GALOIS THEORY FOR FIELDS K/k FINITELY GENERATED(1)

BY NICKOLAS HEEREMA AND JAMES DEVENEY

ABSTRACT. Let K be a field of characteristic $p \neq 0$. A subgroup G of the group H'(K) of rank t higher derivations ($t \leq \infty$) is Galois if G is the group of all d in H'(K) having a given subfield h in its field of constants where K is finitely generated over h. We prove: G is Galois if and only if it is the closed group (in the higher derivation topology) generated over K by a finite, abelian, independent normal iterative set F of higher derivations or equivalently, if and only if it is a closed group generated by a normal subset possessing a dual basis. If $t < \infty$ the higher derivation topology is discrete. M. Sweedler has shown that, in this case, h is a Galois subfield if and only if K/h is finite modular and purely inseparable. Also, the characterization of Galois groups for $t < \infty$ is closely related to the Galois theory announced by Gerstenhaber and and Zaromp. In the case $t = \infty$, a subfield h is Galois if and only if K/h is regular. Among the applications made are the following: (1) $\bigcap_n h(K^{p^n})$ is the separable algebraic closure of h in K, and (2) if K/h is algebraically closed, K/h is regular if and only if $K/h(K^{p^n})$ is modular for n > 0.

I. Introduction. Let K be a field having characteristic $p \neq 0$ and let h be a subfield over which K is finitely generated. This paper is concerned with two related theories. §§I through IV are devoted to a characterization in terms of abelian sets of generators of the group of all infinite higher derivations on K over h. A subfield h of K is the field of constants of a set of infinite higher derivations if and only if K/h is regular. These results are contained in Theorems 4.2, 4.3, and 4.5. §§VI and VII are concerned with the corresponding theory in the case $[K: h] < \infty$. Again, the group of all higher derivations of rank t having a given field of constants is characterized in terms of abelian sets of generators where $t \ge p^{\exp(K/h)-1}$. The finite dimensional theory is similar to, though distinct from, a theory due to Gerstenhaber and Zaromp [10]. Integration of the two theories leads to a number of results connecting modularity, regularity and relative algebraic closure. For example, if K/h is finitely generated then $\bigcap_n h(K^{p^n})$ is the separable algebraic closure of h in K (Theorem 7.2). This extends a result of Dieudonné [11, Proposition 14]. If, in addition, K/h is algebraically closed then K/h is regular if and only if $K/h(K^{p^n})$ is modular for all n (Theorem 7.4).

II. Definitions and preliminary results. Throughout this paper, K will be a field of characteristic $p \neq 0$. A rank t higher derivation on K is a sequence d

Presented to the Society, November 25, 1972; received by the editors August 16, 1972.

AMS (MOS) subject classifications (1970). Primary 12F10; Secondary 13B10, 16A72, 16A74.

Key words and phrases. Higher derivation, iterative higher derivation, dual basis, Galois group of higher derivations, independent abelian sets of higher derivations.

⁽¹⁾ This work was supported by NSF GP33027X.

 $=\{d_i \mid 0 \le i < t+1\}$ of additive maps of K into K such that $d_r(ab)$ $=\sum \{d_i(a)d_j(b) \mid i+j=r\}$ and d_0 is the identity map. The set H'(K) of all rank t higher derivations on K is a group with respect to the composition $d \circ e = f$ where $f_j = \sum \{d_m e_n \mid m+n=j\}$ [1, Theorem 1, p. 33]. Note that the first nonzero map (of subscript > 0) is a derivation. The field of constants of a subset $G \subset H'(K)$ is $\{a \in K \mid d_i(a) = 0, i > 0, (d_i) \in G\}$. $H'_h(K)$ will denote the group of all higher derivations on K whose field of constants contains the subfield h.

From this point until §V we will consider infinite higher derivations $(t = \infty)$ only.

The index i(d) of a nonzero higher derivation is either 1 or if d has the property $d_q \neq 0$ and $d_j = 0$ if $q \nmid j$, then i(d) = q. We call d in $H^{\infty}(K)$ iterative of index q, or simply iterative, if $\binom{i}{j}d_{qi} = d_{qj}d_{q(i-j)}$ for all i and $j \leq i$, whereas $d_m = 0$ if $q \nmid m$. A complete description of iterative higher derivations has been given by Zerla [3]. If $d \in H^{\infty}(K)$ has index q, and a is in K, then ad = e where $e_{qi} = a^i d_{qi}$ and $e_j = 0$ if $q \nmid j$. It is clear that ad is a higher derivation. The group generated over k by a subset F of $H^{\infty}(K)$ is the subgroup generated by $\{ad \mid a \in K, d \in F\}$.

Let $d \in H^{\infty}(K)$ and let k be the field of constants of d. Then the dimension of d is defined to be the transcendence degree of K over k (i.e., tr.d. (K/k)). A higher derivation is normal if $d_i \neq 0$. A set $F = \{d^{\alpha} \mid \alpha \in \Lambda\}$ of higher derivations is abelian if $d_i^{\alpha} d_j^{\beta} = d_j^{\beta} d_i^{\alpha}$ for all $\alpha, \beta \in \Lambda, 0 \leq i, j < \infty$. A set of nonzero higher derivations on K is independent if the set of first nonzero maps of F with subscript > 0 is independent over K. We will need the following.

- (2.1) [2, Theorem 1]. Let B be a p-basis for K and let $f: Z \times B \to K$ be an arbitrary function. There is a unique $(d_i) \in H^{\infty}(K)$ such that for each $b \in B$ and $i \in Z$, $d_i(b) = f(i, b)$.
- (2.2) [8, p. 436]. Let $(d_i) \in H^{\infty}(K)$ and $a \in K$. Then $d_{ip}(a^p) = (d_i(a))^p$ and if p and j are relatively prime, then $d_i(a^p) = 0$.

As a simple corollary of (2.2) we have $d_j(a^{p^n}) = 0$ if $p^n + j$. The following theorem can be found in the literature; however a proof is given here for convenience. A field K is a regular extension of a subfield k if K/k is separable and k is algebraically closed in K [5].

(2.3) **Theorem.** Let k be the field of constants of a set of higher derivations on K. Then K is regular over k.

Proof. We show first that K is separable over k, i.e., K^p and k are linearly disjoint over k^p . Suppose there exists $\{z_1, \ldots, z_n\} \subset k$, independent over k^p and dependent over K^p . Then there exists a relation of minimal length among $\{z_1, \ldots, z_n\}$ over K^p , $\sum \{a_i^p z_i \mid 1 \le i \le s\} = 0$ (possibly renumbering) $a_i \in K$, $a_i \ne 0$, $1 \le i \le s$. Without loss of generality we may assume $a_i^p = 1$ and $a_2 \notin k$. Then there exists a map in some higher derivation (d_i) such that $d_j(a_2) \ne 0$. Thus $d_{jp}(\sum \{a_i^p z_i \mid 1 \le i \le s\}) = [d_j(a_2)]^p z_2 + \cdots + [d_j(a_s)]^p z_s = 0$, which yields a nonzero relation of shorter length, a contradiction. Thus K

is separable over k. Suppose $\theta \in K$, and θ is separable algebraic over k. Let $(d_i) \in H_k^{\infty}(K)$. For a given integer r > 0 we choose s so that $r < p^s$. Since θ is separable algebraic over k, $k(\theta) = k(\theta^{p^s})$. Since $p^s > r$, $d_1(\theta^{p^s}) = \cdots = d_r(\theta^{p^s}) = 0$, and hence $k(\theta) = k(\theta^{p^s})$ is contained in the field of constants of $(d_i)_{i=1}^r$. Since r and (d_i) were arbitrary, θ is in k. Hence k is algebraically closed in K.

(2.4) **Theorem** [7, Theorem 15, p. 384]. Let K be a field obtained by adjoining a finite number of elements to h. If K/h preserves p-independence, then a subset T of K is a separating transcendency basis for K/h if and only if it is a relative p-basis for K/h.

III. Separating transcendency bases and higher derivations.

(3.1) **Lemma.** Let $\{k_n \mid 1 \le n < \infty\}$ and h be subfields of K where $k_j \subseteq k_i$ if $j \ge i$. Then if k_n and h are linearly disjoint for all $n, \cap \{k_n \mid 1 \le n < \infty\}$ and h are linearly disjoint.

Proof. By [4, Lemma 1.62, p. 57] there exists a unique minimal extension \overline{k} of $\cap \{k_n \mid 1 \leq n < \infty\}$ such that \overline{k} and h are linearly disjoint. Since k_n and h are linearly disjoint for all $n, \overline{k} \subseteq k_n$ for all n, and hence $\overline{k} = \cap \{k_n \mid 1 \leq n < \infty\}$. Throughout the rest of this paper h will be a subfield of K such that K is finitely generated over h.

- (3.2) **Theorem.** Let $F = \{d^{(1)}, \ldots, d^{(n)}\}$ be an abelian set of one-dimensional higher derivations in K over h, and let their field of constants be k. Then
 - (1) tr.d. $(K/k) \leq n$;
 - (2) If F is independent, then tr.d. (K/k) = n.

Proof. (1) We use induction on n. If n=1, the result holds since $d^{(1)}$ is one-dimensional. Let k_{n-1} be the field of constants of $\{d^{(1)}, \ldots, d^{(n-1)}\}$ and k_n the field of constants of $d^{(n)}$. Then tr.d. $(K/k_{n-1}) \le n-1$, tr.d. $(K/k_n) = 1$, and $k = k_{n-1} \cap k_n$. All we need to show is tr.d. $(K_{n-1}/k) \le 1$. It will suffice to show that any subset of k_{n-1} which is algebraically independent over k remains algebraically independent over k_n . We will prove the stronger condition that k_{n-1} and k_n are linearly disjoint. Consider the chain $\{k_{n,i} \mid 1 \le i < \infty\}$ of subfields of K where $k_{n,i} = \{x \in K \mid d_1^{(n)}(x) = \cdots = d_{p^{i-1}}^{(n)}(x) = 0\}$. Note that $\bigcap \{k_{n,i} \mid 1 \le i < \infty\} = k_n$ and $K^{p^{i+1}} \bigcap k_{n,i}$ by (2.2). We claim $k_{n,i}$ and k_{n-1} are linearly disjoint for all $i, 1 \le i < \infty$. Since $K^{p^{i+1}} \bigcap k_{n,i}$, we have $K^{p^{i+1}} \bigcap k_{n,i}$, and hence $K^{i} \cap k_{n-1}$ is purely inseparable over $K^{i} \cap k_{n-1}$. Since $\{d^{(1)}, \ldots, d^{(n)}\}$ is a belian, $\{d^{(1)}|_{k_{n,i}}, \ldots, d^{(n-1)}|_{k_{n,i}}\}$ is a set of higher derivations on $k_{n,i}$, and has field of constants $k_{n,i} \cap k_{n-1}$. Thus by (2.4), $k_{n,i}$ is separable over $k_{n,i} \cap k_{n-1}$, and hence $k_{n,i}$ and k_{n-1} are linearly disjoint [6, Theorem 21, p. 197]. By (3.1), k_n and k_{n-1} are linearly disjoint, and (1) follows.

Now assume $\{d^{(1)}, \ldots, d^{(n)}\}$ is independent. Since we have n independent derivations in K over k and K is separably generated over k, it follows that tr.d. $(K/k) \ge n$ [6, Corollary, p. 179], and hence tr.d. (K/k) = n.

- (3.3) **Definition.** Let $F = \{d^{(1)}, \ldots, d^{(n)}\}$ be an abelian set of one-dimensional higher derivations in K over h. Let the first nonzero map of $d^{(i)}$ be $d^{(i)}_{\eta}$. Then a subset $S = \{x_1, \ldots, x_n\}$ of K will be called a dual base for $\{d^{(1)}, \ldots, d^{(n)}\}$ if
 - $(1) d_n^{(i)}(x_i) = 1, 1 \le i \le n,$
 - (2) $d_s^{(i)}(x_i) = 0, 1 \le s < \infty, i \ne j.$

In view of (2.4) and (3.2) a dual basis is necessarily a separating transcendency basis for K over the field of constants k of F.

(3.4) **Theorem.** Let $F = \{d^{(1)}, \ldots, d^{(n)}\}$ be an abelian set of one-dimensional iterative higher derivations on K/h. F is independent if and only if F has a dual basis.

Proof. Assume F independent. Let k_0 be the field of constants of $\{d^{(1)}, \ldots, d^{(n-1)}\}$. Then, by (3.2), tr.d. $(K/k_0) = n - 1$. If $d^{(n)}_{r_n}|_{k_0} = 0$, then $\{d^{(1)}_{r_n}, \ldots, d^{(n)}_{r_n}\}$ are independent derivations on K/k_0 and it would follow that tr.d. $(K/k_0) \ge n$. Thus $d^{(n)}_{r_n}|_{k_0}$ is a nonzero derivation on k_0 whose pth power is zero and there is an $x_n \in k_0$ such that $d^{(n)}_{r_n}(x_n) = 1$. Let k_1 be the field of constants of $d^{(n)}$ and consider $\overline{F} = \{d^{(2)}|_{k_1}, \ldots, d^{(n)}|_{k_1}\}$. Since F is abelian \overline{F} is an abelian set of iterative higher derivations on k_1 . If $\sum \{a_i d^{(i)}_{r_i}|_{k_1} | i = 1, \ldots, n - 1; a_i \in k_1\} = 0$ then $\sum \{a_i d^{(i)}_{r_i}|_{k_1(x_n)} | i = 1, \ldots, n - 1\} = 0$ and hence $\sum \{a_i d^{(i)}_{r_i}|_{i=1}, \ldots, n - 1\} = 0$ since K is separable algebraic over $k_1(x_n)$. Thus \overline{F} is independent and by the induction hypothesis, has a dual basis x_1, \ldots, x_{n-1} . The set $\{x_1, \ldots, x_n\}$ is then a dual basis for F.

IV. The Galois correspondence.

(4.1) **Definition.** Let G be a subgroup of $H^{\infty}(K)$. The sequence $\{G_j\}$ defined by $G_1 = G$ and. $G_j = \{(d_i) \in G \mid d_1 = d_2 = \cdots = d_{j-1} = 0\}$ for $2 \le j < \infty$ is called the higher derivation series of G.

It is easily verified that each term in the higher derivation series is a normal subgroup of G and $\bigcap\{G_j \mid j>0\} = \{e\}$ where e is the identity of G. Using the higher derivation series as a basis of open neighborhoods at e we make G a topological group. Let H^c denote the closure of a subgroup H of G. Given $d \in H^{\infty}(K)$ of index q, $v(d) = e = \{e_i \mid 0 \le i < \infty\}$ where $e_{(q+1)i} = d_{qi}$ and $e_j = 0$ if $(q+1) \nmid j$, it is clear that v(d) is a higher derivation. The v-closure $\overline{v}(F)$ of a set F in $H^{\infty}(K)$ is $\{v^i(d) \mid d \in F, i \ge 0\}$ where $v^0(d) = d$. We recall the basic assumption that K is a finitely generated extension of the subfield h. A subgroup of $H_h^{\infty}(K)$ with field of constants k will be called Galois if G is the group of all higher derivations which contain k in their field of constants.

(4.2) **Theorem.** A subgroup G of $H_h^\infty(K)$ is Galois if and only if G is the closure, $(\bar{v}(F))^c$, of the subgroup generated over K by $\bar{v}(F)$, where F is a finite abelian normal independent set of one-dimensional iterative higher derivations in $H_h^\infty(K)$. If $G = (\bar{v}(F))^c$ has field of constants k, then tr.d.(K/k) = |F|.

Proof. Suppose G is Galois with field of constants k. Let $S = \{x_1, \ldots, x_n\}$ be a separating transcendency basis for K over k, and let P be a p-basis for k. Since

K is a separable extension of $k, P \cup S$ is a p-basis for K. Using (2.1) we describe a set $F = \{d^{(1)}, \ldots, d^{(n)}\}$ of iterative higher derivations [3, Theorem 2] by the conditions

- (i) $d_i^{(i)}(x) = 0$ if $x \in S$ and j > 1 or $x \in P$ and j > 0,
- (ii) $d_1^{(i)}(x_i) = \delta_{i,j}$ for $1 \le i, j \le n$.

Elementary calculations show F to be abelian. Each $d^{(i)}$ is one-dimensional since $k(x_1, \ldots, \hat{x}_i, \ldots, x_n)$ is contained in its field of constants. Thus F is a finite abelian normal independent set of one-dimensional iterative higher derivations in G. We claim that $(\bar{v}(F))^c = G$.

Let (d_i) be in G and have first nonzero map d_i with $d_i(x_i) = a_i$, i = 1, ..., n. The first nonzero map of $g = \prod \{a_i v^{i-1}(d^{(i)}) \mid i = 1, ..., n\}$ is g_i and $g_i = d_i$ since d_i being a derivation is completely determined by $\{d_i(x_i) \mid i = 1, ..., n\}$ and $g_i(x_i) = d_i(x_i)$. Thus $g^{-1} \circ d$ is in G_{i+1} . It follows by iteration of this process that, if d is in G and r is any integer, there is a $g \in (\bar{v}(F))$ such that $g_i = d_i$ for i < r or, equivalently, $(\bar{v}(F)) = G$ mod G_i . Hence $(\bar{v}(F))^c = G$.

Conversely, suppose $G = (\bar{v}(F))^c$ for F as in the theorem. Let $\{x_1, \ldots, x_n\}$ be a dual basis for F and let k be the field of constants of F. Since $\{x_1, \ldots, x_n\}$ is a separating transcendency basis for K/k the above approximation process can be applied to show that $(\bar{v}(F))^c = H_k^{\infty}(K)$.

(4.3) **Theorem.** Let $K = h(x_1, \ldots, x_n)$. There exists a unique minimal extension k of h in K such that K/k is regular. k is a subfield of each field k_1 , $K \supseteq k_1 \supseteq h$, K/k_1 regular and is the field of constants of $H_h^{\infty}(K)$.

Proof. It suffices to show for k, $K \supseteq k \supseteq h$, where K is regular over k, that k is the field of constants of a set of higher derivations in K over h. Let $\{x_1, \ldots, x_n\}$ be a separating transcendency basis for K over k, and let F be as constructed in (4.2). Let k_1 be the field of constants of F. Then $k_1 \supseteq k$. But by (3.2), tr.d. $(K/k_1) = n$, and since k is algebraically closed in K, $k_1 = k$.

Thus if we set $R = \{G \subseteq H^{\infty}(K) \mid G \text{ is the closed subgroup generated over } K$ by $\bar{v}(F)$ where F is as in (4.2)} and $S = \{k \mid K \text{ is regular and finitely generated over } k\}$, then the maps $g: R \to S$, given by g(G) = field of constants of G, and $f: S \to R$, given by $f(k) = H_k^{\infty}(K)$, are inverse bijections.

(4.4) **Definition.** A subfield k of K over which K is finitely generated will be called Galois if K is regular over k. A subgroup G of $H^{\infty}(K)$ with field of constants k will be called Galois if K is finitely generated over k and $G = H_k^{\infty}(K)$.

Let G be a Galois subgroup of $H^{\infty}(K)$. Then a set F of generators for G as in Theorem (4.2) will be called a standard generating set.

- (4.5) **Theorem.** Let h be a Galois subfield of K and let k be an intermediate field. The following are equivalent.
 - (1) k is a Galois subfield of K.
 - (2) There exists $\{d^{(1)}, \ldots, d^{(n)}\}$ a standard set of generators for $H_h^{\infty}(K)$ such that

 $\{d^{(1)},\ldots,d^{(t)}\},\ t\leq n$, has field of constants k. The set $\{d^{(1)},\ldots,d^{(t)}\}$ is a standard set of generators for $H_k^{\infty}(K)$.

(3) k is algebraically closed in K and every d in $H_h^{\infty}(k)$ can be extended to K.

Proof. Assume (1). Note that k is regular over h. Let S be a p-basis for h; let $T_1 = \{x_1, \ldots, x_t\}$ be a separating transcendency basis for K over k, and let $T_2 = \{x_{t+1}, \ldots, x_n\}$ be a separating transcendency basis for k over h. Then $T_1 \cup T_2 \cup S$ is a p-basis for K and $T_1 \cup T_2$ is a separating transcendency basis for K over h. Let $\{d^{(1)}, \ldots, d^{(n)}\}$ be as in (4.2). Then $\{d^{(1)}, \ldots, d^{(n)}\}$ is a standard set of generators for $H_h^{\infty}(K)$ and $\{d^{(1)}, \ldots, d^{(n)}\}$ is a standard set of generators for $H_h^{\infty}(K)$. Note that $\{d^{(t+1)}|_k, \ldots, d^{(n)}|_k\}$ is a standard set of generators for $H_h^{\infty}(K)$.

Obviously (2) implies (1) and (2) implies (3). Assume (3). It suffices to show K is separable over k. Let $\{x_1, \ldots, x_s\}$ be a separating transcendency basis for k over k, and let $\{d^{(1)}, \ldots, d^{(s)}\}$ be a standard generating set for $H_h^\infty(k)$. Then $\{d_1^{(1)}, \ldots, d_1^{(s)}\}$ is a basis for $\text{Der}_h(k)$, the space of all derivations on k over k. Since these derivations can be extended to K it follows that every derivation on k extends to K. Thus by [6, Theorem 18, p. 184], K is separable over k, and hence regular over k.

Dropping the algebraically closed assumptions of Theorem (4.5) we have the following.

- (4.6) **Theorem.** Let K/h be finitely generated and separable and let k be an intermediate field. Then K/k is separable if and only if every d in $H_h^{\infty}(k)$ extends to $H_k^{\infty}(K)$.
- **Proof.** Assume k/h separable. Let S be a p-basis for h, T_1 a separating transcendency basis for k/h and T_2 a separating transcendency basis for K/k. Theorem (2.2), the fact that $T_1 \cup S$ is a p-basis for k, and the fact that $T_1 \cup T_2 \cup S$ is a p-basis for K/h together imply that every element of $H_h^{\infty}(k)$ extends to $H_h^{\infty}(K)$. To prove the converse one notes that every derivation on k over h is the first nonzero map d_1 of a higher derivation on k over h. This follows from the fact that a p-basis for k over h is a separating transcendency basis for k over h, a p-basis for h extends to a p-basis for k and (3.1). Thus every d in $Der_h(k)$ extends to K. As in the proof of (4.5) it follows that K/k is separable.
- V. Higher derivations of finite rank; preliminaries. The following result on derivations will be used. $K \supset k$ will always be fields of characteristic $p \neq 0$.
- (5.1) **Theorem** [10, p. 1011]. Let ρ_1, \ldots, ρ_n be commuting derivations in K with field of constants k. If they are linearly independent over k, then
 - (1) they are independent over K;
 - $(2) [K: k] \geq p^n;$
- (3) equality holds if and only if the k-space V_0 spanned by ρ_1, \ldots, ρ_n is closed under the formation of pth powers.

- (5.2) **Proposition.** Let $F = \{\rho_1, \ldots, \rho_n\}$ be derivations on K. The following are equivalent.
 - (a) F is abelian, independent (over K), and has the property $\rho_i^p = 0, 1 \le i \le n$.
- (b) $K = k(x_1, ..., x_n)$ where k is the field of constants of F and $\rho_i(x_j) = \delta_{i,j}$, $1 \le i, j \le n$. The set $\{x_1, ..., x_n\}$ is a p-basis for K/k.

Proof. Assume (a). We use induction on n. If n=1, [K:k]=p by (5.1). Since $\rho_i^p=0$, there is an x_1 in K for which $\rho_1(x_1)=1$ [3, Lemma 4, p. 408]. Assume the result for n-1, n>1. From (5.1), $[K:k]=p^n$. Let k_1 be the field of constants of $\{\rho_1,\ldots,\rho_{n-1}\}$ and let $\{y_1,\ldots,y_{n-1}\}$ be a p-basis for K/k_1 for which $\rho_i(y_j)=\delta_{i,j}, 0\leq i,j\leq n-1$. Since $\{\rho_1,\ldots,\rho_n\}$ is abelian $\rho_n(k_1)\subset k_1$ and since $[K:k_1]< p^n$, $\rho_n|_{k_1}\neq 0$ by (5.1). Hence there is an element x_n in k_1 such that $\rho_n(x_n)=1$. Since $x_n\in k_1$, $\rho_j(x_n)=0$, j< n. Also, $k_1=k(x_n)$ by (5.1). By commutativity of the ρ_i , $\rho_n(y_j)$ is in k_1 , for $j=1,\ldots,n-1$. Thus, $\rho_n(y_j)=\sum\{a_ix_n^i\mid i=1,\ldots,p-2,a_i\in k\}$. Note that since $\rho_n^p=0$, $a_{p-1}=0$. Then $z=\sum\{a_{i-1}x_n^i/i\mid i=1,\ldots,p-1\}$ has the property $\rho_n(z)=\rho_n(y_j)$. Choose $x_j=y_j-z$. Since $z\in k_1$, we have $\rho_i(x_j)=\delta_{i,j}$, $1\leq i,j\leq n$.

Assume (b). Clearly F is independent. The field of constants k_i of ρ_i is $k(x_1, \ldots, \hat{x}_i, \ldots, x_n)$. Thus $y \in K$ is a polynomial in x_i over k_i of degree < p and $\rho_i^p = 0$. One easily verifies that $\rho_i \rho_j = \rho_j \rho_i$. The set $\{x_1, \ldots, x_n\}$ being p-independent [6, Corollary 4, p. 183] is a p-basis for K/k.

The abelian condition in part (a) of (5.2) is essential. A finite independent set of derivations, $\{\rho_1, \ldots, \rho_n\}$, on K such that $\rho_i^p = 0$, $1 \le i \le n$, need not be abelian. For given distinct subfields k_1 , k_2 of K such that $[K: k_i] = p$ and K/k_i is purely inseparable, there are independent derivations ρ_1 , ρ_2 for which $\rho_i^p = 0$ and which have k_1 and k_2 as respective field of constants. If $\rho_1 \rho_2 = \rho_2 \rho_1$ it would follow that $[K: k_1 \cap k_2] = p^2$. A counterexample to this conclusion is easily constructed.

(5.3) **Definition.** A relative *p*-base for *K* over *k* as in (2.4) will be called a dual *p*-base with respect to $\{\rho_1, \ldots, \rho_n\}$.

Using (5.2) we have the following. A finite-dimensional subspace of the K-space Der(K) of derivations on K is Galois if and only if it is generated over K by a set $\{\rho_1, \ldots, \rho_n\}$ of commuting independent derivations such that $\rho_i^p = 0$, $1 \le i \le n$. This is precisely the type of characterization which will be established for higher derivations.

Let $d=(d_i)$ be a higher derivation of finite rank t. For $1 \le s \le t$, the s-section of d is the higher derivation $e=(d_i \mid i=0,\ldots,s)$. The s-section of a set of higher derivations is the set of s-sections. For $d \ne 0$ in $H^i(K)$, with first nonzero map d_r we define $p(d)=\min\{s\mid p^s\cdot r>t\}$.

Observation. For $d \in H^{i}(K)$, p(d) is the exponent of K over the field of constants of d.

Proof. Let p(d) = s. If $d_r(x) \neq 0$ but $d_i = 0$ for 0 < i < r, then $d_{p^{(i-1)}r}(x^{p^{(i-1)}}) = (d_r(x))^{p^{(i-1)}} \neq 0$. However $d_i(x^{p^i}) = 0$, j > 0, by the remark following (2.2).

We call $d \in H'(K)$ iterative if d is the tth section of an iterative higher derivation in $H^{\infty}(K)$. A finite rank iterative d is normal if for some j > 0, i(d) is $\lfloor t/p^j \rfloor + 1$, where $\lfloor t/p^j \rfloor$ is the greatest integer less than or equal to t/p^j . A normal higher derivation d has minimal index for a given p(d). A finite set F of nonzero higher derivations on K is said to be independent if the set of first nonzero maps of F (of subscript ≥ 1) is independent over K.

In the next proof we will use the fact that if d is iterative and has index q then the restriction of d to the field of constants of its first nonzero map is an iterative higher derivation having index pq (assuming $pq \le \text{rank } d$).

VI. The finite rank Galois correspondence.

(6.1) **Theorem.** Let $F = \{d^{(1)}, \ldots, d^{(n)}\}$ be an abelian set of independent iterative members of $H^{t}(K)$ and let k be the field of constants of F. Then $[K: k] = p^{p(d^{(1)})+\cdots+p(d^{(n)})}$.

Proof is by induction on $p(F) = \max\{p(d^{(i)}) \mid d^{(i)} \in F\}$. If p(F) = 1, each $d^{(i)}$ has but one nonzero map with positive subscript and (5.1) applies A counterexample to this conclusion is easily constructed. that if $d = (d_i)$ is iterative of index q then $(d_{ap})^p = 0$.)

Hence assume the result holds for p(F) = j - 1 or less, and consider the case p(F) = j. Let $\{x_1, \ldots, x_n\}$ be a dual basis with respect to the set of first nonzero maps of F, and let k_1 be their field of constants. Then $[K: k_1] = p^n$ by (5.1).

By the abelian condition $d_j^{(i)}(k_1) \subset k_1$ for all i and j. Hence $F|_k$ is an abelian set of iterative higher derivations. Also, if $d_i^{(i)}$ is the first nonzero map of $d^{(i)}$ then, if $pt_i \leq t$ we have, by (2.2), $d_{pi_i}^{(i)}(x_i^p) = (d_{i_i}^{(i)}(x))^p$. Thus $d_{pi_i}^{(i)}|_{k_1}$ is the first nonzero map of $d^{(i)}|_{k_1}$. Let $\overline{F} = \{d^{(b+1)}|_{k_1}, \ldots d^{(n)}|_{k_1}\}$ be the nonzero elements of $F|_{k_1}$. By the above remarks $d_{pi_j}^{(i)}(x_i^p) = \delta_{i,j}$ for $b \leq i, j \leq n$. It follows that \overline{F} is independent over k_1 and $\{x_{b+1}^p, \ldots, x_n^p\}$ is a p-basis for k_1/k_2 , k_2 being the field of constants of the first nonzero maps of \overline{F} . By induction,

$$[k_1 : k] = p^{p(d^{(b+1)})-1+\cdots+p(d^{(n)})-1}$$
$$= p^{p(d^{(1)})-1+\cdots+p(d^{(n)})-1}$$

and

$$[K: k] = [K: k_1][k_1; k] = p^{p(d^{(1)})+\cdots+p(d^{(n)})}.$$

(6.2) Corollary. If $d = (d_i)$ is a nonzero finite iterative higher derivation in K with field of constants k, then $[K: k] = p^{p(d)}$. If y is any element of K such that $d_{i(d)}(y) \neq 0$, then K = k(y).

Proof.

$$d_{i(d)p^{p(d)-1}}(y^{p^{p(d)-1}}) = (d_{i(d)}(y))^{p^{p(d)-1}} \neq 0,$$

hence $[k(y): k] \ge p^{p(d)}$ and thus K = k(y).

Let $F = \{d^{(1)}, \dots, d^{(n)}\}$ be a set of rank t higher derivations on K. $\{x_1, \dots, x_n\}$ is a dual basis for F if both of the following are true.

- (1) $K = k(x_1, \ldots, x_n)$, k the field of constants of F.
- (2) $d_{r_i}^{(i)}(x_i) = 1$, where $d_{r_i}^{(i)}$ is the first nonzero map of $d^{(i)}$ and all other maps in F with nonzero subscript take x_i into zero.
- (6.3) **Theorem.** Let $F = \{d^{(1)}, \ldots, d^{(n)}\}$ be a subset of H'(K). The following are equivalent.
 - (a) F is an abelian set of independent iterative higher derivations.
 - (b) F has a dual basis $\{x_1, \ldots, x_n\}$.

If $\{x_1, \ldots, x_n\}$ is a dual basis, then $K = k(x_1) \otimes_k \cdots \otimes_k k(x_n)$, $k_i = k(x_1, \ldots, \hat{x}_i, \ldots, x_n)$ is the field of constants of $d^{(i)}$. Also, x_i is purely inseparable over k of exponent $p(d^{(i)})$.

Proof. Assume (a). We use induction on n. If n = 1, the result follows from [3, Theorem 2]. Hence assume the result holds for n - 1, and let k_1 be the field of constants of $d^{(1)}$. Then $\bar{F} = \{d^{(2)}|_{k_1}, \ldots, d^{(n)}|_{k_1}\}$ is an abelian set of iterative higher derivations on k_1 with field of constants k. Let $\{y_1, \ldots, y_n\}$ be a dual basis with respect to the first nonzero maps, $\{d_n^{(i)}\}$, of F. Then $K = k_1(y_1)$. If $a_2 d_{k_2}^{(2)}|_{k_1} + \cdots + a_n d_{k_n}^{(n)}|_{k_1} = 0$, then since $d_n^{(i)}(y_1) = 0$, $i \ge 2$, we have $a_2 d_{k_2}^{(2)} + \cdots + a_n d_{k_n}^{(n)} = 0$. Thus \bar{F} is also independent, and in particular $d_n^{(i)}|_{k_1} \ne 0$, $2 \le j \le n$. Let $\{x_2, \ldots, x_n\}$ be a dual basis for \bar{F} . Note that $d_j^{(i)}(x_i) = 0$, $1 \le j \le t$, $2 \le i \le n$. Now let k_2 be the field of constants of $\{d^{(2)}, \ldots, d^{(n)}\}$. Then as above $d^{(1)}|_{k_2}$ is nonzero with field of constants k and $d_n^{(i)}|_{k_2} \ne 0$. Hence there exists x_1 in k_2 such that $d_n^{(i)}(x_1) = 1$ and $d_j^{(i)}(x_1) = 0$, $j \ne n$. Then $\{x_1, \ldots, x_n\}$ is a dual basis for F.

Assume (b). Clearly F is independent. By [3, Lemma 5, p. 410] each higher derivation of F is iterative. One easily verifies $d_r^{(i)}d_s^{(j)}=d_s^{(j)}d_r^{(i)}$.

Noting that $d_i^{(j)}(k(x_j)) \subset k(x_j)$, $i \geq 0$, and $d_{r_j}^{(j)}(x_j) = 1$ we conclude that $d^{(j)}|_{k(x_j)}$ is an (iterative) higher derivation and $p(d^{(j)}) = p(d^{(j)}|_{k(x_j)})$. Thus $[k(x_j): k] = p^{p(d^{(j)})}$. Since $K = k(x_1, \ldots, x_n)$ and $[K: k] = p^{p(d^{(j)})+\cdots+p(d^{(n)})}$ by Theorem 6.1, it follows that $K = k(x_1) \otimes_k \cdots \otimes_k k(x_n)$. Also $k(x_1, \ldots, \hat{x_j}, \ldots, x_n) \subseteq k_j$, the constant field of $d^{(j)}$, and since $[K: k(x_1, \ldots, \hat{x_j}, \ldots, x_n)] = [K: k_j]$ we have $k_j = k(x_1, \ldots, \hat{x_j}, \ldots, x_n)$.

It is shown in Jacobson [6, p. 195] that if $K = k(x_1) \otimes_k \cdots \otimes_k k(x_n)$ and x_i is purely inseparable over k then $\{x_1, \ldots, x_n\}$ is a dual basis.

If d has index q, and a is in K, then ad = e where $e_{qi} = a^i d_{qi}$ and $e_j = 0$ if $q \nmid j$. It is clear that ad is a higher derivation. The group generated over K by a subset F of $H^i(K)$ is the subgroup generated by $\{ad \mid a \in k, d \in F\}$.

Given $d \in H'(K)$ of index q, $v(d) = e \in H'(K)$ where $e_{(q+1)i} = d_{qi}$ for $(q+1)i \le t$ and $e_j = 0$ if $(q+1) \nmid j, j \le t$. Clearly v(d) is a higher derivation. The v closure $\bar{v}(F)$ of a set F in H'(K) is $F \cup \{v^i(d) \mid d \in F, i \ge 1\}$. A subgroup G of H'(K) with field of constants k, $[K:k] < \infty$, will be called Galois if G is the group of all higher derivations in H'(K) which contain k in their fields of constants.

(6.4) **Theorem.** A subgroup G of H'(K) is Galois if and only if G is generated over K by $\bar{v}(F)$ where F is a finite abelian normal independent iterative subset of H'(K). If G is Galois with field of constants k, and is generated by $\bar{v}(F)$ where $F = \{d^{(1)}, \ldots, d^{(n)}\}$ as above, if $\{x_1, \ldots, x_n\}$ is a dual basis for F, then $K = k(x_1) \otimes_k \cdots \otimes_k k(x_n)$, x_i is purely inseparable of degree $p^{p(d^{(i)})}$ over k and hence $[K: k] = p^{p(d^{(i)})} + \cdots + p(d^{(n)})$.

Proof. Suppose G is Galois with field of constants k. Sweedler has shown [9] that $K = k(x_1) \otimes_k \cdots \otimes_k k(x_n)$, the x_i purely inseparable over k. Let $F = \{d^{(1)}, \ldots, d^{(n)}\}$ be a set of higher derivations having $\{x_1, \ldots, x_n\}$ as a dual basis. By the remark following the definition of normality and by (6.3) we can assume that F is an abelian iterative independent normal subset of G. Let $(\bar{v}(F))$ be the subgroup of G generated over K by $\bar{v}(F)$. We claim $(\bar{v}(F)) = G$.

Let d be in G. We will prove $d \in (\bar{v}(F))$ by descending induction on the subscript of the first nonzero map of $d = (d_i)$. Suppose d to be in $G_r = \{d \in G \mid d_1 = \cdots = d_{r-1} = 0\}$. Then d_r is a derivation and is completely determined by $d_r(x_j) = \alpha_j$, $j = 1, \ldots, n$. By the observation following the definition of p(d), x_j has exponent $m_j = p(d^{(j)})$ over k_j and hence over k in view of Theorem 6.3. If $\alpha_j \neq 0$ then $r \geq i(d^{(j)})$ since $d^{(j)}$ is normal. Otherwise we would have $rp^{m_j} \leq t$ and $d_{rp}m_j(x_j^{p^{m_j}}) = d_r(x_j)^{p^{m_j}} \neq 0$ whereas $x_j^{p^{m_j}}$ is in k. Let $e = \prod \{v^{r-i(d^{(j)})}(\alpha_j d^{(j)}) \mid \alpha_j \neq 0\}$. The first nonzero map of e is e_r and $e_r = d_r$. Thus, $d \circ e^{-1}$ is in G_{r+1} . If r = t we have $G_t \subset (\bar{v}(F))$ and, for r < t, $G_r \subset G_{r+1}(\bar{v}(F))$. It follows that $G = (\bar{v}(F))$.

Conversely, suppose G is generated by $\bar{v}(F)$ where F is a finite abelian normal independent iterative subset of $H^{i}(K)$. Then by (6.3), if $\{x_{1}, \ldots, x_{n}\}$ is a dual basis for F, $K = k(x_{1}) \otimes_{k} \cdots \otimes_{k} k(x_{n})$, and since F is normal, F must be precisely as above; hence G is Galois. The remaining assertions of the theorem are contained in (6.3).

Although the results of Theorem (6.4) are similar to those of [10, Theorem 4, p. 1013], Theorem (6.4) does not follow from Theorem 4 since one cannot determine a priori that F is a standard set of generations.

Suppose $p^n \le t < p^{n+1}$. If we set $H = \{G \subseteq H^t(K) \mid G \text{ is generated over } K \text{ by } \bar{v}(F) \text{ where } F \text{ is as in (6.4)} \}$ and $\mathcal{K} = \{k \mid [K:k] < \infty, K^{p^{n+1}} \subseteq k \text{ and } K/k \text{ is modular}\}$, then the maps $g: \mathcal{H} \to \mathcal{K}$ given by $g(G) = \text{field of constants of } G \text{ and } f: \mathcal{K} \to \mathcal{H}$ given by $f(k) = H_k^t(K)$ are inverse bijections.

Using (6.3) we can state Theorem (6.4) in part as follows.

(6.5) **Theorem.** A subgroup of G of H'(K) is Galois if and only if G is generated over K by $\bar{v}(F)$ where F is a finite normal subset of G possessing a dual basis.

VII. Regularity vs. modularity.

(7.1) **Theorem.** Let K/h be finitely generated. If K/h is separable then $K/h(K^{p^n})$ is modular for all $n \ge 0$. If K/h is regular, $h = \bigcap \{h(K^{p^n}) \mid n \ge 1\}$.

Proof. Let $\{x_1, \ldots, x_s\}$ be a separating transcendency basis for K/h. Let $\{d^{(1)}, \ldots, d^{(s)}\}$ be the standard generating set of $H_h^\infty(K)$ having $\{x_1, \ldots, x_s\}$ as dual basis. If $F = \{\bar{d}^{(i)} \mid 1 \le i \le s\}$ where $\bar{d}^{(i)} = \{d_j^{(i)} \mid 0 \le j \le p^n\}$ and $k_n = \{x \in K \mid \bar{d}_j^{(i)}(x) = 0, 1 \le i \le s, 1 \le j \le p^n\}$ then K is modular over k_n [9, Theorem 1, p. 403]. By (2.2), $h(K^{p^{n+1}}) \subset k_n$. By choice of $\{x_1, \ldots, x_s\}$, $k(K^{p^{n+1}})(x_1, \ldots, x_s) = K$. Thus $[K: k(K^{p^{n+1}})] \le p^{(n+1)s}$. By (6.1), $[K: k_n] = p^{(n+1)s}$. Thus $k_n = k(K^{p^{n+1}})$.

If K/k is regular, k is the field of constants of $H_k^{\infty}(K)$. Hence $k = \bigcap \{k(K^{p^n}) \mid n \geq 1\}$.

(7.2) **Theorem.** If K/h is finitely generated then $\bigcap \{h(K^{p^n}) \mid n \ge 1\}$ is the separable algebraic closure of h in K.

Proof. Let $K = h(x_1, \ldots, x_n)$. If x_1, \ldots, x_r is a transcendency basis for K/h then for some $n \geq 0$, $x_{r+1}^{p^n}$, ..., $x_n^{p^n}$ are separable algebraic over $h(x_1, \ldots, x_r)$. It follows that $h(K^{p^n})/h$ is separable. If x in K is separable algebraic over h then x is in $h(K^{p^n})$ for all n since x is both separable and purely inseparable over $h(K^{p^n})$. Thus h_x , the separable algebraic closure of h in K, is in $\bigcap \{h(K^{p^n}) \mid n \geq 1\}$. Let \overline{h} be the algebraic closure of h in K. As above $\overline{h}(K^{p^m})/\overline{h}$ is separable for some m. Hence $\overline{h}(K^{p^m})/\overline{h}$ is regular and, by (7.1), $\overline{h} = \bigcap \{\overline{h}((\overline{h}(K^{p^m}))^{p^m}) \mid n \geq 1\}$ or $\overline{h} = \bigcap \{\overline{h}(K^{p^n}) \mid n \geq 1\}$. Thus $\bigcap \{h(K^{p^n}) \mid n \geq 1\}/h$ is separable algebraic. Hence $h_x = \bigcap \{h(K^{p^n}) \mid n \geq 1\}$.

- (7.3) Corollary. Let K/h be finitely generated. If K/h is separable then $\bigcap \{h(K^{p^n}) \mid n \ge 1\}$ is the algebraic closure of h in K.
- (7.4) **Theorem.** Let K/h be finitely generated. If h is algebraically closed in K then K/h is regular if and only if $K/h(K^{p^n})$ is modular for all $n \ge 0$.

Proof. Assume

 $K/h(K^{p^n})$ modular for $n \ge 0$. Then K^p and $h(K^{p^n})$ are linearly disjoint for all n and hence, by (3.1), K^p and $\bigcap \{h(K^{p^n}) \mid n \ge 1\}$ are linearly disjoint. Since K/h is algebraically closed $h^p = h \cap K^p$ and $h = \bigcap \{h(K^{p^n}) \mid n \ge 1\}$ by (7.2). Thus K is separable over h. The converse is part of Theorem (7.1).

In §IV we established that for any subfield h for which K/h is finitely generated there is a unique minimal intermediate field h^* such that K/h^* is regular. The fact that h^* need not be the algebraic closure of h in K is illustrated by the following example.

(7.5) Example [7, §10, p. 391]. Let P be a perfect field and let z, y, u be algebraically independent over P. If $h = P(y^p, u^p)$ and $K = P(z, y^p, y + zu)$ then K/h is algebraically closed but K is not separable over h. Thus $h^* = K$.

Conjecture. tr.d. $(h^*/h) \le 1$ in general.

From the same reference we have the following.

(7.6) Corollary. Assume K/h finitely generated. If $tr.d.(h/P) \le 1$ where P is the maximal perfect subfield of h, then the regular closure h^* of h in K is the algebraic closure of h in K.

Proof. [7, Theorem 9(b), p. 378] and [7, Theorem 15, p. 384].

REFERENCES

- 1. N. Heerema, Convergent higher derivations on local rings, Trans. Amer. Math. Soc. 132 (1968), 31-44. MR 36 #6406.
- 2.——, Derivations and embeddings of a field in its power series ring. II, Michigan Math. J. 8 (1961), 129-134. MR 25 #69.
- 3. F. Zerla, Iterative higher derivations in fields of prime characteristic, Michigan Math. J. 15 (1968), 407-415. MR 39 # 185.
- 4. J. Mordeson and B. Vinograde, Structure of arbitrary purely inseparable extension fields, Lecture Notes in Math., vol. 173, Springer-Verlag, Berlin and New York, 1970. MR 43 #1952.
- 5. A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ., vol. 29, Amer. Math. Soc., Providence, R.I., 1946. MR 9, 303.
- 6. N. Jacobson, Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory, Van Nostrand, Princeton, N.J., 1964. MR 30 #3087.
- 7. S. Mac Lane, Modular fields. I. Separating transcendency bases, Duke Math. J. 5 (1939), 372-393.
- 8. M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc. 116 (1965), 435-449. MR 33 #122.
- 9. M. E. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410. MR 36 #6391.
- 10. M. Gerstenhaber and A. Zaromp, On the Galois theory of purely inseparable field extensions, Bull. Amer. Math. Soc. 76 (1970), 1011-1014. MR 42 #1806.
- 11. J. Dieudonné, Sur les extensions transcendantes separables, Summa Brasil. Math. 2 (1947), no. 1, 1-20. MR 10, 5.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306