ISOMETRIES OF *-INVARIANT SUBSPACES(1)

ARTHUR LUBIN

ABSTRACT. We consider families of increasing *-invariant subspaces of $H^2(D)$, and from these we construct canonical isometries from certain L^2 spaces to H^2 . We give necessary and sufficient conditions for these maps to be unitary, and discuss the relevance to a problem concerning a concrete model theory for a certain class of operators.

1. Introduction. Let H² denote the usual Hardy class of functions holomorphic in the unit disc D. Beurling showed [2] that any closed subspace invariant under multiplication by z is of the form $s(z)H^2$, where s is inner. Here we consider the *-invariant space $M = (sH^2)^{\perp}$, where s is a singular inner function. It is well known (see [5] for details) that

$$s(z) = \exp \left[-\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} do(\theta) \right],$$

where σ is a finite positive singular measure.

In \$2, we decompose M into a "continuous chain" of increasing *-invariant subspaces, and from this chain we construct a canonical isometry from a certain L² space onto M. This generalizes a map used by Ahern and Clark [1], and Kriete [6]. In §3, we give necessary and sufficient conditions for this map to be unitary, and in §4, we examine some measure theoretic implications of these conditions. In \$5 we generalize our methods, and finally, in \$6 we show relations of these isometries to concrete canonical models of a class of operators defined by Kriete [7], and point out relations of our work to his.

We consider only singular *-invariant subspaces since in the general case, $\phi = s \cdot B$ where s is singular, and

$$B(z) = \prod_{n} \frac{\overline{a}_{n}}{|a_{n}|} \frac{a_{n} - z}{1 - \overline{a}_{n} z},$$

Presented to the Society, January 25, 1973; received by the editors January 12, 1973 and, in revised form, June 6, 1973.

AMS (MOS) subject classifications (1970). Primary 47A15, 46E20; Secondary 47A45,

⁴⁷A65, 30A76.

Key words and phrases. Invariant subspace, inner function, restricted shift operator, concrete model theory for operators.

⁽¹⁾ This paper is based on part of the author's Ph. D. thesis written at the University of Wisconsin under the direction of Professor P. R. Ahem.

and by writing $(\phi H^2)^{\perp} = (BH^2)^{\perp} \oplus B(sH^2)^{\perp}$, we can consider separately the singular and Blaschke product cases [1]. If $\{(B_nH^2)^{\perp}\}$ is any family of increasing *-invariant subspaces of $(BH^2)^{\perp}$, it follows that each B_n is a subproduct of B. Relabeling if necessary, we assume B_n has zeroes a_1, \dots, a_{n-1} , and then $\{b_j\}_{j=1}^n, b_j(z) = (1-|a_j|^2)^{\frac{1}{2}}B_j(z)(1-\overline{a}_jz)^{-1}$, forms an orthonormal basis for $(B_nH^2)^{\perp}$ [11]. Then $(V\{c_n\})(z) = \sum_{n=0}^{\infty} c_nb_n(z)$ maps l^2 unitarily onto $(BH^2)^{\perp}$ in a canonical manner. We thus restrict ourselves to the singular case where families of subspaces are uncountable, and hence such natural orthonormal bases do not exist.

- 2. Constructing isometries. For σ a positive singular Borel measure on the unit circle T (which we identify with $[0, 2\pi]$), we say $\{\sigma_{\lambda}\}_{\lambda \in T}$ is a (right) continuous chain if
 - (i) $\sigma_{2\pi} = \sigma$, σ_0 is the zero measure,
 - (ii) if $\lambda < \mu$, $(\sigma_{\mu} \sigma_{\lambda})$ is a positive Borel measure,
 - (iii) $a(\lambda) = \sigma_{\lambda}(T)$ is a (right) continuous function of λ .

We note that (i) implies that $\sigma_{\lambda} \ll \sigma_{\mu}$, $\lambda < \mu$, and hence the only possible atoms of σ_{λ} are atoms of σ . In what follows, the subscript λ will implicitly range over $[0, 2\pi]$.

Given a singular inner function

$$s(z) = \exp \left[-\int \frac{e^{i\theta} + z}{e^{i\theta} - z} d\sigma(\theta) \right]$$

and a right continuous chain $\{\sigma_{\lambda}\}$, let

$$s_{\lambda}(z) = \exp \left[-\int \frac{e^{i\theta} + z}{e^{i\theta} - z} d\sigma_{\lambda}(\theta) \right],$$
 $M_{\lambda} = (s_{\lambda}H^{2})^{\perp}, \text{ and}$

$$P_{\lambda}$$
 be orthogonal projection on M_{λ} .

We denote $M_{2\pi}$ by M and $P_{2\pi}$ by P, and note that since s_{λ} is a singular inner function dividing s, $\{M_{\lambda}\}$ is an increasing family of *-invariant subspaces of M. From Beurling's theorem [2] and the continuity condition on $a(\lambda) = \sigma_{\lambda}(T)$, we have the following proposition.

Proposition 2.1. (i)
$$M_{\lambda} = \bigcap_{\mu > \lambda} M_{\mu}$$
.

(ii) If $\{\sigma_{\lambda}\}$ is a continuous chain, then $(\bigcup_{\mu<\lambda}M_{\mu})$ is dense in M_{λ} .

Details of the proof can be found in [7]. Thus, 2.1 shows that the increasing

family of projections $\{P_{\lambda}\}$ is right continuous in the strong operator topology. For $z \in D$ fixed, and 1 the constant function,

$$(P_{\lambda} 1)(z) = 1 - s_{\lambda}(z)s_{\lambda}(0) = \mu_{z}([0, \lambda])$$

is a complex Borel measure on $[0, 2\pi]$.

$$\nu_{z}([0, \lambda]) = \int_{0}^{2\pi} \frac{d\sigma_{\lambda}(\theta)}{1 - ze^{-i\theta}}$$

is also a Borel measure, and a simple computation shows that $\mu_z(E) = \int_E 2s_\lambda(z)s_\lambda(0) \, d\nu_z(\lambda)$, i.e., $d\mu_z(\lambda) = 2s_\lambda(z)s_\lambda(0) \, d\nu_z(\lambda)$. Thus, $\nu = \nu_0$ and $\mu = \mu_0$ are equivalent, i.e., mutually absolutely continuous, positive measures, and $\nu((a, b]) = \sigma_b(T) - \sigma_a(T)$.

Proposition 2.2. There exists $F(z, \lambda)$ such that for each $z \in D$, $F(z, \lambda) \in L^{\infty}(\nu)$ and $d\nu_{\pi}(\lambda) = F(z, \lambda) d\nu(\lambda)$.

Proof. Fix $z \in D$ and let $C_z = \sup_{\theta} |1/(1 - ze^{-i\theta})|$. Then for $(a, b] \in T$,

$$|\nu_z((a, b])| = \left| \int_0^{2\pi} \frac{d(\sigma_b - \sigma_a)(\theta)}{1 - ze^{-i\theta}} \right| \le C_z \nu((a, b]),$$

so $|\nu_z(E)| \le C_z \nu(E)$ for all $E \subset T$. $F(z, \lambda)$ is just the Radon-Nikodým derivative of $\nu_z \ll \nu$.

Thus, $\mu_z \ll \mu_z$ so for $c \in L^2(\mu)$ we define

$$(Vc)(z) = \int_0^{2\pi} c(\lambda) d\mu_x(\lambda) = 2 \int_0^{2\pi} c(\lambda) s_{\lambda}(z) s_{\lambda}(0) F(z, \lambda) d\nu(\lambda).$$

Proposition 2.3. $V: L^2 \rightarrow M$ is an isometry.

Proof. Let $\chi_{(a,b]}$ be the characteristic function of (a,b], and S the closed linear span of all such χ . Since $V\chi_{(a,b]} = P_b 1 - P_a 1$ is the projection of 1 onto $M_b \ominus M_a$, V maps S isometrically into M. For $c \in L^2(\mu)$, $c_n \to c$, $\{c_n\} \subset S$, we have $\{Vc_n\}$ Cauchy in M, and since for $z \in D$ fixed, $(Vc_n)(z) \to (Vc)(z)$, V is an isometry on all of $L^2(\mu)$.

Proposition 2.4. Let $c \in L^2(\mu)$.

- (i) If $c(\lambda) = 0$ a.e. for $\lambda > a$, then $(Vc) \in M_a$.
- (ii) If $c(\lambda) = 0$ a.e. for $\lambda \le a$, then $(Vc) \in M_a^{\perp} = s_a H^2$.

Proof. For continuous c, (Vc) is the limit of Riemann sums and the proposition is clear. The general case follows by continuity.

Corollary 2.5. Let Q_{λ} : $L^{2}(\mu) \rightarrow L^{2}(\mu)$ by

$$(Q_{\lambda}c)(x) = c(x), \qquad x \leq \lambda,$$

= $0, \qquad x > \lambda.$

Then $P_{\lambda}V = VQ_{\lambda}$.

Proof. $(Vc) = \int_{[0,\lambda]} c(x) d(P_{\lambda}1) + \int_{(\lambda,2\pi]} c(x) d(P_{\lambda}1)$. Since the first summand is in M_{λ} and the second is in M_{λ}^{\perp} , we have $(P_{\lambda}V_{c}) = \int_{[0,\lambda]} c(x) d(P_{\lambda}1) = V(Q_{\lambda}c)$. Since c is arbitrary, the proposition follows.

3. Conditions for unitary maps. We know that $V(L^2(\mu))$ is a closed subspace of M, and we now consider when V is actually onto. It is clear that a necessary condition for this is that $\{\sigma_{\lambda}\}$ be a continuous chain, since if $\sigma_{\lambda}(T)$ has a jump at λ_0 , define

$$\widetilde{\sigma}(E) = \lim_{\epsilon \to 0^+} \sigma_{\lambda - \epsilon}(E)$$

and let

$$\widetilde{s}(t) = \exp \left[-\int \frac{e^{i\theta} + z}{e^{i\theta} - z} d\widetilde{\sigma}(\theta) \right].$$

Then \widetilde{s} is a singular inner function and $V(L^2(\mu|_{[0,\Lambda_0)})) \subset (\widetilde{s}H^2)^{\perp}$ and $V(L^2(\mu|_{(\lambda_0,2\pi]})) \subset s_{\lambda_0}H^2$, so $N = (s_{\lambda_0}H^2)^{\perp} \ominus (\widetilde{s}H^2)^{\perp}$ is an infinite dimensional subspace of M, since $\sigma_{\lambda_0} \neq \widetilde{\sigma}$, and N cannot be contained in $V(L^2)$. Thus, we now assume that all chains $\{\sigma_{\lambda}\}$ are continuous, which is equivalent to assuming that μ and ν are nonatomic measures.

For $\zeta \in D$, let $K_{\zeta}(z) = (1 - \overline{s}(\zeta)s(z))/(1 - \overline{\zeta}z)$ be the projection of the reproducing kernel $(1 - \overline{\zeta}z)^{-1}$ onto M. One can see that K_{ζ} is in the range of V iff

(*)
$$F(z, \lambda) + \overline{F}(\zeta, \lambda) - 1 = F(z, \lambda) \overline{F}(\zeta, \lambda)(1 - \overline{\zeta}z) \quad \text{a.e. } [\nu]$$

holds for all $z \in D$. Since the linear span of the K_{ζ} is dense in M, V is onto iff (*) holds for all $\zeta \in D$, which is equivalent to $F(z, \lambda) = (1 - ze^{-if(\lambda)})^{-1}$ for some real f. Details for this are found in [10].

We get this result more simply by following the methods used by Kriete [7]. Kriete constructs a unitary map

$$\mathcal{F}: M \to \mathfrak{D} = \int_0^{2\pi} \bigoplus L^2(\nu_{\lambda}) d\nu(\lambda),$$

where $\mathfrak D$ is a direct integral space. The measures $u_{\pmb\lambda}$ are defined by the relation

$$\int_{T} b(\theta) d\sigma_{\lambda}(\theta) = \int_{0}^{\lambda} \left(\int_{T} b(\theta) d\nu_{s}(\theta) \right) d\nu(s)$$

for all $b \in C(T)$ [7, p. 133]. It is easy to see that our isometry V is the unitary map \mathcal{F}^{-1} restricted to \mathcal{D}_{λ} , the set of functions in \mathcal{D} depending only on λ , i.e., if $b(\lambda, \theta) \in \mathcal{D}_{\lambda} \subset \mathcal{D}$, then for each λ_0 , $b(\lambda_0, \theta) \in L^2(\nu_{\lambda_0})$ is constant a.e. $[\nu_{\lambda_0}]$. Thus, V is onto iff $\mathcal{D}_{\lambda} = \mathcal{D}$. As Kriete remarks [7, p. 137], this holds iff $\nu_{\lambda} = \delta_{f(\lambda)}$, a unit point mass at $f(\lambda)$. If we consider $b_z(\theta) = (1 - ze^{-i\theta})^{-1} \in C(T)$, we see that

$$\int_0^{2\pi} (1 - ze^{-i\theta})^{-1} d\sigma_{\lambda}(\theta) = \int_0^{\lambda} \left(\int_0^{2\pi} (1 - ze^{-i\theta})^{-1} d\nu_s(\theta) \right) d\nu(s),$$

so we have $F(z, \lambda) = \int_0^{2\pi} (1 - ze^{-i\theta})^{-1} d\nu_{\lambda}(\theta)$. Hence, we have

Proposition 3.1. V is onto iff there is a real f such that $F(z, \lambda) = (1 - ze^{-if(\lambda)})^{-1}$ a.e. $[\nu]$, i.e.

$$d\left[\int_0^{2\pi} (1-ze^{-i\theta})^{-1} d\sigma_{\lambda}(\theta)\right] = (1-ze^{-if(\lambda)})^{-1} d\left[\int_0^{2\pi} d\sigma_{\lambda}(\theta)\right].$$

We note that $K_0 = 1 - s(z)s(0) = P1 = V(1)$ is always in the range of V. From this, it follows that $V(L^2)$ cannot be *-invariant unless V is onto.

4. Descriptions of the chains of measures. We now examine more closely what

(**)
$$d\left[\int_0^{2\pi} \frac{d\sigma_{\lambda}(\theta)}{1 - ze^{-i\theta}}\right] = \frac{1}{1 - ze^{-if(\lambda)}} d\nu(\lambda)$$

implies about the chain $\{\sigma_{\lambda}\}$.

Proposition 4.1. (**) bolds iff for all λ , $\sigma_{\lambda}(E) = \nu(f^{-1}(E) \cap [0, \lambda])$, for all $E \subset T$.

Proof. Suppose (**) holds, so that $\nu_{\lambda} = \delta_{f(\lambda)}$. Then for $E \subset T$, consider $b(\theta) = \chi_E(\theta)$ in the equation defining ν_{λ} . Thus,

$$\begin{split} \sigma_{\lambda}(E) &= \int_{T} \chi_{E}(\theta) \, d\sigma_{\lambda}(\theta) = \int_{0}^{\lambda} \left(\int_{T} \chi_{E}(\theta) \, d\nu_{s}(\theta) \right) d\nu(s) \\ &= \int_{0}^{\lambda} \left(\int_{E} \, d\delta_{f(s)} \right) d\nu(s) \\ &= \int_{0}^{\lambda} \chi_{f^{-1}(E)}(s) \, d\nu(s) = \nu(f^{-1}(E) \cap [0, \lambda]). \end{split}$$

Conversely, suppose $\sigma_{\lambda}(E) = \nu(f^{-1}(E) \cap [0, \lambda])$. Then we get $\int_0^{\lambda} \nu_s(E) d\nu(s) = \int_0^{\lambda} \chi_{f^{-1}(E)}(s) d\nu(s)$. Since λ is arbitrary, we have that $\nu_s(E) = \chi_{f^{-1}(E)}(s)$ a.e. $[\nu]$, so $\nu = \delta_{f(s)}$ and (**) follows.

A general finite positive singular σ can be written as $\sigma = \sum_j a_j \delta_j + \widetilde{\sigma}$, where $a_j > 0$, $\sum a_j < \infty$, δ_j is a unit point mass at θ_j , and $\widetilde{\sigma}$ is a continuous singular measure. Then if $\{\sigma_{\lambda}\}$ is a continuous chain, $\sigma_{\lambda} = \sum \alpha_j(\lambda)\delta_j + \widetilde{\sigma}_{\lambda}$, where for each j, α_j is a continuous increasing function of λ , $\alpha_j(0) = 0$, $\alpha_j(2\pi) = a_j$, and $\{\widetilde{\sigma}_{\lambda}\}$ is a continuous chain for $\widetilde{\sigma}$. If we let $\nu_j([0, \lambda]) = \alpha_j(\lambda)$, and $\widetilde{\nu}([0, \lambda]) = \widetilde{\sigma}_{\lambda}(T)$, then $d\nu(\lambda) = d[\sigma_{\lambda}(T)] = \sum_j d\nu_j(\lambda) + d\widetilde{\nu}(\lambda)$.

Proposition 4.2. Using the above notation, (**) holds if and only if the measures ν_j , $j=1, 2, \cdots$, and $\widetilde{\nu}$ are mutually singular, $f(\theta)=\theta_j$ a.e. $[\nu_j]$, and $\widetilde{\sigma}_{\lambda}(E)=\widetilde{\nu}(f^{-1}(E)\cap [0,\lambda])$.

Proof. (**) implies that

$$\int_0^{2\pi} \frac{d\widetilde{\sigma}_{\lambda}(\theta)}{1 - ze^{-i\theta}} + \sum_i \frac{\alpha_i(\lambda)}{1 - ze^{-i\theta_i}} = \sum_i \int_0^{\lambda} \frac{d\nu_i(\theta)}{1 - ze^{-i\theta}} + \int_0^{\lambda} \frac{d\widetilde{\nu}(\theta)}{1 - ze^{-i\theta}}.$$

Since each side is a holomorphic function of z, we equate the nth derivatives evaluated at 0, and we get

$$\int_0^{2\pi} e^{-in\theta} d\widetilde{\sigma}_{\lambda}(\theta) + \sum_i e^{-in\theta}{}^j \alpha_j(\lambda) = \sum_i \int_0^{\lambda} e^{-in\theta} d\nu_j(\theta) + \int_0^{\lambda} e^{-in\theta} d\widetilde{\nu}(\theta).$$

Taking complex conjugates, and then considering linear combinations and monotone limits yields, for any bounded Borel function b,

$$\int_0^{2\pi} b(\theta) d\overset{\sim}{\sigma}_{\lambda}(\theta) + \sum_j b(\theta_j) \alpha_j(\lambda) = \sum_j \int_0^{\lambda} b(f(\theta_j)) d\nu_j + \int_0^{\lambda} b(f(\theta)) d\overset{\sim}{\nu}(\theta).$$

Let $b_K(\theta) = \chi_{\{\theta_K\}}(\theta)$ and $B_K = f^{-1}(\{\theta_K\})$. Then

$$\alpha_K(\lambda) = \int_0^\lambda d\nu_K(\theta) = \int_0^\lambda \chi_{B_K}(\theta) \left(\sum_j d\nu_j(\theta) + d\widetilde{\nu}(\theta)\right).$$

Since λ is arbitrary, we have

$$\int_E \, d\nu_K(\theta) = \sum_i \, \int_{E\cap B_K} \, d\nu_j(\theta) + \int_{E\cap B_K} \, d\stackrel{\sim}{\nu}(\theta).$$

Hence, ν_K is carried in B_K , and

$$\widetilde{\nu}(B_{\kappa}) = \nu_i(B_{\kappa}) = 0$$
 if $\alpha \neq K$.

Clearly $f(\theta) = \theta_K$ a.e. $[\nu_K]$, and considering only $(\bigcup_K B_K)^c$, Proposition 4.1 completes the proof.

We note that given any Borel measurable $f: [0, 2\pi] \xrightarrow{\text{onto}} [0, 2\pi]$, and any continuous singular σ , there is a Borel measure ν such that $\nu(f^{-1}(E)) = \sigma(E)$ [9]. If we choose such a ν and define $\sigma_{\lambda}(E) = \nu(f^{-1}(E) \cap [0, \lambda])$, then $\{\sigma_{\lambda}\}$ is a continuous chain with corresponding $F(z, \lambda) = (1 - ze^{-if(\lambda)})^{-1}$. Thus, all chains arise in this manner, and any onto f may occur.

It is difficult to determine whether a given chain $\{\sigma_{\lambda}\}$, where σ is continuous, satisfies the condition of Proposition 4.2. We now consider those chains obtained by letting $\sigma_{\lambda} = \sigma|_{A_{\lambda}}$, i.e., σ restricted to A_{λ} , where $\{A_{\lambda}\}$ is an increasing family of Borel sets. We see that if $(A_{\lambda} - B_{\lambda}) \cup (B_{\lambda} - A_{\lambda})$ is countable for all λ , then $\sigma|_{A_{\lambda}} = \sigma|_{B_{\lambda}}$ for all continuous σ , so it suffices to consider collections $\{A_{\lambda}\}$ modulo this equivalence relation. We now suppose that $\{\sigma|_{A_{\lambda}}\}$ is a chain which satisfies (**) for all continuous singular σ , and we characterize the collection $\{A_{\lambda}\}$.

We first note that continuity of the chain $\{\sigma_{\lambda}\}$ implies that $S_{\lambda}=(A_{\lambda}-\bigcup_{\mu<\lambda}A_{\mu})$ and $D_{\lambda}=(\bigcap_{\mu>\lambda}A_{\mu}-A_{\lambda})$ are at most countable for all λ . (If not, one could find a continuous σ carried in S_{λ_0} or D_{λ_0} , and $a(\lambda)=\sigma_{\lambda}(T)$ would jump at λ_0 .) Hence $\{A_{\lambda}\}$ is equivalent to $\{\bigcap_{\mu>\lambda}A_{\mu}\}$, and we may assume that $A_{\lambda}=\bigcap_{\mu>\lambda}A_{\mu}$. We may also assume that $A_{0}=\emptyset$ and $A_{2\pi}=[0,2\pi]$.

For $x \in [0, 2\pi]$, let $\lambda_x = \inf\{\lambda \mid x \in A_\lambda\}$, and define $\gamma(x) = \lambda_x$. Then $\gamma^{-1}(\lambda_x) = \{y \mid y \in A_{\lambda_x}, \ \lambda < \lambda_x \implies y \notin A_\lambda\} = S_{\lambda_x}$, and $\gamma^{-1}([0, \lambda]) = \bigcup_{\mu < \lambda} S_{\mu} = \bigcup_{\mu < \lambda} (A_{\mu} - \bigcup_{\nu < \mu} A_{\nu}) = A_{\lambda}$, so γ is Borel measurable and $\gamma^{-1}(p)$ is countable for all p. Hence, there exists a countable (perhaps finite) collection of disjoint Borel sets $\{B_j\}$ with $\bigcup_j B_j = [0, 2\pi], \ \gamma_j = \gamma|_{B_j} \ 1-1, \ \gamma(B_j) \supset \gamma(B_{j+1})$ [4]. For any continuous σ , define σ_j by

$$\sigma_i(S) = \sigma(\gamma_i^{-1}(S)) = \sigma^{\gamma_i}(S), \quad S \subset T.$$

Let β_i : $[0, 2\pi] \rightarrow [0, 2\pi]$ be defined by

$$\beta_j(x) = \gamma_j^{-1}(x)$$
 if $x \in \gamma_j(B_j)$,
= 0 if $x \notin \gamma_i(B_j)$.

Then $\sigma_j(S) = \sigma(\beta_j(S))$ since $\sigma(\{0\}) = 0$.

Now, suppose $S_{\lambda} = (A_{\lambda} - \bigcup_{\mu < \lambda} A_{\mu})$ has at least two elements for all $\lambda \in E$, where E is uncountable. Then $\{B_j\}$ has (at least) two uncountable sets, B_1 and B_2 . Clearly we can choose a continuous singular σ carried on $S = \gamma_1^{-1}(\gamma_2(B_2)) \cup B_2$ such that $\sigma(\gamma_1^{-1}(S)) = \sigma_1(S) = \sigma(\gamma_2^{-1}(S)) = \sigma_2(S)$ for all $S \subset T$. Then $\sigma_j(S) = 0$

if j > 2, and $\nu([0, \lambda]) = \sigma_{\lambda}(T) = \sigma(A_{\lambda}) = \sigma(\gamma^{-1}[0, \lambda]) = \sum_{j} \sigma_{j}([0, \lambda]) = (\sigma_{1} + \sigma_{2})([0, \lambda]) = 2\sigma_{1}([0, \lambda]).$

Since $\{\sigma_{\lambda}\}$ satisfies (**) for some f, we have

$$\int_{0}^{\lambda} \frac{d\nu(\theta)}{1 - ze^{-if(\theta)}} = \int_{0}^{2\pi} \frac{d\sigma_{\lambda}(\theta)}{1 - ze^{-i\theta}} = \int_{A_{\lambda}} \frac{d\sigma(\theta)}{1 - ze^{-i\theta}}$$

$$= \sum_{j} \int_{\gamma_{j}^{-1}([0,\lambda])} \frac{d\sigma(\theta)}{1 - ze^{-i\theta}}$$

$$= \int_{0}^{\lambda} \frac{d\sigma_{1}(\theta)}{1 - ze^{-i\beta_{1}(\theta)}} + \int_{0}^{\lambda} \frac{d\sigma_{2}(\theta)}{1 - ze^{-i\beta_{2}(\theta)}} + 0$$

$$= \frac{1}{2} \int_{0}^{\lambda} [(1 + ze^{-i\beta_{1}(\theta)})^{-1} + (1 + ze^{-i\beta_{2}(\theta)})^{-1}] d\nu(\theta).$$

Comparing *n*th derivatives at z = 0, we have, since λ is arbitrary,

$$2e^{-inf(\theta)} = e^{-in\beta_1(\theta)} + e^{-in\beta_2(\theta)}$$
 a.e. [v].

Thus, $\beta_1(\theta) = \beta_2(\theta)$ a.e. $[\nu]$, which is impossible since $B_1 \cap B_2 = \emptyset$ and $\beta_i(\theta) \in B_i$. Thus, the set E is countable, and by taking an equivalent collection $\{A_{\lambda}\}$, we may assume $E = \emptyset$.

Proposition 4.3. Suppose $\{A_{\lambda}\}$ induces a unitary map $V: L^2(\mu) \to M$ for all continuous singular σ . Then

$$\begin{pmatrix} A_{\lambda} - \bigcup_{\mu > \lambda} A_{\mu} \end{pmatrix} = \{ p_{\lambda} \}, \quad \lambda \in E,$$

$$= \emptyset, \quad \lambda \in E^{c},$$

for some set E. Further, (**) bolds with $f(\lambda) = p_{\lambda}$, $A_{\lambda} = f(E \cap [0, \lambda])$, $\nu(S) = \sigma(f(E \cap S))$, and $\nu(E^c) = 0$.

Proof. We have proved all but the final statement:

$$E = \left\{ \lambda \middle| S_{\lambda} = \left(A_{\lambda} - \bigcup_{\mu > \lambda} A_{\mu} \right) = \left\{ f(\lambda) \right\} \right\}$$
$$= \left\{ \lambda \middle| \lambda = \lambda_{x} = \gamma(x) \text{ for some } x \in [0, 2\pi] \right\} = \gamma([0, 2\pi]).$$

Let $x \in A_{\lambda}$. Then $x \in A_{\lambda_x}$ for $\lambda_x \le \lambda$, so $x \in S_{\lambda_x}$. Thus, $S_{\lambda_x} = \{x\}$ and $x = f(\lambda_x) \in f(E \cap [0, \lambda])$. Let $x \in f(E \cap [0, \lambda])$. Then $x = f(\lambda_x)$, $\lambda_x \le \lambda$, $\lambda_x \in E$. Hence, $x \in A_{\lambda_x} \subseteq A_{\lambda_x}$, so $A_{\lambda_x} = f(E \cap [0, \lambda])$. $\sigma_{\lambda}(S) = \nu[f^{-1}(S) \cap [0, \lambda]]$, so

 $\nu(S) = \sigma(f(S \cap E))$ for all $S \subset T$ since $f|_{E}$ is 1-1.

Thus, $\nu(E^c) = 0$.

(iii)

Conversely, if $\{A_{\lambda}\}$ is an increasing family of Borel sets with

(i)
$$A_0 = \emptyset$$
, $A_{2\pi} = [0, 2\pi]$,

(ii) $\bigcap_{\mu>\lambda} A = A_{\lambda}$, and

$$A_{\lambda} - \bigcup_{\mu > \lambda} A_{\mu} = \{p_{\lambda}\}, \quad \lambda \in E,$$

for some Borel set E, we can define $f(\lambda) = p_{\lambda}$ if $\lambda \in E$, $f(\lambda) = 0$ if $\lambda \in E^{c}$. Then f is Borel measurable by Kuratowski's isomorphism theorem [8]. If we let $\sigma_{\lambda} = \sigma|_{A_{\lambda}}$, then $\{\sigma_{\lambda}\}$ is a continuous chain satisfying (**), and hence induces an onto map V.

5. More general isometries. The isometries we have defined are closely related to the map $U = \int e^{i\lambda} dP_{\lambda}$: $M \to M$. (This is defined as the limit in the strong operator topology of appropriate simple functions. See [3] for details.) This leads us to examine the special role played by the function 1.

Proposition 5.1. V: $L^2(\mu) \to M$ is onto if and only if 1 is cyclic for $\int e^{i\lambda} dP_{\lambda}$. More precisely,

Range (V) = span
$$\{U^n 1\}_{n=-\infty}^{\infty}$$
.

Proof. Since $d(P_x \int_0^{2\pi} c(\lambda) dP_{\lambda} f) = c(x) dP_x f$, we have $U^n = \int e^{in\lambda} dP_{\lambda}$, $n = 0, \pm 1, \cdots$. Thus, $U^n = V(e^{in\lambda})$. The proposition now follows since $\{e^{in\lambda}\}$ is dense in $L^2(\mu)$.

For $f \in M$, define $\mu_f([0, \lambda]) = (P_{\lambda}f, f)$. Then μ_f is a positive Borel measure and we have $V_f: L^2(\mu_f) \to M$ defined by $(V_f c)(z) = \int c(\lambda) d(P_{\lambda}f)(z)$. Analogous to $V = V_1$, we have

Proposition 5.2. $V_f: L^2(\mu_f) \to M$ is an isometry. $VQ_{\lambda} = P_{\lambda}V$, where $Q_{\lambda}: L^2(\mu_f) \to L^2(\mu_f|_{[0,\lambda]})$ by restriction, and Range $(V_f) = \text{span}\{U^n f\}_{n=-\infty}^{\infty}$.

Now, given $\{\sigma_{\lambda}\}$, $\{s_{\lambda}\}$, and $\{M_{\lambda}\}$, we can ask whether some V_{f} : $L^{2}(\mu_{f}) \to M$ is unitary. We show below that $V = V_{1}$: $L^{2}(\mu) \to M$ is the best candidate for a unitary map.

Lemma 5.2. Let $g_n(z) = z^n$. Then for $z \in D$, $n \ge 0$, $\mu_z^{(n)}([0, \lambda]) = (P_{\lambda}g_n)(z)$ is a complex Borel measure. For any $z \in D$, $n \ge 0$, $\mu_z^{(n)} \ll \mu$.

Proof. The proof follows by a simple induction.

Proposition 5.3. Suppose $V_f: L^2(\mu_f) \to M$ is onto. Then $V: L^2(\mu) \to M$ is onto.

Proof. If V_i is onto, there is a $c_1 \in L^2(\mu_i)$ with

$$(V_f c_1) = \int_0^{2\pi} c_1(\lambda) dP_{\lambda} f = 1 - s(z) s(0) = \int_0^{2\pi} d(P_{\lambda} 1)(z).$$

Then, $d(P_{\lambda}1)(z) = c_1(\lambda) d(P_{\lambda}f)(z)$ for $z \in D$. In particular, $c_1(\lambda) d(P_{\lambda}f)(0) = d\mu(\lambda)$. Suppose $\mu_f(E) = 0$, $F \subset E$. Then $0 = \|\chi_F\|_{L^2(\mu_f)}^2 = \|V_f \chi_F\|_{H^2}^2$, so $V\chi_F = 0$. Thus, $0 = (V\chi_F) = \int_F d(P_{\lambda}f)(0)$, so $\mu(F) = 0$ and $\mu \ll \mu_F$.

Suppose $\mu(E)=0$. Then by Lemma 5.2, $\int \chi_E(\lambda) \, dP_\lambda$: $M\to M$ annihilates z^n for all $n\geq 0$, and is hence the zero operator. Hence, $\int_E dP_\lambda f\equiv 0=(V_f\chi_E)$, and $\mu_f\ll \mu$. Thus, given $c\in L^2(\mu_f)$, c/c_1 is well defined with respect to the measure algebra of μ , and

$$\begin{aligned} \|c\|_{L^{2}(\mu_{f})} &= \int |c(\lambda)|^{2} d\mu_{f}(\lambda) = \int |c(\lambda)|^{2} d(P_{\lambda}f, f) \\ &= \int |c(\lambda)|^{2} \frac{1}{|c_{\lambda}(\lambda)|^{2}} d(P_{\lambda}1, 1) = \|\frac{c}{c_{1}}\|_{L^{2}(\mu)}^{2}. \end{aligned}$$

Thus, $V_1(c/c_1) = V_1(c)$ so V_1 is onto.

6. Conclusion. Let $\{\sigma_{\lambda}\}$ be a chain yielding a unitary $V: L^2(d\mu) \xrightarrow{\text{onto}} M$, with $F(z, \lambda) = (1 - ze^{-if(\lambda)})^{-1}$. Then, by techniques similar to those of Ahern and Clark [1], who used $\sigma_{\lambda} = \sigma|_{(0,\lambda)}$ which corresponds to $f(\lambda) = (1 - ze^{-i\lambda})^{-1}$, we have that

$$(V^*g)(\lambda) = \lim_{r \to 1} (2\pi s_{\lambda}(0))^{-1} \int_0^{2\pi} g(e^{i\theta}) \overline{s_{\lambda}}(re^{i\theta}) (1 - re^{if(\lambda)})^{-1} d\theta.$$

If $T: M \to M$ is the restricted shift defined by $Tg = P_M zg$, $g \in M$, and M, $K: L^2(\mu) \to L^2(\mu)$ are defined by

$$(Mc)(\lambda) = e^{if(\lambda)}c(\lambda), \qquad (Kc)(\lambda) = 2\int_0^\lambda e^{\sigma_t(T) - \sigma_\lambda(T)}c(t) d\nu(t),$$

then $T = V(I - K)MV^*$. Thus, we say that V implements the concrete model theory for $((I - K)M)^*$. This is a special case of a class of operators considered by Kriete [7]. In the nononto case, $V(L^2(\mu))$ is the image of a certain one-dimensional section of $\mathfrak D$. It is not clear whether this space has any special significance with respect to restricted shifts or *-invariant subspaces.

BIBLIOGRAPHY

1. P. R. Ahem and D. N. Clark, On functions orthogonal to invariant subspaces, Acta. Math. 124 (1970), 191-204. MR 41 #8981a.

- 2. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta. Math. 81 (1948), 17 pp. MR 10, 381.
- 3. N. Dunford and J. T. Schwartz, Linear operators. II. Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.
 - 4. F. Hausdorff, Set theory, 2nd ed., Chelsea, New York, 1962. MR 25 #4999.
- 5. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 24#A2844.
- 6. T. L. Kriete, A generalized Paley-Wiener theorem, J. Math. Anal. Appl. 36 (1971), 529-555. MR 44#5473.
 - 7. ----, Fourier transforms and chains of inner functions, Duke Math. J. 40 (1973).
- 8. K. Kuratowski, Topologie. Vol. I, 2nd ed., Monografie Mat., Tom 20, Warszawa-Wroclaw, 1948; English transl., new ed., rev. and aug., Academic Press, New York; PWN, Warsaw, 1966. MR 10, 389; 36#840.
- 9. A. Lubin, Extensions of measures and the von Neumann selection theorem, Proc. Amer. Math. Soc. 43 (1974), 118-122.
- 10. ——, Isometries of *-invariant subspaces of $H^2(D)$, Thesis, University of Wisconsin, Madison, Wis., 1972.
- 11. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R. I., 1960. MR 36 #1672a.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201