ON A COMPACTNESS PROPERTY OF TOPOLOGICAL GROUPS

RY

S. P. WANG(1)

ABSTRACT. A density theorem of semisimple analytic groups acting on locally compact groups is presented.

Let G and H be locally compact groups with G acting continuously on H as a group of automorphisms. An element h of H is said to be G-bounded if the orbit $Gh = \{g(h): g \in G\}$ has compact closure in H. We write $F_G(H)$ for the set of all G-bounded elements in H. It is very easy to verify that $F_G(H)$ is a G-invariant subgroup of H. However in general, $F_G(H)$ is not closed in H. In this paper, we shall study the group $F_G(H)$ for certain topological groups G. Our main result is the following

Theorem. Let G be a semisimple analytic group without compact factors acting on a locally compact group H continuously as a group of automorphisms. If the set $F_G(H)$ is dense in H, then G acts trivially on H.

The theorem generalizes some results in [2], [4] and is closely related to the density property of certain subgroups in semisimple analytic groups without compact factors. The result of Corollaries 4.1 and 4.2 is contained in [2], [4].

In the sequel, we shall use the term "G acts on H" for "G acts on H as a group of automorphisms".

1. Minimally almost periodic groups. Let G be a locally compact group. We recall that G is minimally almost periodic if there are no nontrivial continuous homomorphisms $f: G \to G'$ of locally compact groups such that the closure $\mathrm{Cl}(f(G))$ of f(G) in G' is compact. Minimally almost periodic groups have been widely studied. Yet for our need, we shall establish some lemmas concerning minimally almost periodic groups.

Lemma 1.1. Let G be a minimally almost periodic group acting continuously on a locally compact group H, and N be a closed G-invariant normal subgroup of H.

Received by the editors December 4, 1970 and, in revised form, February 1, 1972.

AMS (MOS) subject classifications (1970). Primary 22D05; Secondary 22E15.

Key words and phrases. Gebounded elements, locally compact groups, analytic groups.

Key words and phrases. G-bounded elements, locally compact groups, analytic group, linear Lie groups, almost periodic groups, cross homomorphisms.

⁽¹⁾ Partially supported by NSF Grant GP-667350-1395. The author would like to thank the referee for helpful suggestions.

84 S. P. WANG

If the set $F_G(H)$ is dense in H, and G acts trivially on both N and H/N, then G acts trivially on H.

Proof. Let b be any fixed element of $F_G(H)$. As G acts trivially on H/N, there is a continuous function $f: G \longrightarrow N$ such that g(b) = bf(g), $g \in G$. Since G acts trivially on N, we have

$$bf(g'g) = (g'g)b = g'(gb) = g'(bf(g))$$

= $g'(b)f(g) = bf(g')f(g)$ (g', $g \in G$).

Hence f is a continuous homomorphism. We know that Cl(Gh) is compact. Cl(f(G)), being contained in $h^{-1}Cl(Gh)$, is evidently compact. Therefore f has to be trivial; equivalently g(h) = h for every g in G. Since the set $F_G(H)$ is dense in H, it follows readily that G acts trivially on H.

Lemma 1.2. Let G be a connected minimally almost periodic group acting continuously on a locally compact abelian group A. If the set $F_G(A)$ is dense in A, then G acts trivially on A.

Proof. First we assume that A is compactly generated. In this case, A has a unique maximal compact subgroup K. Obviously K is characteristic, hence G-invariant. By a well-known theorem of Iwasawa [3], the automorphism group Aut(K) of K with compact-open topology is totally disconnected, hence G acts trivially on K. By Lemma 1.1, we may assume that $K = \{e\}$ and A is an abelian Lie group. Let A° be the identity component of A. Since G is connected, G acts trivially on A/A° . Again by Lemma 1.1, we may even assume that A is connected. Under these additional assumptions, $A = R^{l}$ for some positive integer l. Now we pick out a basis $\{e_i, \dots, e_l\}$ of R^{l} from $F_G(R^{l})$. This is possible because $F_G(R^{l})$ is dense in R^{l} . With respect to this basis, for every g in G, we write

$$g(e_i) = \sum_{j=1}^{l} g_{ji} e_j \qquad (1 \le i \le l),$$

with g_{ji} in R. It is easy to show that the map $g \to (g_{ij})$ $(g \in G)$ is a continuous homomorphism f of G into GL(l,R). Since all the entries g_{ij} $(1 \le i, j \le l, g \in G)$ are bounded, we conclude f(G) has compact closure in GL(l,R). Hence f has to be trivial, and the lemma is proved in case that A is compactly generated. For the general case, G acts trivially on A/A° , hence G leaves any open subgroup of A invariant. Let N be a compactly generated open subgroup of A. Clearly $F_G(N) = F_G(A) \cap N$ is still dense in N. By what we have just proved, G acts trivially on C and by Lemma 1.1, the proposition follows.

Remark. In the preceding lemma, we assume only that the set $F_G(A)$ is dense in A. In general we do not know whether the set $F_G(A^\circ) = F_G(A) \cap A^\circ$ is dense in A° . That is why we consider first compactly generated open subgroups of A rather than the subgroup A° .

Corollary 1.3. Let G be a connected minimally almost periodic group and L a closed subgroup of G with compact quotient G/L. Let A be a locally compact abelian group such that G acts continuously on A. If L leaves an element x of A fixed, then x is fixed by G.

Proof. Consider the group $Cl(F_G(A))$. By Lemma 1.2, G acts trivially on $Cl(F_G(A))$. Clearly x lies in $F_G(A)$ and the corollary follows.

Corollary 1.3 reveals at least some density property of those subgroups L of G with compact quotient G/L. In general, the structure of minimally almost periodic groups is not entirely clear. However for connected groups, we have the following criterion. The result must be known but we offer a proof here for completeness.

Lemma 1.4. Let G be a connected locally compact group. The following statements are equivalent:

- (i) G is minimally almost periodic.
- (ii) G is an analytic group such that [G, G] is dense in G and G/R(G) has no compact factors where R(G) is the radical of G.
- **Proof.** (i) \Rightarrow (ii) Since G is a connected locally compact group, locally G is the direct product of a compact group and a local Lie group. However G is minimally almost periodic, hence G is a Lie group. Consider then the groups G/Cl([G, G]) and G/R(G). G/R(G) (resp. G/Cl([G, G])) is minimally almost periodic semisimple (resp. abelian minimally almost periodic). (ii) follows immediately.
- (ii) \Rightarrow (i) By a well-known theorem of von Neumann, any topological group G contains a unique minimal closed normal subgroup N such that G/N is maximally almost periodic, i.e., there is a continuous injection of G/N into a compact group K. Hence it suffices to show that G/N is trivial in our case. Clearly G/N still satisfies all the assumptions in (ii). But, by a theorem of Freudenthal, a connected maximally almost periodic locally compact group is the direct product of a compact group and a vector group. Hence one concludes readily that G/N is trivial, i.e., G=N is minimally almost periodic.
- 2. Cross homomorphisms. Let G be a locally compact group acting on a locally compact abelian group A continuously. A continuous map $f: G \to A$ is called a cross homomorphism if f satisfies the condition

$$f(gg') = g(f(g')) + f(g)$$

for all g, g' in G. Given any v in A, the map $d_v \colon G \to A$, defined by $d_v(g) = gv - v$ ($g \in G$) clearly is a cross homomorphism. A cross homomorphism f is said to be bomologous to 0 if $f = d_v$, for some v in A.

Lemma 2.1. Let G be a semisimple analytic group acting on a locally compact abelian group A continuously. Then any cross homomorphism $f: G \to A$ is homologous to 0.

86 S. P. WANG

Proof. Let e be the identity element of G. Since f is a cross homomorphism, f(e) = 0. Hence f(G) is contained in A° because f is continuous. Therefore we may even assume that A is connected. Let K be the unique maximal compact subgroup of A. Clearly K is G-invariant and G acts trivially on K. f induces then a cross homomorphism $\overline{f}: G \to A/K$. A/K is isomorphic to R^{l} for some positive integer l. It is well known that \overline{f} is homologous to 0. Hence there exists an element v in A such that

$$f(g) \equiv g\nu - \nu \pmod{K}, \quad g \in G$$

Let $f_1: G \to K$ be the map defined by

$$f_1(g) = f(g) - g\nu + \nu, \quad g \in G.$$

One verifies readily that f_1 is a cross homomorphism. Since G acts trivially on K, f_1 is a homomorphism, hence $f_1(G) = \{0\}$. Thus $f = d_n$ is homologous to 0.

3. Linear Lie groups. Let GL(n, C) (resp. gl(n, C)) be the group of all n by n nonsingular complex matrices (resp. the Lie algebra of all n by n complex matrices). Clearly gl(n, C) is the Lie algebra of GL(n, C) and the exponential map exp: $gl(n, C) \rightarrow GL(n, C)$ is just the usual one. Let λ be any positive number. We denote by $gl(n, C; \lambda)$ the set of all elements X in gl(n, C) such that the imaginary parts of all the eigenvalues of X lie in the open interval $(-\lambda, \lambda)$. Let G be any Lie subgroup of GL(n, C) and g its Lie algebra. We write g_{λ} , G_{λ} and exp_{λ} for $g \cap gl(n, C; \lambda)$, $exp(g_{\lambda})$ and the restriction of exp_{λ} on g_{λ} respectively.

Lemma 3.1 [4]. The maps \exp_{λ} $(0 < \lambda \le \pi)$ are diffeomorphisms.

Proposition 3.2. Let G be a semisimple analytic subgroup of GL(n, C) and H a Lie subgroup of GL(n, C). Suppose that

- (i) G has no compact factors,
- (ii) G normalizes H, and
- (iii) $F_G(H)$ is dense in H where G acts on H through conjugation. Then G centralizes H.

Proof. Let λ be any positive number smaller than π . By Lemma 3.1, $\exp_{\lambda}: \mathfrak{h} \to H_{\lambda}$ is a diffeomorphism. Clearly \mathfrak{h}_{λ} is G-invariant under conjugation. Since $F_G(H)$ is dense in H, there is a basis $\{X_1, \dots, X_r\}$ of \mathfrak{h} such that $X_i \in \mathfrak{h}_{\lambda}$ and $\exp X_i \in F_G(H)$ $(1 \le i \le r)$. Let Ad be the adjoint representation of $\operatorname{GL}(n, C)$ on $\operatorname{gL}(n, C)$. Then with respect to this basis, all elements in the group $\operatorname{Ad}(G)|_{\mathfrak{h}}$ have bounded entries because $\exp X_i \in F_G(H)$ $(1 \le i \le n)$ and \exp_{λ} is a diffeomorphism. Hence $\operatorname{Ad}(G)|_{\mathfrak{h}}$ has compact closure. By (i) and Lemma 1.4, G centralizes H° . Clearly G acts trivially on H/H° for H/H° is discrete and G is connected. By Lemma 1.1, G acts trivially on H, therefore G centralizes H.

- 4. Proof of the theorem. We prove the theorem in several steps.
- (i) G leaves invariant any open subgroup of H. Since H/H° is discrete and G is connected, G acts trivially on H/H° . Clearly H° is contained in any open subgroup of H. Hence (i) follows easily.
- (ii) We may assume that H is an analytic group. Let H_1 be an open subgroup of H such that H_1 is a projective limit of Lie groups. Let K be a normal compact subgroup of H_1 such that H_1/K is a Lie group. Then consider $H_2 = H_1^\circ K$. H_2 is again an open subgroup of H. It is well known that a connected locally compact group has a unique maximal compact normal subgroup. It follows that H_2 also has a unique maximal normal compact subgroup L. By (i) H_2 is G-invariant, hence L is also G-invariant. Since L is compact, $\operatorname{Aut}(L)^\circ = \operatorname{the inner automorphism group}$ by a theorem of Iwasawa [3]. Therefore $\operatorname{Aut}(L)^\circ = \operatorname{the inner automorphism group}$ by a continuous homomorphism $f: G \to \operatorname{Aut}(L)$. Clearly f(G), being contained in $\operatorname{Aut}(L)^\circ$, has compact closure. By Lemma 1.4, f(G) is trivial, i.e., G acts trivially on L. Therefore by Lemma 1.1, we may even assume that $H = H_2/L$ is an analytic group.
- (iii) By (ii) we assume further that H is an analytic group. Let $M = G \cdot H$ be the semidirect product of G and H. Let Ad be the adjoint representation of M on its Lie algebra. Passing over to Ad(M), by Proposition 3.2, one concludes that given any $b \in H$

$$g(b) = bs(g), g \in G,$$

where s(g) is in the center Z(H) of H. By a direct calculation, $s: G \to Z(H)$ is a cross homomorphism. By Lemma 2.1, s is homologous to 0. Hence there is $z \in Z(H)$ with $s(g) = g(z^{-1})z$ for all $g \in G$. Now consider the element bz. Clearly g(bz) = bz for all $g \in G$. Let F be the set of all fixed points of H. Clearly F is a closed subgroup of H. By what we have just proved, $F \cdot Z(H) = H$. Hence F is normal and H/F is abelian. By Proposition 1.2, G acts trivially on H/F. By Lemma 1.1, G acts trivially on H. Therefore the proof of the theorem is hereby completed.

Corollary 4.1. Let G be analytic semisimple group without compact factors, and g an element of G. If the conjugacy class $\{x g x^{-1} : x \in G\}$ has compact closure in G, g is in the center Z(G) of G.

Proof. G acts on G through conjugation. By the theorem $F_G(G) = Z(G)$. Clearly g is in $F_G(G)$.

Corollary 4.2. Let G be an analytic semisimple group without compact factors and α an automorphism of G. If the subset $\{\alpha(g)g^{-1}: g \in G\}$ has compact closure then α is the identity map.

Proof. Let $\omega: G \to \operatorname{Aut}(G)$ be the homomorphism defined by $\omega(g)(x) = g \times g^{-1}$, $(g, x \in G)$. Clearly G acts on $\operatorname{Aut}(G)$ through ω and conjugation, and $\alpha \in F_G(\operatorname{Aut}(G))$. By the theorem, G leaves α fixed, i.e. $\omega(\alpha(g)) = \alpha\omega(g)\alpha^{-1} = \omega(g)$ for all g in G. It follows then $\alpha(g)g^{-1}$ is in the center Z(G) of G and the map $g \to \alpha(g)g^{-1}$ $(g \in G)$ is a homomorphism of G into Z(G). Since G is semisimple, this map has to be trivial. Therefore $\alpha(g) = g$ for all g in G, i.e., α is the identity map of G.

REFERENCES

- R. Baer, Finiteness properties of groups, Duke Math. J. 15 (1948), 1021-1032.
 MR 10, 352.
- 2. M. Goto, A remark on a theorem of A. Weil, Proc. Amer. Math. Soc. 20 (1969), 163-165. MR 38 #1211.
- 3. K. Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507-558. MR 10, 679.
- 4. J. Tits, Automorphismes à déplacement bomé des groupes de Lie, Topology 3 (1964), 1-11. MR 28 #2170.
- 5. S. P. Wang, Compactness properties of topological groups, Trans. Amer. Math. Soc. 154 (1971), 301-314. MR 42 #6152.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, LAFAYETTE, INDIANA 47907