λ CONNECTED PLANE CONTINUA

BY

CHARLES L. HAGOPIAN(1)

ABSTRACT. A continuum M is said to be λ connected if any two distinct points of M can be joined by a hereditarily decomposable continuum in M. Recently this generalization of arcwise connectivity has been related to fixed point problems in the plane. In particular, it is known that every λ connected nonseparating plane continuum has the fixed point property. The importance of arcwise connectivity is, to a considerable extent, due to the fact that it is a continuous invariant. To show that λ connectivity has a similar feature is the primary purpose of this paper. Here it is proved that if M is a λ connected continuum and f is a continuous function of M into the plane, then f(M) is λ connected. It is also proved that every semiaposyndetic plane continuum is λ connected.

Introduction. A nondegenerate metric space that is both compact and connected is called a continuum. It is known that every plane continuum that has a hereditarily decomposable boundary and does not separate the plane has the fixed point property [1]. Recently the author [4] proved that every arcwise connected nonseparating plane continuum has a hereditarily decomposable boundary. Hence all arcwise connected nonseparating plane continua have the fixed point property. In [7] it is pointed out that the author's theorem remains true if the word "arcwise" is replaced by " λ ". In fact, in [7] it is proved that a plane continuum that does not have infinitely many complementary domains is λ connected if and only if its boundary does not contain an indecomposable continuum.

This paper is primarily concerned with the following questions:

- (1) What other theorems about arcwise connected continua also hold for λ connected continua?
- (2) Are there general properties, other than arcwise connectivity for plane continua, that imply λ connectivity?

Received by the editors September 13, 1971 and, in revised form, September 6, 1973. AMS (MOS) subject classifications (1970). Primary 54C05, 54F25, 54F60, 57A05; Secondary 54F15.

Key words and phrases. Arcwise connectivity, 'A connected continua, aposyndesis, semiaposyndesis, planar continuous images of hereditarily decomposable continua.

⁽¹⁾ The author gratefully acknowledges conversations about these results with D. P. Bellamy, F. B. Fuller, E. E. Grace, F. B. Jones, and J. S. Rosasco.

Here, in response to the first question, we prove that every planar continuous image of a λ connected continuum is λ connected.

To deal with the second question, we must consider general properties that do not imply arcwise connectivity. Examples have been given [13, Example 4], [10, Example 6], and [3, Example 1], which indicate that, for plane continua, arcwise connectivity is not a consequence of the aposyndetic property defined by F. Burton Jones. Jones' property can be generalized as follows.

Definition. A continuum M is said to be *semiaposyndetic* if for each pair of distinct points x and y in M there exists a subcontinuum F of M such that the sets M - F and the interior of F relative to M each contain a point of $\{x, y\}$.

Although not all semiaposyndetic plane continua are arcwise connected, these properties are related. If X is a semiaposyndetic plane continuum and for any positive real number ϵ there are at most a finite number of complementary domains of X of diameter greater than ϵ , then X is arcwise connected [6]. For another arc theorem involving semiaposyndesis see [5]. In the last section of this paper it is proved that all semiaposyndetic plane continua are λ connected.

Throughout this paper S^2 is a 2-sphere. The closure and the boundary of a given set Z are denoted by $Cl\ Z$ and $Bd\ Z$ respectively. The union of the elements of Z is denoted by $St\ Z$.

Definitions. Let X be a continuum in S^2 . A continuum L in X is said to be a link in X if L is either the boundary of a complementary domain of X or the limit of a convergent sequence of complementary domains of X. A continuum T in X is said to be a 2-link in X if T is the union of two (not necessarily distinct) links in X. An indecomposable subcontinuum I of X is said to be terminal in X if there exists a composant C of I such that each subcontinuum of X that meets both C and X-I contains I.

Preliminary results.

Theorem 1. If X is a continuum in S^2 and I is an indecomposable subcontinuum of X that is contained in the union of finitely many links in X, then every subcontinuum of X that contains a nonempty open subset of I contains I.

Proof. Assume I is contained in the union of α (α is a natural number) links in X. Suppose Z is a collection of $\alpha+1$ disjoint circular regions in S^2 such that each element of Z intersects I. There exist points c and d belonging to distinct elements of Z such that $\{c, d\}$ is contained in a complementary domain of X. The theorem now follows directly from [4, Theorem 1 (proof)].

Theorem 2. Suppose M is a hereditarily decomposable continuum and f is a continuous function of M into S^2 . Then no indecomposable subcontinuum of f(M) is terminal in f(M).

Proof. Assume there exists an indecomposable subcontinuum I of f(M) that is terminal in f(M). There exists a composant C of I such that each subcontinuum of f(M) that meets both C and f(M) - I contains I. Note that since f(M) is decomposable, I is a proper subcontinuum of f(M). Let P be a point of $f^{-1}(C)$ and let P be the P-component of $f^{-1}(I)$.

For each positive integer n, let G_n be an open set in M such that (1) $Z \subset G_n$, (2) Bd $G_n \cap f^{-1}(I) = \emptyset$, (3) $M - G_n$ is not the empty set, and (4) the distance from each point of G_n to Z is less than n^{-1} . For each n, let Y_n be the p-component of $Cl G_n$. Note that, for each n, the continuum Y_n meets Bd G_n [12, Theorem 50, p. 18] and consequently $f(Y_n)$ is a continuum in f(M) that meets both C and f(M) - I. Hence for each n, the continuum $f(Y_n)$ contains I. It follows from the continuity of f that f(Z) is f. Since f is hereditarily decomposable, this is a contradiction. Hence no indecomposable subcontinuum of f(M) is terminal in f(M).

Theorem 3. If X is a continuum in S^2 and no finite collection of links in X contains an indecomposable continuum in its union, then X is λ connected.

Proof. Let p_1 and q_1 be distinct points of X. We shall construct a hereditarily decomposable continuum Q in X that contains p_1 and q_1 .

Let A be an arc in S^2 from p_1 to q_1 ordered by <.

Notation. For points x and y of A $(x \le y)$ let [x, y], [x, y), (x, y], and (x, y) denote the sets $\{z \in A \mid x \le z \le y\}, \{z \in A \mid x \le z \le y\}, \{z \in A \mid x < z \le y\},$ and $\{z \in A \mid x < z < y\}$ respectively.

Let $\{G_n\}$ be the countable collection consisting of all complementary domains of X. If no element of $\{G_n\}$ intersects A, then A is in X and the construction is trivial. Assume this is not the case. Suppose without loss of generality that $G_1 \cap A \neq \emptyset$.

1. The construction of a continuum Z_1 in $(X \cup A) - G_1$ from p_1 to q_1 . Let H_0 be a link in X whose intersection with A is p_1 (if no such link exists let H_0 be \emptyset). Let L_0 be a link in X that meets A only at q_1 (if no such link exists let L_0 be \emptyset). The links H_0 and L_0 will be referred to as selected 2-links.

With H_0 , L_0 , the arc $[p_1, q_1]$, and the complementary domain G_1 as sets of reference, we now construct either a continuum K_1 or a set T_1 as follows.

If $H_0 \cap L_0 \neq \emptyset$, define $K_1 = H_0 \cup L_0$.

Assume that H_0 and L_0 are disjoint sets. Let x_1 and y_1 be the first and last points respectively of $[p_1, q_1] \cap \operatorname{Bd} G_1$ (with respect to the order of A). Let W_1 be the collection consisting of all links in X that meet $[p_1, x_1] \cup [y_1, q_1]$. Let V_1 be the collection of all 2-links L in X such that L is the union of two (not necessarily distinct) elements of W_1 .

If L is an element of V_1 that is the union of elements H and K (not necessarily distinct) of W_1 , then we call any point set $\{x, y\}$ such that x belongs to $H \cap ([p_1, x_1] \cup [y_1, q_1])$ and y belongs to $K \cap ([p_1, x_1] \cup [y_1, q_1])$ a basic set in L.

Suppose no element of V_1 meets both $[p_1, x_1] \cup H_0$ and $[y_1, q_1] \cup L_0$ and no element of V_1 meets both $[p_1, x_1] \cup H_0$ and $(y_1, q_1] \cup L_0$. Define

$$K_1 = [p_1, x_1] \cup \text{Bd } G_1 \cup [y_1, q_1].$$

In the last part of this proof, $\operatorname{Bd} G_1$ will be referred to as a selected 2-link.

Assume that V_1 does not have this property.

Suppose there exists an element E of V_1 in $X - \{p_1, q_1\}$ that meets both H_0 and L_0 . Define $K_1 = H_0 \cup E \cup L_0$. Later E will be referred to as a selected 2-link.

Assume no element of V_1 misses $\{p_1, q_1\}$ and meets both H_0 and L_0 . Suppose there exists an element of V_1 that meets both H_0 and $[y_1, q_1]$. Let d be the least upper bound (with respect to <) of the set of points $[y_1, q_1]$ that can be joined to H_0 by an element of V_1 . Since the limit of a convergent sequence of links is a link, there is an element of V_1 that joins d to H_0 [12, Theorem 59, p. 24]. If possible, select an element H of V_1 joining d to p_1 and define $K_1 = H \cup [d, q_1]$. If no such element exists, select an element E of V_1 missing p_1 that joins d to H_0 and define $K_1 = H_0 \cup E \cup [d, q_1]$.

Assume that no element of V_1 meets both H_0 and $[y_1, q_1]$.

Suppose an element of V_1 meets L_0 and $[p_1, x_1]$. Let a be the first point of $[p_1, x_1]$ that can be joined to L_0 by an element of V_1 . If possible, select an element L of V_1 that joins a to q_1 and define $K_1 = [p_1, a] \cup L$. If no such element exists, select an element E of V_1 missing q_1 that joins a to L_0 and define $K_1 = [p_1, a] \cup E \cup L_0$.

Assume that no element of V_1 meets both L_0 and $[p_1, x_1]$. Let a_1 be the first point of $[p_1, x_1]$ that can be joined to $[y_1, q_1]$ by an element of V_1 . There exist a continuum L_1 and a point q_2 of $[y_1, q_1]$ such that (1) L_1 is a selected element of V_1 that joins q_2 to a_1 , and (2) q_2 is the first point of $[y_1, q_1]$ that can be joined to a_1 by an element of V_1 .

Let d_1 be the last point of $[y_1, q_1]$ that can be joined to $[p_1, x_1]$ by an element of V_1 . There exist a continuum H_1 and a point p_2 such that (1) H_1 is a selected element of V_1 that joins p_2 to d_1 , and (2) p_2 is the last point of $[p_1, x_1]$ that can be so joined to d_1 .

Suppose an element E of V_1 contains $\{a_1, d_1\}$. Define $K_1 = [p_1, a_1] \cup E \cup [d_1, q_1]$.

Assume $\{a_1, d_1\}$ is not contained in an element of V_1 .

Suppose there exists an element E of V_1 that does not contain p_1 and meets

both H_0 and H_1 . Define $K_1 = H_0 \cup E \cup H_1 \cup [d_1, q_1]$.

Assume that each element of V_1 that meets both H_0 and H_1 contains p_1 . Suppose an element E of V_1 in $X - \{q_1\}$ meets L_0 and L_1 . Define $K_1 = [p_1, a_1] \cup L_1 \cup E \cup L_0$.

Assume that no element of V_1 in $X - \{q_1\}$ meets both L_0 and L_1 .

Suppose an element of V_1 meets $[p_1, a_1]$ and H_1 . Let a be the first point of $[p_1, a_1]$ that can be joined to H_1 by an element of V_1 . Select an element E of V_1 that joins a to H_1 . Define $K_1 = [p_1, a] \cup E \cup H_1 \cup [d_1, q_1]$.

Assume that no element of V_1 meets both $[p_1, a_1]$ and H_1 .

Suppose an element of V_1 meets L_1 and $[d_1, q_1]$. Let d be the last point of $[d_1, q_1]$ that can be joined to L_1 by an element of V_1 . Select an element E of V_1 that joins d to L_1 . Define $K_1 = [p_1, a_1] \cup L_1 \cup E \cup [d, q_1]$.

Assume that no element of V_1 meets both L_1 and $[d_1, q_1]$.

Suppose an element of V_1 meets H_0 and $[p_2, x_1]$. Let a be the first point of $[p_2, x_1]$ that can be joined to H_0 by an element of V_1 . If possible, select an element H of V_1 that joins a to p_1 and define $K_1 = H \cup [p_2, a] \cup H_1 \cup [d_1, q_1]$. If no such element exists, select an element E of V_1 missing p_1 that joins a to H_0 and define $K_1 = H_0 \cup E \cup [p_2, a] \cup H_1 \cup [d_1, q_1]$.

Assume that no element of V_1 meets both H_0 and $[p_2, x_1]$.

Suppose an element of V_1 meets $[y_1, q_2]$ and L_0 . Let d be the last point of $[y_1, q_2]$ that can be joined to L_0 by an element of V_1 . If possible, select an element L of V_1 that joins d to q_1 and define $K_1 = [p_1, a_1] \cup L_1 \cup [d, q_2] \cup L$. If no such element exists, select an element E of V_1 missing q_1 that joins d to L_0 and define $K_1 = [p_1, a_1] \cup L_1 \cup [d, q_2] \cup E \cup L_0$.

Assume that no element of V_1 meets both $[y_1, q_2]$ and L_0 .

Suppose an element of V_1 meets $[p_1, a_1]$ and $[p_2, x_1]$. Let a be the first point of $[p_1, a_1]$ that can be joined to $[p_2, x_1]$ by an element of V_1 . There exist a continuum E and a point b such that (1) E is a selected element of V_1 that joins b to a, and (2) b is the first point of $[p_2, x_1]$ that can be so joined to a. Define $K_1 = [p_1, a] \cup E \cup [p_2, b] \cup H_1 \cup [d_1, q_1]$.

Assume no element of V_1 meets both $[p_1, a_1]$ and $[p_2, x_1]$.

Suppose an element of V_1 meets $[y_1, q_2]$ and $[d_1, q_1]$. Let d be the last point of $[d_1, q_1]$ that can be joined to $[y_1, q_2]$ by an element of V_1 . There exist a continuum E and a point c such that (1) E is a selected element of V_1 that joins c to d, and (2) c is the last point of $[y_1, q_2]$ that can be so joined to d. Define $K_1 = [p_1, a_1] \cup L_1 \cup [c, q_2] \cup E \cup [d, q_1]$.

Assume no element of V_1 meets both $[y_1, q_2]$ and $[d_1, q_1]$.

If an element E of V_1 can be selected that meets L_1 and H_1 , define $K_1 = [p_1, a_1] \cup L_1 \cup E \cup H_1 \cup [d_1, q_1]$.

Assume no element of V_1 meets both L_1 and H_1 .

Suppose an element of V_1 meets L_1 and $[p_2, x_1]$. Let a be the first point of $[p_2, x_1]$ that can be joined to L_1 by an element of V_1 . Let E be a selected element of V_1 that joins a to L_1 . Define $K_1 = [p_1, a_1] \cup L_1 \cup E \cup [p_2, a] \cup H_1 \cup [d_1, q_1]$.

Assume no element of V_1 meets both L_1 and $[p_2, x_1]$.

Suppose an element of V_1 meets $[y_1, q_2]$ and H_1 . Let d be the last point of $[y_1, q_2]$ that can be joined to H_1 by an element of V_1 . Let E be a selected element of V_1 that joins d to H_1 . Define $K_1 = [p_1, a_1] \cup L_1 \cup [d, q_2] \cup E \cup H_1 \cup [d_1, q_1]$.

Assume no element of V_1 meets both $[y_1, q_2]$ and H_1 . Define $T_1 = [p_1, a_1] \cup L_1 \cup H_1 \cup [d_1, q_1]$.

If at this stage of the construction K_1 is defined, then let $Z_1 = K_1$. If K_1 is not defined, then repeat the process, using the continua H_1 , L_1 , the arc $[p_2, q_2]$ and the complementary domain G_1 as reference sets to define K_2 or T_2 . Note that no 2-link in X meets two distinct elements of $\{[p_1, a_1], (p_2, q_2), [d_1, q_1]\}$. Hence the resulting set, K_2 or K_2 or K_3 meets K_4 or K_4 is not defined, repeat the process using K_4 , K_4 , K_5 , and K_6 as reference sets.

If after this process is repeated n (finitely many) times K_n is defined, then let $Z_1 = K_n \cup \bigcup_{i=1}^{n-1} T_i$. If, for each positive integer n, the set T_n is defined, let $Z_1 = \operatorname{Cl} \bigcup_{i=1}^{\infty} T_i$. Note that Z_1 is a continuum in $S^2 - G_1$ that contains $\{p_1, q_1\}$.

2. The properties of Z_1 . Let M_1 be the collection consisting of all selected 2-links that appear in the definition of Z_1 . The continua that appear in the definition of Z_1 have the linear separating property; that is, for any two distinct continua L and E in $S^2 - \{p_1\}$ appearing in the definition of Z_1 (each of L and E is either a selected 2-link or an arc in $A \cap Z_1$ that is maximal with respect to not having an interior point in common with $Cl(St M_1)$), either L separates p_1 from E - L or E separates p_1 from L - E in Z_1 but not both. Note that only one continuum appearing in the definition of Z_1 contains p_1 .

Note that Z_1 has the linear linking condition with respect to M_1 ; that is, no 2-link in X meets more than one component of $Z_1 - \operatorname{Cl}(\operatorname{St} M_1)$ and if J is a component of $Z_1 - \operatorname{Cl}(\operatorname{St} M_1)$ and r is an endpoint of J, there is at most one point v that is an endpoint of a component of $Z_1 - (J \cup \operatorname{Cl}(\operatorname{St} M_1))$ that can be joined to r by a 2-link in X.

3. The second phase of the construction of Q. If no element of $\{G_n\}$ intersects Z_1 , define $Q = Z_1$.

Assume that some element of $\{G_n\}$ meets Z_1 . Define $Q_1 = Z_1$. Suppose without loss of generality that $G_2 \cap Q_1 \neq \emptyset$. Since no 2-link in X meets more than

one component of Q_1 – Cl(St M_1), the domain G_2 intersects only one component (p_1^2, q_1^2) of Q_1 – (Cl(St M_1) \cup $\{p_1, q_1\}$). Using the construction methods of §1, define a continuum Z_2 such that $Q_2 = (Q_1 - (p_1^2, q_1^2)) \cup Z_2$ is a continuum in $S^2 - (G_1 \cup G_2)$ that contains $\{p_1, q_1\}$. Here we start with two selected 2-links in Z_1 , the arc $[p_1^2, q_1^2]$, and the domain G_2 as sets of reference for the construction of Z_2 . Note that each basic set in any 2-link that is selected in the construction of Z_2 is by definition in $[p_1^2, q_1^2] - G_2$.

Assume without loss of generality that the continua used to define Q_2 (i.e., all continua except $[p_1^2, q_1^2]$ appearing in the definitions of Q_1 and Z_2) have the linear separating property. Note that it may be necessary to delete an element of M_1 in the definition of Q_2 to get this property.

Let M_2 be the collection of selected 2-links used to define Q_2 . The continuum Q_2 has the linear linking condition with respect to M_2 .

4. Continuing until no complementary domain meets the constructed set. If no element of $\{G_n\}$ meets Q_2 , define $Q=Q_2$. If this is not the case, we continue the process.

Assume the continuum Q_n is defined and M_n is the collection of all selected 2-links in Q_n . If Q_n is contained in X, define $Q=Q_n$. Assume Q_n intersects some element of $\{G_n\}$. There exists an integer i greater than n such that $Q_n\cap G_i\neq \emptyset$ and $Q_n\cap \bigcup_{j=1}^{i-1}G_j=\emptyset$. The domain G_i intersects only one component (p_1^{n+1}, q_1^{n+1}) of $Q_n-(\operatorname{Cl}(\operatorname{St} M_n)\cup \{p_1, q_1\})$. Using the construction methods of $\{0, 0\}$ 1, define Z_{n+1} such that $Q_{n+1}=(Q_n-(p_1^{n+1}, q_1^{n+1}))\cup Z_{n+1}$ is a continuum in $S^2-\bigcup_{j=1}^{i}G_j$ containing $\{p_1, q_1\}$. We can assume without loss of generality that the continua used to define Q_{n+1} have the linear separating property. The continuum Q_{n+1} has the linear linking condition with respect to M_{n+1} the collection of all selected 2-links used to define Q_{n+1} .

Suppose that for each positive integer n, a continuum Q_n is defined. Define Q to be the limit of $\{Q_n\}$.

Since in all cases Q is a continuum in X that contains $\{p_1, q_1\}$, the construction is complete. Now we must show that Q is hereditarily decomposable.

- 5. Derived subcontinua of Q. Suppose there exist an arc [r, v] in A and links F_1 , F_2 , and F_3 contained in X [r, v) such that for each i = 1, 2, and 3, F_i is the limit of a convergent sequence $\{E_n^i\}$ of links in $X \bigcup_{j=1}^3 F_j$ with the following properties:
- (1) For each n, the link E_n^i is contained in a selected 2-link L and a point v_n^i of a basic set in L is in $[r, v) \cap E_n^i$.
 - (2) The sequence $\{v_n^i\}$ converges to v.

We now show that one of F_1 , F_2 , and F_3 is contained in the union of the other two.

Assume that for j=1, 2, and 3, there exists a point w_j of $F_j-\bigcup_{i\neq j}F_i$. There exist a point s of (r, v), a positive integer m, an element E of $\{E_n^3\}$, and circular regions U_1 , U_2 , and U_3 whose closures are disjoint containing w_1 , w_2 , and w_3 respectively such that (1) $\operatorname{Cl}(U_1\cup U_2\cup U_3)$ is in $S^2-[r, v]$, (2) E meets both [r, s) and U_3 and does not intersect $\operatorname{Cl}(U_1\cup U_2)$, and (3) for each n greater than m,

$$(F_1 \cup E_n^1) \cap Cl(U_2 \cup U_3) = (F_2 \cup E_n^2) \cap Cl(U_1 \cup U_3)$$

= $(F_3 \cup E_n^3) \cap Cl(U_1 \cup U_2) = \emptyset$.

Let X_1 be a continuum in $S^2 - E$ that is the union of an arc in (s, v), an element of $\{E_n^1\}$ in $X - Cl(U_2 \cup U_3)$ that meets both (s, v) and U_1 , and an element of $\{E_n^2\}$ in $X - Cl(U_1 \cup U_3)$ that meets both (s, v) and U_2 .

There exists a continuum X_2 in $S^2 - (E \cup X_1)$ that is the union of an arc in (s, v), an element of $\{E_n^1\}$ in $X - \operatorname{Cl}(U_2 \cup U_3)$ that meets both (s, v) and U_1 , and an element of $\{E_n^2\}$ in $X - \operatorname{Cl}(U_1 \cup U_3)$ that meets both (s, v) and U_2 .

There exists a point t of (s, v) such that no element of $\{E_n^3\}$ meets both (t, v) and $X_1 \cup X_2$. Let T be the continuum $F_1 \cup F_2 \cup X_1 \cup X_2 \cup \operatorname{Cl}(U_1 \cup U_2)$. There is an element H of $\{E_n^3\}$ in $S^2 - T$ that meets both (t, v) and U_3 . The disjoint continua $F_1 \cup F_2$, X_1 , and X_2 can be closely approximated by arcs in such a way that the existence of the continuum $E \cup H \cup \operatorname{Cl} U_3$ contradicts [12, Theorem 116, p. 247]. Hence one of F_1 , F_2 , and F_3 is contained in the union of the other two.

It follows that the collection of all links having the properties that F_1 , F_2 , and F_3 have with respect to [r, v] when partially ordered by inclusion has at most two maximal elements. Hence the union of this collection is a 2-link F in X. Since r precedes v with respect to the order of A, we shall refer to F as a continuum in Q that is derived from the left at v. Similarly continua that are derived from the right at a point of A are 2-links in X. A continuum that is derived from the left or from the right at a point z of A will be referred to as a derived continuum in Q with base point z.

6. Definition of the collection C. If E is an element of M_i , for some i, that is not deleted at a later stage of the construction to get the linear separating property or if E is an arc in $A \cap Q$ that is maximal with respect to not having an interior point in common with $UCl(St M_i)$, then E is said to be a continuum used to define Q. Let B denote the collection of all continua used to define Q. Let D denote the collection consisting of all derived continua in Q.

Define C to be the collection consisting of all continua Y that satisfy one of the following conditions:

- (1) Y is the union of an element E of B with all elements of D that have their base points in E.
- (2) There is an element F of D that does not have a base point in an element of B. The union of F with all elements of D that meet F is Y.

Note that Q - St C is a totally disconnected set in A.

For each continuum E belonging to B, there are at most two elements of D that have base points in E. Furthermore, for each element F of D at most one element of B contains a base point of F. Since the continua at all stages of the construction have the linear linking condition, each element of D meets at most one other element of D. It follows that for each element Y of C, there exist points F and F (not necessarily distinct) of F and a collection F0, consisting of finitely many links in F1 and possibly one arc in F2 that is maximal with respect to not having an interior point in F3 such that each element of F4 meets F5 and the union of F6 is F7. The set F7 will be referred to as the core set of F9.

7. An order relation in C in terms of separating. Define the binary relation \ll in C as follows. For distinct elements Y and Z of C, $Y \ll Z$ if Y contains p_1 or Y separates p_1 from the set Z-Y in Q. Since the continua at all stages of the construction have the linear linking condition and the sets used to define these continua have the linear separating property, \ll is an order relation in C (i.e., \ll is transitive and satisfies the law of trichotomy). When checking the properties of \ll , it is helpful to note that for any two elements Y and Z of C, if $Y \ll Z$, then the p_1 -component of Q - Z meets Y - Z.

Note that if V, Y, and Z are elements of C such that $V \ll Y$ and $Y \ll Z$, then V and Z are mutually exclusive.

8. All continua in Q are decomposable. Suppose there exists an indecomposable continuum I in Q. Since I is not contained in the union of finitely many links and arcs in X and Q – St C is totally disconnected, there exist mutually exclusive elements V, Y, and Z of C such that $V \ll Y$, $Y \ll Z$, and each composant of I meets both V and Z. Note that since I is not separated by any of its proper subcontinua, Y cannot be an arc in A.

Suppose that the core set of Y consists of two distinct points r and t. The continuum Y separates V from Z in Q. Hence there exist six disjoint continua $\{P_i\}_{i=1}^6$ in $I - \{r, t\}$, each intersecting V, Z, and a link in X that meets $\{r, t\}$. Let R and U be disjoint circular regions in $S^2 - (V \cup Z \cup \bigcup_{i=1}^6 P_i)$ that are centered on r and t respectively. For each integer i $(1 \le i \le 6)$, let e_i be a point of P_i that can be joined to either r or t by a link in X and let R_i be a circular region centered on e_i in $S^2 - (V \cup Z \cup \bigcup_{j \ne i} P_j)$. For each i, since e_i

belongs to a link in X that meets $\{r, t\}$, there exists an arc J_i in a complementary domain of X that meets both R_i and a component of $R \cup U$.

It follows that some three of $\{J_i\}_{i=1}^6$ meet one component of $R \cup U$. Assume without loss of generality that J_1 , J_2 , and J_3 each meet R. The continua V, Z, P_1 , P_2 , and P_3 can be closely approximated by arcs in such a way that the existence of J_1 , J_2 , and J_3 contradicts [12, Theorem 116, p. 247].

Using an argument similar to the preceding, we can show that assuming the core set of Y consists of one point also involves a contradiction. Hence Q is hereditarily decomposable.

Continuity.

Theorem 4. Suppose M is a hereditarily decomposable continuum, f is a continuous function of M into the plane, and R is the union of finitely many links in f(M). Then R does not contain an indecomposable continuum.

Proof. Assume there exists an indecomposable continuum I in R. According to Theorem 1, every subcontinuum of f(M) that contains a nonempty open subset of I contains I. It follows that I is terminal in f(M) [8, Theorem 2]. Since M is hereditarily decomposable, this contradicts Theorem 2. Hence R does not contain an indecomposable continuum.

Theorem 5. If M is a λ connected continuum and f is a continuous function of M into the plane, then f(M) is λ connected.

Proof. Suppose p and q are distinct points of f(M). Since M is λ connected, there exists a hereditarily decomposable continuum H in M that meets both $f^{-1}(p)$ and $f^{-1}(q)$. According to Theorems 3 and 4, f(H) is λ connected. Hence there exists a hereditarily decomposable continuum in f(H) that joins p and q. It follows that f(M) is λ connected.

Comment. Theorem 5 cannot be generalized to include all continuous images in Euclidean 3-space. There are continuous images of the topologist's sine curve in E^3 that are not λ connected.

Aposyndesis.

Theorem 6. If X is a semiaposyndetic plane continuum, then X is λ connected.

Proof. Assume there exists an indecomposable continuum I that is contained in the union of finitely many links in X. Let x and y be distinct points of I. According to Theorem 1, every subcontinuum of X that contains a point of $\{x, y\}$ in its interior relative to X contains I. This contradicts the assumption that X is semiaposyndetic. It follows from Theorem 3 that X is X connected.

Corollary. Every aposyndetic plane continuum is \(\lambda\) connected.

Example. An aposyndetic continuum in Euclidean 3-space need not be λ connected. To see this let M be the product of the pseudo arc [11] with itself. M is aposyndetic [9, Theorem 7] and not λ connected. In fact, M does not contain a hereditarily decomposable continuum. Since the pseudo arc is chainable, M is embeddable in Euclidean 3-space [2].

BIBLIOGRAPHY

- 1. H. Bell, On fixed point properties of plane continua, Trans. Amer. Math. Soc. 128 (1967), 539-548. MR 35 #4888.
- 2. R. Bennett, Embedding products of chainable continua, Proc. Amer. Math. Soc. 16 (1965), 1026-1027. MR 31 #6216.
- 3. C. L. Hagopian, Concerning arcwise connectedness and the existence of simple closed curves in plane continua, Trans. Amer. Math. Soc. 147 (1970), 389-402. MR 40 #8030.
- 4. ——, A fixed point theorem for plane continua, Bull. Amer. Math. Soc. 77 (1971), 351-354. MR 42 #8469.
- 5. ——, Arcwise connectedness of semi-aposyndetic plane continua, Trans. Amer. Math. Soc. 158 (1971), 161-165. MR 44 #2205.
- 6. ——, Arcwise connectivity of semi-aposyndetic plane continua, Pacific J. Math. 37 (1971), 683-686. MR 46 #6322.
- 7. Another fixed point theorem for plane continua, Proc. Amer. Math. Soc. 31 (1972), 627-628. MR 44 # 3309.
- 8. ——, Planar images of decomposable continua, Pacific J. Math. 42 (1972), 329-331.
- 9. F. B. Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. MR 9, 606.
- 10. ——, Concerning aposyndetic and non-aposyndetic continua, Bull. Amer. Math. Soc. 58 (1952), 137-151. MR 14, 71.
- 11. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581-594. MR 10, 56.
- 12. R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962. MR 27 #709.
- 13. G. T. Whyburn, Semi-locally connected sets, Amer. J. Math. 61 (1939), 733-749. MR 1, 31.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, SACRAMENTO, CALIFORNIA 958 19 (Current address)

DEPARTMENT OF MATHEMATICS, ARIZONA STATE UNIVERSITY, TEMPE, ARIZONA 85281