E \times E \to E$ such that for some $v \in E$, $T(v, v) \neq 0$ and, for all pairs $a, b \in R$, $T(av, bv) = \max(a, b) T(v, v)$ (respectively $T(av, bv) = (\max(0, a, b) + \min(0, a, b)) T(v, v)$) and $T(f, b) \in L$, for all $f, b \in L$.
- 3.11 Proposition. Let L be a (closed) vector subspace of $CV_{\infty}(X; E)$ and let $M = \{u^*(f); u^* \in E^*, f \in L\}$. Consider the following statements.
 - (1) L is a latticial subspace.
 - (2) M is a (closed) KS-space such that $M \otimes E \subset L$.
 - (3) L is a Lindenstrauss-Wulbert subspace.
 - (4) M is a (closed) G-space such that $M \otimes E \subset L$.
- Then, (1) is equivalent to (2), and (3) is equivalent to (4).
- **Proof.** The proofs are similar to the proof of Lemma 2.2, and make use of Theorems 3.4 and 3.8.
- 3.12 Proposition. Let L be a vector subspace of $CV_{\infty}(X; E)$. Then KS(L) is a latticial subspace, and G(L) is a Lindenstrauss-Wulbert subspace.
- **Proof.** Let $u^* \in E^*$, $u \in E$, and $f \in KS(L)$ be given. Let $b = u^*(f)u$. For any pair $(x, y) \in KS_L$ we have: $b(x) = u^*(f(x))u = g(x, y)u^*(f(y))u = g(x, y)b(y)$. Hence $b \in KS(L)$. Now choose $v^* \in E^*$ and $v \in E$ such that $v^*(v) = 1$. Define $T: E \times E \to E$ by setting $T(s, t) = \max(v^*(s), v^*(t))v$ for all $s, t \in E$. Then T is continuous and $T(v, v) = v \neq 0$, and $T(av, bv) = \max(a, b) T(v, v)$. Let now $f, b \in KS(L)$. It follows that $T(f(x), b(x)) = \max(v^*(f(x)), v^*(b(x)))v = \max(g(x, y)v^*(f(y)), g(x, y)v^*(b(y)))v = g(x, y) T(f(y), b(y))$, for all $(x, y) \in KS_L$, so T(f, b) belongs to KS(L). Therefore KS(L) satisfies (a) and (b) of Definition 3.10. The proof that G(L) is a Lindenstrauss-Wulbert subspace is similar.

- 3.13 Corollary. Let L be a vector subspace of $CV_{\infty}(X; E)$. If L is a KS-space (respectively a G-space), then its closure is a latticial subspace (respectively a Lindenstrauss-Wulbert subspace).
- 3.14 Theorem. Let L be a vector subspace of $CV_{\infty}(X;E)$, which is a latticial subspace (respectively a Lindenstrauss-Wulbert subspace). Assume that A(KS) (respectively A(G)) separates the equivalence classes modulo KS_L (respectively G_L). Then L is a Kakutani-Stone space (respectively a Grothendieck space).
- Proof. Let $\Delta \in \{KS, G\}$. Let $M = \{u^*(f); u^* \in E^*, f \in L\}$. From Proposition 3.11, M is a Δ -space contained in $CV_{\infty}(X; \mathbb{R})$ such that $M \otimes E \subset L$. Since $\Delta(M) = \overline{M}, \ \overline{M} \otimes E$ is an $A(\Delta)$ -module. Let $f \in CV_{\infty}(X; E)$ belong to $\Delta(L)$. Let $Y \subset X$ be an equivalence class modulo $X/A(\Delta)$. Since $A(\Delta)$ separates the equivalence classes modulo Δ_L , the set Y is contained in some equivalence class modulo Δ_L . Fix $x_0 \in Y$. If $f(x_0) = 0$, then f(x) = 0 for all $x \in Y$, and the function $0 \in M \otimes E$ agrees with f throughout f. If $f(x_0) \neq 0$, there is some f is such that f is some f is such that f is a f is such that f is a f is
- 3.15 Remark. The hypothesis that $A(\Delta)$ separates the equivalence classes modulo Δ_L is equivalent to the hypothesis that $C_b(F; R)$ separates points, where F is the quotient space of X by the equivalence relation Δ_L . One instance in which this occurs is the following. Suppose that our completely regular Hausdorff space X is in fact a normal space and that Δ_L is an upper semicontinuous relation, i.e., Δ_L is closed (Willard [12, Theorem 9.9]). Then, F is a normal Hausdorff space too (Engelking [4, Theorem 5, p. 85]). Another instance occurs when Δ_L reduces to the diagonal. Indeed, in this case, $A(\Delta)$ is $C_b(X; R)$. Notice that, in this case, as was pointed out in 2.10, $\Delta(L)$ is the set of all $f \in CV_\infty(X; E)$ which vanish on the set $Z(L) = \{x \in X; b(x) = 0 \text{ for all } b \in L\}$.
- 3.16 Corollary. Let L be a vector subspace of $CV_{\infty}(X; E)$, which is a latticial subspace (respectively a Lindenstrauss-Wulbert subspace). Suppose that KS_L (respectively G_L) reduces to the diagonal. Then, $f \in CV_{\infty}(X; E)$ belongs to the closure of L, if and only if, f vanishes on the set $Z(L) = \{x \in X; b(x) = 0 \text{ for all } b \in L\}$.
 - 3.17 Corollary. Let L be as in Corollary 3.16, and suppose that KS_L (respectively G_L) reduces to the diagonal and that L is everywhere different from zero. Then L is dense in $CV_{\infty}(X; E)$.
 - 3.18 Remark. Our Theorem 3.14 does not contain Theorem 1.13 of Blatter

- [2]. The argument presented there rests on the fact that $C_{\infty}(X; \mathbf{R})$ and the KS-hull (respectively the G-hull) of M have the approximation property. However, his arguments can be used to prove the following generalization of Theorem 1.13 of [2].
- 3.19 Theorem. Let X be a completely regular Hausdorff k-space, and let E be a complete locally convex Hausdorff space. Suppose that for every compact subset $K \subset X$ and every t > 0, there exists $v \in V$ such that $v(x) \ge t$ for all $x \in K$. Let L be a vector subspace of $CV_{\infty}(X; E)$ which is a latticial subspace, respectively a Lindenstrauss-Wulbert subspace. Then L is a KS-space, respectively a G-space.
- **Proof.** The space $CV_{\infty}(X; \mathbb{R})$ has the approximation property, by Theorem 3, §5, Bierstedt [1].
- 4. Examples and applications. Let V be the set of characteristic functions of compact subsets of X. The Nachbin space $CV_{\infty}(X; E)$ is just C(X; E) endowed with the compact-open topology. A subset $L \subset C(X; E)$ is called selfadjoint if $M = \{u^*(f); u^* \in E^*, f \in L\}$ is a selfadjoint subset of C(X; K).
- 4.1 Theorem (Weierstrass-Stone). Let L be a selfadjoint polynomial subalgebra of C(X; E). A function $f \in C(X; E)$ belongs to the closure of L if, and only if, the following conditions hold:
- (1) For every $x, y \in X$ such that $f(x) \neq f(y)$, there is $b \in L$ such that $b(x) \neq b(y)$.
 - (2) For every $x \in X$, such that $f(x) \neq 0$, there is $h \in L$ such that $h(x) \neq 0$.
- **Proof.** Since every selfadjoint subalgebra of C(X; K) is localizable [6, Theorem 1, §30], Theorem 2.9 implies that L is a Weierstrass-Stone space, and therefore its closure is precisely WS(L). It remains only to notice that $f \in WS(L)$ if, and only if, conditions (1) and (2) are satisfied.
- 4.2 Corollary. Let L be a selfadjoint polynomial subalgebra of C(X; E), separating and everywhere different from zero on X. Then L is dense in C(X; E).
- 4.3 Corollary. Let A be a selfadjoint subalgebra of C(X; K), separating and everywhere different from zero on X. Then $A \otimes E$ is dense in C(X; E). In particular, $C(X; K) \otimes E$ is dense in C(X; E).

Suppose that X is the Cartesian product of two completely regular Hausdorff spaces X_1 and X_2 . Let L be the set of all finite sums of functions of the form $(x_1, x_2) \mapsto f(x_1) \, b \, (x_2)$, where $f \in C(X_1; \mathbb{K})$ and $b \in C(X_2; E)$. Dieudonné's approximation theorem on Cartesian products, stating that $C(X_1; \mathbb{K}) \otimes C(X_2; E)$ is dense in $C(X_1 \times X_2; E)$, is now an easy consequence of Corollary 4.2.

- 4.4 Theorem. Let E and F be two locally convex Hausdorff spaces over the reals. The closure in the compact-open topology of the set of all continuous polynomials p of finite type from E into F, with p(0) = 0, consists of all mappings $f \in C(E; F)$ such that f(0) = 0.
 - Proof. This follows from a direct application of Theorem 4.1.
- 4.5 Theorem (Infinite-dimensional Weierstrass polynomial approximation theorem). Let E and F be two locally convex Hausdorff spaces over the reals. Then $P_{\epsilon}(E; F)$ is dense in C(E; F).
 - **Proof.** Apply Corollary 4.2 to $L = P_f(E; F)$.
- 4.6 Remark. The space $P_f(E; F)$ is not selfadjoint in the complex case. Instead of $P_f(E; F)$ one has to consider the vector subspace $P_f^*(E; F)$ defined as follows. For each integer $n \ge 1$, $P_f^*(nE; F)$ denotes the vector subspace of C(E; F) generated by the set of all maps of the form $x \mapsto u^*(x)^n u$, where $u \in F$ and u^* or its complex conjugate belongs to E^* . Then $P_f^*(E; F)$ is, by definition, the vector subspace generated by the union of all $P_f^*(nE; F)$ with $n \ge 1$ and the constant maps. Theorem 4.5 now holds with $P_f^*(E; F)$ substituted for $P_f(E; F)$.
- Let X be a locally compact Hausdorff space and let $V = C_{\infty}^+(X)$, the set of all positive continuous functions vanishing at infinity on X. The Nachbin space $CV_{\infty}(X;E)$ is then $C_b(X;E)$ endowed with the strict topology β . Again we are in the bounded case of the approximation problem, and therefore every selfadjoint subalgebra of $C_b(X;K)$ is localizable under itself in the strict topology. Hence Theorem 4.1 and its corollaries hold when $C_b(X;E)$ with the strict topology is substituted for C(X;E) with the compact-open topology.
- 5. Extension theorems. Let Y be a closed subset of X. Then, for every weight v on X, its restriction to Y is a weight on Y. If V is a set of weights on X, we denote by V|Y the set of weights on Y that are restriction to Y of some element of V. The corresponding Nachbin space $C(V|Y)_{\infty}(Y; E)$ will be denoted by $CV_{\infty}(Y; E)$. Let L be a vector subspace of $CV_{\infty}(X; E)$. A function $f \in CV_{\infty}(Y; E)$ is said to be extensible in L if there exists $h \in L$ such that h|Y = f, i.e. h(x) = f(x) for all $x \in Y$. The set of all such extensible functions is denoted by L|Y. Notice that, if L is a polynomial algebra, or a latticial subspace, or a Linderstrauss-Wulbert subspace, the same is true of L|Y as subspace of $CV_{\infty}(Y; E)$.
- 5.1 Theorem. Let Y be a closed subset of a completely regular Hausdorff space X. Let L be a vector subspace of $CV_{\infty}(X; E)$ which is a polynomial algebra such that every $b \in L$ is bounded on the support of every $v \in V$. Assume that L is selfadjoint and that L|Y is closed in $CV_{\infty}(Y; E)$. Then $f \in CV_{\infty}(Y; E)$ is extensible in L if, and only if, the following conditions are satisfied:

- (1) For any $x, y \in Y$ such that $f(x) \neq f(y)$, there is $b \in L$ such that $h(x) \neq h(y)$.
 - (2) For any $x \in Y$ such that $f(x) \neq 0$, there is $h \in L$ such that $h(x) \neq 0$.
 - **Proof.** Under the hypothesis made, L|Y is a WS-space.
- 5.2 Corollary. Let Y and L be as in Theorem 5.1. If L|Y is separating and everywhere different from zero on Y, then every $f \in CV_{\infty}(Y; E)$ is extensible in L.
- 5.3 Theorem. Let Y be a compact subset of a completely regular Hausdorff space X, let E be a Banach space, and let $f \in C(Y; E)$. There is $b \in C_b(X; E)$ such that b|Y = f and $||f||_Y = ||b||_X$.
- **Proof.** Let $L = C_b(X; E) \subset C(X; E)$. An obvious modification of the argument given in Stone [11, p. 64] proves that L|Y is closed in C(Y; E). Since X is completely regular, $C_b(X; E)$ is separating and everywhere different from zero on X, in particular on Y. By Corollary 5.2, every $f \in C(Y; E)$ is extensible in $C_b(X; E)$. The final statement follows from the fact that for any function $f \in C(X; E)$, which is bounded on Y, there is $b \in C_b(X; E)$ such that b|Y = f and $\|f\|_{Y} = \|b\|_{X^*}$
- 5.4 Theorem. Let Y be a closed subset of a normal Hausdorff space X, let E be a Banach space, and let $f \in C(Y; E)$ be a compact mapping. There exists a compact mapping $b \in C(X; E)$ such that b|Y = f and b(X) is contained in the closed convex bull of f(Y).
- **Proof.** If βX and βY denote the Stone-Čech compactifications of X and Y respectively, it is known that βY identifies with the closure of Y in βX , (see [10]) and that a mapping $f \in C(Y; E)$ has an extension to βY if, and only if, f(Y) is precompact. Hence we can extend f to f though a function f to f theorem 5.3 we can extend f to f though an extension, let f theorem 5.3 we can extend f to f though an extension, let f theorem 5.3 we can extend f to f the sum of f theorem 5.3 we can extend f to f the sum of f theorem 5.3 we can extend f to f the sum of f theorem 5.3 we can extend f to f the sum of f theorem 5.3 we can extend f to f the sum of f theorem 5.3 we can extend f the sum of f theorem 5.3 we
- 5.5 Theorem. Let Y be a closed subset of a completely regular Hausdorff space X, let E be a Banach space. A function $f \in C_{\infty}(Y; E)$ is extensible in $C_{\infty}(X; E)$ if, and only if, the following conditions hold:
- (1) For any $x, y \in Y$ such that $f(x) \neq f(y)$, there is $h \in C_{\infty}(X; E)$ such that $h(x) \neq h(y)$.
- (2) For any $x \in Y$ such that $f(x) \neq 0$, there is $h \in C_{\infty}(X; E)$ such that $h(x) \neq 0$.

- If $f \in C_{\infty}(Y; E)$ is extensible, we can choose an extension $h \in C_{\infty}(X; E)$ such that $\|f\|_{Y} = \|h\|_{X}$.
- **Proof.** Take $L = C_{\infty}(X; E)$. As in Theorem 5.3, L|Y is closed in $C_{\infty}(Y; E)$. Theorem 5.5 follows then from Theorem 5.1.
- 5.6 Corollary. Let Y be a closed subset of a locally compact Hausdorff space X, let E be a Banach space. Then, every $f \in C_{\infty}(X; E)$ is extensible in $C_{\infty}(X; E)$, and we can choose an extension with the same norm.
- **Proof.** Since X is locally compact, the space $C_{\infty}(X; E)$ is separating and everywhere different from zero.

BIBLIOGRAPHY

- 1. K.-D. Bierstedt, Gewichtete Räume Stetiger Vektorwertiger Funktionen und das Injektive Tensorprodukt, Ph. D. Dissertation, Johannes Gutenberg-Universität in Mainz, 1970.
- 2. J. Blatter, Grothendieck spaces in approximation theory, Mem. Amer. Math. Soc. No. 120 (1972).
- 3. J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. MR 13, 373.
- 4 R. Engelking, Outline of general topology, PWN, Warsaw, 1965; English transl., North-Holland, Amsterdam; Interscience, New York, 1968. MR 36 #4508; 37 #5836.
- 5. J. Lindenstrauss and D. E. Wulbert, On the classification of the Banach spaces whose duals are L_1 spaces, J. Functional Analysis 4 (1969), 332-349. MR 40 #3274.
- 6. L. Nachbin, Elements of approximation theory, Van Nostrand Math. Studies, no. 14, Van Nostrand, Princeton, N. J., 1967. MR 36 #572.
- 7. ———, Weighted approximation for function algebras and quasi-analytic mappings, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott-Foresman, Chicago, Ill., 1966, pp. 330-333. MR 33 #7835.
- 8. L. Nachbin, J. B. Prolla and S. Machado, Concerning weighted approximation, vector fibrations, and algebras of operators, J. Approximation Theory 6 (1972), 80-89.
- 9. A. Pelczyński, A generalization of Stone's theorem on approximation, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 105-107. MR 19, 135.
- 10. M. H. Stone, On the compactification of topological spaces, Ann. Soc. Polon. Math. 21 (1948), 153-160. MR 10, 137.
- 11. ——, The generalized Weierstrass approximation theorem. In Buck, R. C., Studies in Modern Analysis, MAA Studies in Mathematics 1 (1962), 30-87.
 - 12. S. Willard, General topology, Addison-Wesley, Reading, Mass., 1970. MR 41 #9173.

INSTITUTO DE MATEMATICA, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO, CAIXA POSTAL 1835, ZC-00, 2000 RIO DE JANEIRO, GB, BRASIL