INTERPOLATION BETWEEN HD SPACES: THE REAL METHOD

BY

C. FEFFERMAN, N. M. RIVIERE AND Y. SAGHER

ABSTRACT. The interpolation spaces in the Lions-Peetre method between H^p spaces, 0 , are calculated.

0. Introduction. The intermediate spaces between H^1 and L^{∞} , and hence between H^{p_0} and H^{p_1} , $1 \le p_i < \infty$, in the real method, have been calculated in [2]. In this note we calculate the intermediate spaces between H^p and L^{∞} in the real method, for p < 1. The method used in [2] fails hopelessly in this case, and more sophisticated ideas (developed in [1]) have to be employed. We prove

(1)
$$(H^{p_0}, L^{\infty})_{\theta,q} = H^{p,q} \text{ where } \frac{1}{p} = \frac{1-\theta}{p_0}, 0 < \theta < 1, 0 < q \le \infty,$$

where $H^{p,q}$ is defined as follows:

$$f \in H^{p,q}$$
 iff $\sup_{0 < t} t^{-n} |\phi_t * f| = f^+ \in L^{p,q}$,

with ϕ a sufficiently regular function, and $\int \phi \neq 0$.

The interesting case is of course p = q. There is however no added difficulty in considering the general case. For p > 1, $H^{p,q} = L^{p,q}$ and so, we get the result of [2]. Using reiteration we get of course

(2)
$$(H^{p_0,q_0}, H^{p_1q_1})_{\theta,q} = H^{p,q}, \quad \frac{1}{p} = \frac{1-\theta}{p_1} + \frac{\theta}{p_1}, \quad 0 < \theta < 1, \quad 0 < q \le \infty.$$

It is interesting to note that when $p_0 < 1 < p_1$ we cannot pass to the dual spaces. The dual of H^{p_0} , $p_0 < 1$, is a certain Hölder space, and it has been shown by Stein and Zygmund in [4], that the interpolation spaces between Hölder and Lebesgue spaces are not Lebesgue spaces (as we would get for certain values of θ if we take formally the dual of (2)). The reason we cannot pass to the dual is of course that H^{p_0,q_0} , $p_0 < 1$, is not a Banach space.

We shall use freely in this note, results from interpolation theory and from the Fefferman-Stein theory of H^p spaces. The reader can consult [2] for a brief outline of the relevant results of interpolation theory, and [1] for those of H^p spaces.

Received by the editors July 2, 1973.

AMS (MOS) subject classifications (1970). Primary 42A40, 46E99.

I. Interpolation of H^p and L^{∞} . In this section we first set down the basic decomposition of a H^p function into "good" and "bad" parts. Our main tool is the characterization of H^p as a space of distributions on R^n given in [1], which we now review. Fix a smooth function ψ on \mathbb{R}^n satisfying

$$\|\psi\|_N = \sum_{|\alpha| \le N} \int_{\mathbb{R}^n} (1+|x|)^N \left| \frac{\partial^\alpha}{\partial x^\alpha} \psi(x) \right| dx < \infty$$

for some large N, and $\int_{R^n} \psi(x) dx = 1$. For a distribution f on R^n , set $f^+(x) =$ $\sup_{t>0} |\psi_t * f(x)|$ where $\psi_t^{R''}(y) = t^{-n}\psi(y/t)$, and say that $f \in H^p$ if $f^+ \in L^p$. It is shown in [1] that the H^p classes so defined do not depend on the choice of ψ , and are isomorphic to the usual H^p classes. Moreover, the "grand" maximal function

$$f^*(x) = \sup_{\|\phi\|_{X_t} \le 1} \sup_{|x-y| < 10t} |\phi_t * f(y)|$$

belongs to L^p if $f \in H^p$, and we have the inequality $\|f^*\|_p \le C\|f\|_{H^p}$. Finally, the Schwartz class S is dense in H^p , 0 .

Now fix $p_0 .$

Lemma A. Let $f \in S$ and $\alpha > 0$ be given. Then f may be written as the sum of two functions g and b which satisfy

$$\|g\|_{\infty} \le C\alpha$$
, $\|b\|_{H^{p_0}}^{p_0} \le C \int_{\{f^*(x)>\alpha\}} (f^*(x))^{p_0} dx$.

Proof. (Compare with the proof of Lemma 11 in [1].) Set $\Omega = \{f^*(x) > \alpha\}$. The proof of the Whitney extension theorem [3] exhibits a collection $\{Q_i\}$ of cubes and a family $\{\phi_i\}$ of smooth functions on \mathbb{R}^n , with the properties

- (1) Ω is the disjoint union of the $\{Q_i\}$.
- (1') $X_{\Omega} = \sum_{i} \phi_{i}$ and each $\phi_{i} \geq 0$.
- (2) distance $(R^n \Omega, Q_j)$ diameter $(Q_j) \equiv d_j$. Let x_j be the center of Q_j and y_j a point in $R^n - \Omega$ satisfying $|y_j - x_j| \le 10 d_j$. Thus $f^*(y_j) \le \alpha$.
- (2') ϕ_j is supported in the cube Q_j expanded by the factor 6/5, say. Also $\phi_i(x) \ge c > 0$ for $x \in Q_i$.

(2") $\|\partial^{\alpha}\phi_{j}/\partial x^{\alpha}\|_{\infty} \leq C_{\alpha}d_{j}^{-|\alpha|}$ for each multi-index α . Denote by Q_{j}^{*} the cube Q_{j} expanded by a factor of 2. Now $f = f \cdot \chi_{R^{n} - Q} + g$ $\Sigma_{j} f \cdot \phi_{j}$. We shall define $g = f \cdot \chi_{R^{n} - \Omega} + \Sigma_{j} P_{j} \cdot \phi_{j}$, where $P_{j}(x)$ is the unique polynomial of degree $\leq N$ (large, to be picked later) satisfying

$$\int_{\mathbb{R}^n} (x-x_j)^{\alpha} P_j(x) \phi_j(x) dx = \int_{\mathbb{R}^n} (x-x_j)^{\alpha} f(x) \phi_j(x) dx, \quad \text{for } |\alpha| \le N.$$

First of all, we claim that $\|P_j\|_{L^{\infty}(Q_j^{\bullet})} \leq C^{\alpha}$. To prove this, we may first translate and dilate R^n so that

$$\begin{cases} x_j = \text{center } (Q_j) = 0 & \text{and} \\ d_j = \text{diameter } (Q_j) = 1. \end{cases}$$

Next, let π_1, \dots, π_2 be an orthonormal base for the Hilbert space of polynomials of degree $\leq N$ with norm

$$||P||^2 = \int_{P^n} |P(x)|^2 \phi_j(x) dx.$$

An elementary argument shows that the coefficients of the π_l are bounded above by a "constant" depending only on N and n. Therefore $\Phi^l(x) = \pi_l(y_j - x)\phi_j(y_j - x)$ satisfies $\||\Phi^l||_N \le C$ with C depending only on N, n, so that

$$\left|\int_{R^n} f(x)\pi_l(x)\phi_j(x)\,dx\right| = |\Phi^l*f(y_j)| \le Cf^*(y_j) \le C\alpha.$$

On the other hand,

$$P_{j} = \sum_{l=1}^{L} \left(\int_{\mathbb{R}^{n}} f(x) \pi_{l}(x) \phi_{j}(x) dx \right) \pi_{l},$$

which implies that $\|P_j\|_{L^{\infty}(Q_j^{\bullet})} \leq C\alpha$, as claimed.

Now for the "good" function g we have

$$\begin{split} |g(x)| &\leq |f(x)\chi_{R^n - \Omega}(x)| + \sum_{j} |P_{j}(x)|\phi_{j}(x) \\ &\leq \alpha\chi_{R^n - \Omega} + \sum_{j} C\alpha\phi_{j}(x) \leq C\alpha\chi_{R^n - \Omega} + C\alpha\chi_{\Omega} = C\alpha, \end{split}$$

i.e. $\|g\|_{\infty} \leq Ca$.

It remains to determine the H^{p_0} "norm" of the "bad" function $b = f - g = \sum_j (f(x) - P_j(x)) \phi_j(x) \equiv \sum_j b_j(x)$. To do so, we fix ψ as above, and undertake to study $b_j^{\dagger}(x)$, i.e. to estimate

(1)
$$\left| t^{-n} \int_{\mathbb{R}^n} \psi \left(\frac{x-y}{t} \right) \left(f(y) - P_j(y) \right) \phi_j(y) \, dy \right|.$$

We can take ψ supported in |z| < 1.

We can assume $x_i = 0$.

Case 1. $x \in Q_j^*$ and $t \le d_j$. Then for $\Phi(z) = \psi(z)\phi_j(x-tz)$ we may check that $\|\partial^{\gamma}\Phi/\partial x^{\gamma}\|_{\infty} \le C_{\gamma}$ and since Φ is supported in $|z| \le 1$, $\|\Phi\|_{N} \le C$ which implies

$$\left|t^{-n}\int_{\mathbb{R}^n}\psi\left(\frac{x-y}{t}\right)f(y)\phi_j(y)\,dy\right|=\left|\Phi_t*f(x)\right|\leq Cf^*(x).$$

Since

$$\left| t^{-n} \int_{R^n} \psi\left(\frac{x-y}{t}\right) P_j(y) \phi_j(y) \, dy \right|$$

$$\leq \|P_j\|_{\infty} \left\| t^{-n} \psi\left(\frac{x-y}{t}\right) \phi_j(y) \right\|_{L^1(dy)} \leq C\alpha \leq Cf^*(x),$$

we have

$$\left|t^{-n}\int_{R^n}\psi\left(\frac{x-y}{t}\right)(f(y)-P_j(y))\phi_j(y)\,dy\right|\leq Cf^*(x).$$

Case 2. $x \in Q_j^*$ and $t > d_j$. Then for $\Phi(z) = \psi(d_j z/t) \phi_j(x - d_j z)$ we have again $\| \Phi \|_N \le C$ by calculations similar to the ones we did not do in Case 1. So

$$\left| t^{-n} \int_{\mathbb{R}^n} \psi\left(\frac{x-y}{t}\right) f(y) \phi_j(y) \, dy \right| \le \left| d_j^{-n} \int_{\mathbb{R}^n} \psi\left(\frac{x-y}{t}\right) f(y) \phi_j(y) \, dy \right|$$

$$= \left| \Phi_{d_j} * f(x) \right| \le C f^*(x),$$

and since

$$\left| d_{j}^{-n} \int_{\mathbb{R}^{n}} \psi \left(\frac{x - y}{t} \right) P_{j}(y) \phi_{j}(y) dy \right|$$

$$\leq \left\| P_{j} \right\|_{L^{\infty}(Q_{j}^{*})} \left\| d_{j}^{-n} \psi \left(\frac{x - y}{t} \right) \phi_{j}(y) \right\|_{L^{1}(dy)} \leq C\alpha \leq Cf^{*}(x),$$

we have again

$$\left| t^{-n} \int_{\mathbb{R}^n} \psi\left(\frac{x-y}{t}\right) (f(y) - P_j(y)) \phi_j(y) \, dy \right| \le C f^*(x),$$

From Cases 1 and 2 we see that $b_j^{\dagger}(x) \leq C_f^{\dagger}(x)$ for $x \in Q_j^{\dagger}$.

Case 3. $x \notin Q_j^*$. We consider only the case $t > \frac{1}{2}|x| > d_j^*$, since otherwise the integrand in (1) vanishes identically. Regarding x and t as fixed, and letting y vary, we may use Taylor's formula to write

$$\psi\left(\frac{x-y}{t}\right) = [\text{Polynomial of degree } \leq N \text{ in } y] + R(y),$$

where the remainder term R(y) satisfies the estimates $|\partial^{\gamma} R(y)/\partial y^{\gamma}| \le Cd_j^{-|\gamma|}(d_j/|x|)^{N+1}$. So

$$\begin{vmatrix} t^{-n} & \int_{R^n} \psi\left(\frac{x-y}{t}\right) (f(y) - P_j(y))\phi_j(y) \, dy \end{vmatrix}$$

$$= \begin{vmatrix} t^{-n} & \int_{R^n} [\text{Polynomial of degree} \leq N \text{ in } y] (f(y) - P_j(y))\phi_j(y) \, dy \\ + t^{-n} & \int_{R^n} R(y)(f(y) - P_j(y))\phi_j(y) \, dy \end{vmatrix}$$

$$= |A + B|.$$

Now A=0, by virtue of our choice of P_j . To estimate B, we set $\Phi(z)=R(y_j-d_jz)\phi_j(y_j-d_jz)$. The function $\Phi(z)$ is supported in $\{|z|\leq 20\}$, and our estimates for the derivatives of R(y) and $\phi_j(y)$ show that $|\partial^{\gamma}\Phi(z)/\partial z^{\gamma}|\leq C_{\gamma}(d_j/|x|)^{N+1}$, which implies $\|\Phi\|_N\leq C(d_j/|x|)^{N+1}$. Therefore,

$$\begin{split} \left| t^{-n} \int_{R^n} R(y) f(y) \phi_j(y) \, dy \right| &\leq \left| d_j^{-n} \int_{R^n} R(y) f(y) \phi_j(y) \, dy \right| \\ &= \left| \Phi_{d_j} * f(y_j) \right| \leq C (d_j / |x|)^{N+1} f^*(y_j) \leq C \alpha (d_j / |x|)^{N+1}. \end{split}$$

On the other hand, since $\|P_j\|_{L^{\infty}(Q_j^*)} \leq C\alpha$, we again have, trivially,

$$\left|t^{-n}\int_{R^n}R(y)P_j(y)\phi_j(y)\,dy\right|\leq C\alpha\left(\frac{d_j}{|x|}\right)^{N+1},$$

so that

$$|B| = \left| t^{-n} \int_{R^n} R(y)(f(y) - P_j(y))\phi_j(y) \, dy \right| \le C\alpha \left(\frac{d_j}{|x|}\right)^{N+1}.$$

Now from Cases 1-3, we know that

$$b_{j}^{+}(x) \leq Cf^{*}(x) \quad \text{if} \quad x \in Q_{j}^{*},$$

$$\leq C\alpha (d_{j}/|x-x_{j}|)^{N+1} \quad \text{if} \quad x \notin Q_{j}^{*},$$

Consequently, for $p_0 \leq 1$,

$$\int_{R^n} (b_j^+(x)^{p_0} dx \le C \int_{Q_j^*} (f^*(x))^{p_0} dx + C\alpha^{p_0} \int_{R^n - Q_j^*} \left(\frac{d_j}{|x - x_j|} \right)^{(N+1)p_0} dx.$$

If N is picked so large that $(N+1)p_0 > n$, then the last integral on the right is $C\alpha^{p_0}|Q_i|$, which is already dominated by the first integral on the right. Thus

$$\int_{R^n} (b_j^+(x))^{p_0} dx \le C \int_{Q_j^*} (f^*(x))^{p_0} dx.$$

Now it is easy to piece our estimates for b_j^+ together into an estimate for b^+ . For, $b = \sum_j b_j$, so $b^+ \leq \sum_j b_j^+$, so that $(b^+)^{p_0} \leq \sum_j (b_j^+)^{p_0}$ (recall that $p_0 \leq 1$), which implies

$$\int_{R^{n}} (b^{+}(x))^{p_{0}} dx \leq \sum_{j} \int_{R^{n}} (b^{+}_{j}(x))^{p_{0}} dx$$

$$\leq C \sum_{j} \int_{Q^{*}_{j}} (f^{*}(x))^{p_{0}} dx = C \int_{R^{n}} \left(\sum_{j} \chi_{Q^{*}_{j}}(x)\right) (f^{*}(x))^{p_{0}} dx.$$

The geometry of the Whitney cubes is such that $\sum_{j} \chi_{Q_{j}}(x) \leq C \chi_{\Omega}(x)$, so that at last,

$$\int_{\mathbb{R}^n} (b^+(x))^{p_0} dx \le C \int_{\Omega} (f^*(x))^{p_0} dx = C \int_{\{f^* > \alpha\}} (f^*(x))^{p_0} dx.$$

Thus $||b||_{H^{p_0}}^{p_0} \le C \int_{\{f^*>a\}} (f^*(x))^{p_0} dx$, as claimed. The proof of Lemma A is complete. Q.E.D.

We can now prove the theorem announced:

Theorem 1. For
$$0 < p_0 < 1$$
, $0 < \theta < 1$, $0 < q \le \infty$
$$(H^{p_0}, L^{\infty})_{\theta,q} = H^{p,q} \quad where \quad 1/p = (1-\theta)/p_0.$$

Proof. Let $f \in H^{p,q}$. Denote by $\int_{0}^{\infty} f^{*}$ the nonincreasing rearrangement of f^{*} . Fix t > 0, and take in Lemma A, $\alpha = \int_{0}^{\infty} f^{*}(t^{p_0})$. We then have

$$K(t, f; H^{p_0}, L^{\infty}) \le \|b_t\|_{H^{p_0}} + t\|g_t\|_{L^{\infty}}.$$

$$\|b_t\|_{H^{p_0}} \leq C \left(\int_{\left\{ \int_{-\infty}^{*} (x) > \int_{-\infty}^{*} (t^{p_0}) \right\}} (f^*(x))^{p_0} dx \right)^{1/p_0} \leq C \left(\int_{0}^{t^{p_0}} (f^*(s))^{p_0} ds \right)^{1/p_0},$$

so that

$$\int_{0}^{\infty} (t^{-\theta} \|b_{t}\|_{H^{p_{0}}})^{q} \frac{dt}{t} \leq C \int_{0}^{\infty} t^{-\theta q} \left(\int_{0}^{t^{p_{0}}} (\tilde{f}^{*}(s))^{p_{0}} ds \right)^{q/p_{0}} \frac{dt}{t}$$

$$= C \int_{0}^{\infty} t^{-\theta q/p_{0}} \left(\int_{0}^{t} (\tilde{f}^{*}(s))^{p_{0}} ds \right)^{q/p_{0}} \frac{dt}{t}.$$

By Hardy's inequality (if $q \ge p_0$) or by a modification of it (for $q < p_0$, see [2])

$$\int_0^\infty (t^{-\theta} \|b_t\|_{H^{p_0}})^q \frac{dt}{t} \le C \int_0^\infty t^{q(1-\theta)/p_0} (\hat{j}'^*(t))^q \frac{dt}{t} = C \cdot \|j^*\|_{L^{p,q}}^q.$$

Further

$$\int_{0}^{\infty} (t^{(1-\theta)} \|g_{t}\|_{L^{\infty}})^{q} \frac{dt}{t} \le C \int_{0}^{\infty} (t^{(1-\theta)})^{*} (t^{p_{0}})^{q} \frac{dt}{t}$$

$$\le C \cdot \int_{0}^{\infty} (t^{1/p})^{*} (t)^{q} \frac{dt}{t} = C \|f^{*}\|_{L^{p,q}},$$

so that $(\int_0^\infty (t^{-\theta} K(t, f))^q dt/t)^{1/q} \le C \|f^*\|_{L^{p,q}}$. We have shown

$$H^{p,q} \subset (H^{p_0}, L^{\infty})_{\theta,q}$$

The inverse inclusion is trivial:

Consider the sublinear operator $T: f \to f^+$. We have $T: L^\infty \to L^\infty$ and $T: H^{p_0} \to L^{p_0}$. Therefore $T: (H^{p_0}, L^\infty)_{\theta,q} \to (L^{p_0}, L^\infty)_{\theta,q} = L^{p,q}$. That is $f \in (H^{p_0}, L^\infty)_{\theta,q}$ implies $f^+ \in L^{p,q}$ and $f \in H^{p,q}$. The proof is complete.

REFERENCES

- 1. C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-194.
- 2. N. M. Riviere and Y. Sagher, Interpolation between L^{∞} and H^1 , the real method, J. Functional Analysis (to appear).
- 3. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Series, no.30, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280.
- 4. E. M. Stein and A. Zygmund, Boundedness of translation invariant operators on Hölder and L^p spaces, Ann. of Math. (2) 85 (1967), 337-349. MR 35 #5964.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455

DEPARTMENT OF PURE MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL