SOME THIN SETS IN DISCRETE ABELIAN GROUPS(1)

RY

RON C. BLEI

ABSTRACT. Let Γ be a discrete abelian group, and $E \subset \Gamma$. For $F \subset E$, we say that $F \in \mathcal{G}(E)$, if for all Λ , finite subsets of Γ , $0 \not\in \Lambda$, $\Lambda + F \cap F$ is finite. Having defined the Banach algebra, $A(E) = c(E) \cap B(E)$, we prove the following: (i) $E \subset \Gamma$ is a Sidon set if and only if every $F \in \mathcal{G}(E)$ is a Sidon set; (ii) $E \in \mathcal{G}(\Gamma)$ is a Sidon set if and only if A(E) = A(E).

0. Introduction. Let Γ denote a discrete abelian group, and let G denote its dual. We let G_d denote the abelian group G endowed with the discrete topology; $(G_d)^{\hat{}} = \Gamma$ is the Bohr compactification of Γ . Γ is dense in Γ , and $C(\Gamma)$ is identified naturally with the almost periodic functions on Γ . In what follows below, we use standard notation and facts as presented in Chapters 1 and 2 of [9].

For $E \subseteq \Gamma$, set

$$A(E) = L^{1}(G) / \{ f \in L^{1}(G) : \hat{f} = 0 \text{ on } E \}$$

and

$$B(E) = M(G)^{\hat{}}/\{\mu \in M(G) : \widehat{\mu} = 0 \text{ on } E\},$$

where the quotients are the usual Banach algebra quotients. Let c(E) denote all bounded functions on E which vanish at infinity. Clearly, $A(E) \subset c(E)$, and $B(E) \subset l^{\infty}(E)$; A(E) is norm dense in c(E), and $\|g\|_{B(E)} \geq \|g\|_{\infty}$ for all $g \in B(E)$. We set

$$\widetilde{A}(E) = c(E) \cap B(E)$$
.

Equipped with the B(E)-norm, and pointwise multiplication $\widetilde{A}(E)$ is a Banach algebra. Since $(C_E(G))^* = B(E)$, and $(A(E))^* = L_E^{\infty}(G)$, A(E) is isometrically imbedded in B(E) and, therefore, in $\widetilde{A}(E)$. (If R(G) is any subspace of $L^1(G)$, $R_E(G)$ denotes all functions in R(G) whose spectrum is in E.) Detailed studies of algebras related to $\widetilde{A}(E)$ appear in [5], [7], [8], [11], and [12].

When A(E) = c(E), we say that E is a Sidon set, and define the Sidon con-

Received by the editors June 5, 1972 and, in revised form, April 2, 1973.

AMS (MOS) subject classifications (1970). Primary 43A25.

Key words and phrases. Sidon set, infinite pace.

⁽¹⁾ This work is based on a portion of the author's doctoral dissertation at the University of California, Berkeley.

stant of E to be

$$b(E) = \inf\{\|f\|_{\infty}/\|f\|_{A(E)}: f \in A(E), f \neq 0\}.$$

The following are easily seen to be equivalent: (i) $E \subset \Gamma$ is a Sidon set, (ii) $A_E(G) = C_E(G)$, (iii) b(E) > 0, (iv) $\widetilde{A}(E) = c(E)$. A natural question, the answer to which is still not known, is the following: Can we have a non-Sidon set $E \subset \Gamma$, and $\widetilde{A}(E) = A(E)$? If E is an element of the coset ring of Γ , then $\widetilde{A}(E) \supseteq A(E)$ (e.g., cf. [10]). Our main result, for whose proof we extend and generalize methods in [1] and [7], deals with the case where E is a "thin" set (cf. [2]):

Definition 1. Let $E \subset \Gamma$. We say that the pace of E tends to infinity, if given any finite set $\Lambda \subset \Gamma$, and $0 \notin \Lambda$, then $\Lambda + E \cap E$ is finite. We set

$$\mathcal{P}(E) = \{S \subset E : \text{pace of } S \longrightarrow \infty\}.$$

Theorem A. Let Γ be a discrete abelian group. (i) If G is metrizable, then E is a Sidon set if and only if every $F \in \mathcal{P}(E)$ is a Sidon set. (ii) If $E \in \mathcal{P}(\Gamma)$ is a non-Sidon set, then $\widetilde{A}(E) \supseteq A(E)$.

In $\S 1$ we collect the necessary tools, and in $\S 2$ we prove Theorem A. We then deduce as a corollary (2.3) a generalization of a result of Katznelson and McGehee (cf. [7, Theorem 3.1]). In $\S 3$ we list open questions.

1. Some lemmas.

Definition 1.1. Let Γ be a discrete abelian group. $F \subset \Gamma$ is said to be partitioned with respect to the supremum norm if there exists $\{F_j\}$, a family of finite, mutually disjoint sets, such that $\bigcup F_j = F$, and

$$\bigoplus_{j^1} C_{F_j}(G) \approx C_F(G).$$

We prove in [1] that every non-Sidon set $E \subseteq \Gamma$ contains a non-Sidon set F which can be partitioned with respect to the sup norm.

Lemma 1.2. Let $E \subset \Gamma$ be a non-Sidon set. Then, there exists a non-Sidon set $F \subset E$, so that $\widetilde{A}(F) \supseteq A(F)$.

Proof. Let $E \subset \Gamma$ be a non-Sidon set. Let $F \subset E$ be a non-Sidon set so that

$$\bigoplus_{i^1} \, C_{F_i}(G) \approx C_F(G),$$

where $\{F_i\}$ is as above. But, then

$$(1) B(F) \approx \bigoplus_{l^{\infty}} B(F_{j}).$$

Since F is non-Sidon, $\underline{\lim} b(F_j) = 0$. Let $f_j \in B(F_j)$, so that $\overline{\lim} \|f_j\|_{B(F_j)} = 1$, and $\|f_j\|_{\infty} < 1/j$. Define $f \in c(F)$: $f|_{F_j} = f_j$. By (1),

$$f \in B(F) \cap c(F) = A(F)$$
.

But a necessary condition for $f \in A(F)$ is $\lim_{j\to\infty} ||f||_{B(F_j)} = 0$ (cf. [9, 2.6.3] or [3]). \square

Let Γ be a countable group. Then, $\widehat{\Gamma}=G$ is a compact metrizable group, and, therefore, there exists D, a countable dense subgroup of G. Consider D as a discrete abelian group, and let $\phi:\Gamma\to\widehat{D}$ be the natural injective map: $(\phi(\gamma),d)=(\gamma,d)$, for $\gamma\in\Gamma$ and $d\in D$. We shall say that $F\subset\widehat{D}$ is a Sidon set if F is a Sidon set in $(\widehat{D})_d$.

Lemma 1.3. Let Γ , D, ϕ be as above. Then, $E \subset \Gamma$ is Sidon if and only if $\phi(E)$ is Sidon. Furthermore $b(E) = b(\phi(E))$.

Proof. See Lemma 2.2 of [1].

Lemma 1.4. Let $E \subset \Gamma$ be a non-Sidon set. Then, there exists $x_0 \in \overline{\phi(E)} = closure$ of $\phi(E)$ in \widehat{D} , so that if U is any neighborhood of x_0 , then $\phi(E) \cap U$ is a non-Sidon set.

Proof. Suppose that for each $x \in \overline{\phi(E)}$ there exists U_x , an open neighborhood of x, so that $\phi^{-1}(U_x \cap E)$ is a Sidon set. By the compactness of $\overline{\phi(E)}$, there exist $x_1, \dots, x_n \in \overline{\phi(E)}$, so that $\bigcup_{i=1}^n U_{x_i} \supset \overline{\phi(E)}$. But, by Drury's theorem (cf. [4]), $E = \bigcup_{i=1}^n \phi^{-1}(U_{x_i} \cap E)$ is a Sidon set, and we reach a contradiction. \square

Lemma 1.5. $\widetilde{A}(E) = A(E)$ if and only if $\widetilde{A}(\phi(E)) = A(\phi(E))$. $(\widetilde{A}(\phi(E)))$ and $A(\phi(E))$ are defined with respect to $M(\widetilde{D})$ and $L^1(\widetilde{D})$, respectively.)

Proof. Finitely supported functions on E $(\phi(E))$ are norm-dense in A(E) $(A(\phi(E)))$, and any $f \in \widetilde{A}(E)$ $(\widetilde{A}(\phi(E)))$ can be realized as the pointwise limit of some sequence $(\psi_n) \subset A(E)$ $(A(\phi(E)))$, where the ψ_n 's are finitely supported, and $\sup_n \|\psi_n\|_{A(E)} < \infty$ ($\sup_n \|\psi_n\|_{\widetilde{A}(\phi(E))} < \infty$). Therefore, to prove the lemma, it suffices to show

(1)
$$\|g\|_{A(E)} = \|g \circ \phi^{-1}\|_{A(\phi(E))},$$

where g is any finitely supported function on E: Let $\{a_i\}_{i=1}^n$ be any finite set of complex numbers, and $\{\gamma_i\}_{i=1}^n$ any set in E. Since D is dense in \widetilde{D} , we obtain

$$\sup_{\mathbf{y} \in D} \left| \sum_{i=1}^{n} a_i(\phi(\mathbf{y}_i), \mathbf{y}) \right| = \sup_{\mathbf{x} \in D} \left| \sum_{i=1}^{n} a_i(\phi(\mathbf{y}_i), \mathbf{x}) \right|.$$

But, D was chosen dense in G, and hence

$$\sup_{x \in G} \left| \sum_{i=1}^{n} a_{i}(\gamma_{i}, x) \right| = \sup_{y \in D} \left| \sum_{i=1}^{n} a_{i}(\phi(\gamma_{i}), y) \right|.$$

Therefore,

$$\sup_{p \in C_{E}(G), \|p\|_{\infty}=1} |(g, \hat{p})| = \sup_{p \in C_{\phi(E)}(\widetilde{D}), \|p\|_{\infty}=1} |(g \circ \phi^{-1}, \hat{p})|;$$

(1) now follows, and the lemma is proved.

Remark 1.6. Let G be a compact abelian group, $\hat{G} = \Gamma$. If $f \in L^1(\Gamma)$, and g is a trigonometric polynomial in $C(\widetilde{\Gamma})$, then the following hold:

(i) $\hat{f}_{\Gamma} = \hat{f}_{\widetilde{\Gamma}}$, where \hat{f}_{Γ} and $\hat{f}_{\widetilde{\Gamma}}$ denote the Fourier transform of $f \in L^1(\Gamma)$, and the Fourier-Stieltjes transform of $f \in M(\widetilde{\Gamma})$, respectively.

(ii) $f *_{L^1(\Gamma)} g = f *_{M(\Gamma)} g$ on Γ .

Part (i) follows from the definition of $\widetilde{\Gamma}$, and Parseval's formula. (ii) follows from (i).

Lemma 1.7. Let G be a compact abelian group, $\hat{G} = \Gamma$. Let $\epsilon > 0$, and $V \subset G$ be a symmetric neighborhood of 0. There exists K, a neighborhood of 0 in G, such that if H is a finite set in K, then there is a trigonometric polynomial $g \in C_{V+V}(\Gamma)$, so that the following hold:

- (i) $\hat{g}(0) = \hat{g}(b) = 1$ for all $b \in H$.
- (ii) $\|g\|_{L^{1}(\mathbf{r})} < 1 + \epsilon$.

(iii) Suppose g_i , $i=1,\dots,n$, are trigonometric polynomials as above, corresponding to ϵ_i , V_i , K_i , H_i , $i=1,\dots,n$, respectively. Furthermore, assume that if $x_i \in \text{support } \hat{g}_i$, and $\sum_{i=1}^n x_i = 0$, then $x_i = 0$ for $i=1,\dots,n$. Then

$$\|\hat{g}_1 * \cdots * \hat{g}_n\|_{A(G_d)} < \prod_{i=1}^n (1 + \epsilon_i).$$

Proof. We shall first construct a function $R \in L^1(\Gamma)$ so that $\hat{R} = 0$ outside V + V, $\hat{R} = 1$ on K, a neighborhood of 0 in G, and $||R||_1 < \sqrt{1 + \epsilon}$. Furthermore, R will be constructed so that $R = k + \lambda$, where

(1)
$$k \ge 0 \quad \text{and} \quad \hat{k}(0) = 1,$$

$$\|\lambda\|_{\infty} < \epsilon/3.$$

Given H, a finite set in K, we shall construct a trigonometric polynomial $g_0 \in C(\widehat{\Gamma})$, so that $\widehat{g}_0 = 1$ on $H \cup \{0\}$, and $\|g_0\|_{L^1(\widehat{\Gamma})} < \sqrt{1 + \epsilon}$. We shall have $g_0 = p + b$, where p and b are trigonometric polynomials in $C(\widehat{\Gamma})$ such that

(3)
$$p \ge 0$$
 and $\hat{p}(0) = 1$,

$$\|b\|_{\infty} \leq \|\hat{b}\|_{M(G_d)} < \epsilon/3.$$

We set $g = g_0 * R$. g satisfies parts (i) and (ii) of the lemma. To prove part (iii), it suffices to display the proof for n = 2. Suppose that g_1 and g_2 are as in the hypothesis of (iii).

$$\|\hat{g}_{1} * \hat{g}_{2}\|_{A(G_{d})} = \|((\hat{p}_{1} + \hat{b}_{1})(\hat{k}_{1} + \hat{\lambda}_{1})) * ((\hat{p}_{2} + \hat{b}_{2})(\hat{k}_{2} + \hat{\lambda}_{2}))\|_{A}.$$

By the assumption on support (\hat{g}_i) , i = 1, 2, we have that

$$(\hat{p}_1\hat{k}_1)*(\hat{p}_2\hat{k}_2)(0)=1,$$

and since

$$(p_1 * k_1)(p_2 * k_2) \ge 0,$$

we have that

$$\|(\hat{p}_1\hat{k}_1)*(\hat{p}_2\hat{k}_2)\|_A = 1.$$

By (1), (2), (3), and (4), we have that

$$\|(p_1 * k_1)(p_2 * \lambda_2)\|_1 \le \|p_1 * k_1\|_1 \|p_2\|_1 \|\lambda_2\|_{\infty} \le \epsilon_2/3$$

and

$$\|(p_1 * \lambda_1)(b_2 * k_2)\|_1 \le \|p_1\|_1 \|\lambda_1\|_{\infty} \|b_2\|_{\infty} \|k_2\|_1 \le \epsilon_1 \epsilon_2 / 9.$$

The norms of the other terms are similarly estimated, and part (iii) follows.

Our constructions of R and g_0 are based on [9, 2.6]. Set $k = (\chi_V * \chi_V)^2 / m(V)$. Clearly, $\hat{k} = 0$ outside V + V, $\hat{k}(0) = 1$, and $\hat{k} \ge 0$. Let W be a neighborhood of 0 in G, so that for $g \in W$

$$|1 - \hat{k}(g)| < \sqrt{\epsilon/3}.$$

Let $\theta \in L^1(\Gamma)$ be so that $\hat{\theta} = 1 - \hat{k}$ on B, where $B \subseteq W$ is an open neighborhood of 0 such that

$$m(B) < \sqrt{\epsilon/3}.$$

Choose $\psi \in L^1(\Gamma)$ such that $\hat{\psi} = 0$ outside B, $\|\hat{\psi}\|_{\infty} = 1$, and $\hat{\psi} = 1$ on K, where K is a neighborhood of 0. Set $R = k + \theta * \psi$. It follows from (5) and (6) that

$$\|\theta * \psi\|_1 \leq \|\theta * \psi\|_{\infty} \leq m(B) \sqrt{\epsilon/3} \leq \epsilon/3.$$

By the construction, $\hat{R} = 0$ outside V + V, $\hat{R} = 1$ on K, and $||R||_1 < \sqrt{1 + \epsilon}$.

Let H be a finite set in K. Select $\{y_1, \dots, y_N\}$, a linearly independent set in G, so that $H \subseteq \operatorname{gp}(y_1, \dots, y_N)$. Assume first that all the y_i 's are torsion free. Let

$$E_n = \left\{ x \in \operatorname{gp}(y_1, \dots, y_N) : x = \sum_{j=1}^N \alpha_j y_j, |\alpha_j| \le n \right\}.$$

Then, $m_d(E_n) = \text{card}(E_n) = (2n+1)^N$. Let

$$p_n = (1/m_d(E_n))(\chi_{E_n} * \chi_{E_n})^{\hat{}}$$

Choose n sufficiently large so that

(7)
$$\sum_{x \in H} |1 - \hat{p}_n(x)| < \epsilon/3.$$

Set $p = p_n$, and let b be the trigonometric polynomial in $C_{V+V}(\widetilde{\Gamma})$ defined by $\widehat{b}(x) = (1 - \widehat{p}(x))\chi_H(x)$. Let $g_0 = p + b$. Clearly, g_0 satisfies (3) and (4). Suppose that not all the y_i 's are torsion free. We then add sufficiently many linearly independent elements, $\{y_{N+1}, \dots, y_M\}$, to $\{y_1, \dots, y_N\}$, so that if we set

$$n = \max_{x \in H} \left\{ \max_{1 \le j \le N} |\alpha_j| : x = \sum_{j=1}^{N} \alpha_j y_j \right\},\,$$

and

$$E_n = \left\{ x \in \operatorname{gp}(y_1, \dots, y_M) \colon x = \sum_{j=1}^M \alpha_j y_j, |\alpha_j| \le n \right\},$$

then card (E_n) is sufficiently large for (7) to follow. The construction of $g = R * g_0$ is now complete. \square

Lemma 1.8. Let $E \subset \Gamma$ be a non-Sidon set. Given $1 > \epsilon > 0$, and F, a finite set in Γ , there exists a finitely supported function $f \in A(E)$ so that $H = \text{support } f \subset E \setminus F$, $\|f\|_{A(E)} = 1$, and $\|f\|_{\infty} < \epsilon$.

Proof. Let θ be a finitely supported function in A(E) so that $\|\theta\|_{A(E)} = 2$, and $\|\theta\|_{\infty} \leq \frac{1}{2} \epsilon b(E \cap F)$. We have

$$\|\theta\|_{A(E)} \leq \|\chi_{E\backslash F}\theta\|_{A(E)} + \|\theta\|_{\infty}/b(E\cap F),$$

and therefore,

$$2 - \epsilon/2 \le \|\chi_{E \setminus F} \theta\|_{A(E)}.$$

Choose $k \in L^1(G)$ so that $\hat{k} = 1$ on F, \hat{k} has finite support, and $\|(1 - \hat{k})\chi_{E}\chi_F\theta\|_{A(E)} < \epsilon/2$. We then have

$$\|\chi_{E \setminus E}\theta\|_{A(E)} \leq \|\hat{k}\chi_{E \setminus E}\theta\|_{A(E)} + \|(1-\hat{k})\chi_{E \setminus E}\theta\|_{A(E)}$$

and therefore, $\|\hat{k}\chi_{E}\|_{A(E)} > 1$. Set

$$f = \hat{k} \chi_{E \setminus F} \theta / \| \hat{k} \chi_{E \setminus F} \theta \|_{A(E)}. \quad \Box$$

Proof of Theorem A. We prove our theorem by transferring the problem from a countable group Γ to a compact metrizable group \hat{D} via ϕ , where D and ϕ are as in the remark preceding Lemma 1.3. We note that the transfer depends on Drury's theorem (see also Remark 2.1 below). The assumption that $E \in \mathcal{P}(\Gamma)$ and the use of Lemma 1.7 illustrate well the structural nature of the proof of part (ii), and the difficulty of the problem in general.

Proof of part (i). Let $E \subset \Gamma$ be a non-Sidon set. By Lemma 1.4, we select a non-Sidon set $F \subset E$, so that $\phi(F)$ has only one limit point x_0 in \hat{D} . Without loss of generality we assume $x_0 = 0$. Let S be any finite set in Γ , $0 \not\in S$. Let U be an open neighborhood of 0 so that

$$(\phi(\gamma) + U) \cap \phi(F) = \begin{cases} \emptyset, & \text{if } \gamma \in S \setminus (S \cap F), \\ \{\gamma\}, & \text{if } \gamma \in S \cap F. \end{cases}$$

Then $\phi(S) + \phi(F) \cap \phi(F)$ is finite; by the definition of ϕ , $S + F \cap F$ is finite, and hence $F \in \mathcal{P}(E)$.

Proof of part (ii). We first assume that Γ is a countable group. Let $E \in \mathcal{P}(\Gamma)$ be a non-Sidon set. By Lemmas 1.3 and 1.5, we can assume that $E \subset (\hat{D})_d$.

The proof will proceed as follows: We shall construct inductively $\{F_j\}_{j=1}^{\infty}$, a family of mutually disjoint finite subsets of E, and $\{f_j\}_{j=1}^{\infty} \subset A(E)$, so that the following hold:

- (1) $\bigoplus_{j=1}^{n} C_{F_j}(\widetilde{D}) \approx C_F(\widetilde{D})$, where $F = \bigcup_{j=1}^{\infty} F_j$;
- (2) (a) support $f_i \subseteq F_j$,
 - (b) $\|f_j\|_{\infty} < 1/j$,
 - (c) $||f_j||_{A(F)} \le 1$ and $||f_j||_{A(F_i)} \ge \frac{1}{2}$;
- (3) There exists a measure $\mu \in M(\widetilde{D})$, such that $\widehat{\mu} = 1$ on the support of $f = \sum_{i,j} A_i$, and $\widehat{\mu} = 0$ on $E \setminus F$.

From (1) and (2), it will follow, as in the proof of Lemma 1.2, that $f \in \widetilde{A}(F) \backslash A(F)$. But if $\lambda \in M(\widetilde{D})$ such that $\widehat{\lambda}|_F = f$, then, by (3), $\widehat{\mu}\widehat{\lambda}|_E \in \widetilde{A}(E) \backslash A(E)$.

Let $\langle \epsilon_j \rangle_{j=1}^{\infty}$ be so that $\epsilon_j > 0$ and $\prod_{j=1}^{\infty} (1 + \epsilon_j) < 2$. Let V_1 be any symmetric neighborhood of 0 in \hat{D} . Find K_1 , a neighborhood of 0 in \hat{D} , corresponding to ϵ_1 and V_1 in the conclusion of Lemma 1.7. By Lemma 1.4, $K_1 \cap E$ is not a Sidon set, and hence, we can choose a finitely supported function f_1 ,

$$H_1 = \text{support } f_1 \subseteq K_1 \cap E \setminus \{0\}, \quad ||f||_{A(E \cap K_1)} = 1,$$

and $\|f_1\|_{\infty} < 1$. Let g_1 be a trigonometric polynomial in $C_{V_1+V_1}(\widetilde{D})$ corresponding to ϵ_1 , and H_1 as in Lemma 1.7. Set F_1 = support $\hat{g}_1 \cap E \setminus \{0\}$. Clearly, $f_1 = 0$ on $(K_1 \cap E) \setminus F_1$. We proceed by induction: Let k > 1 and assume that V_j , K_j , f_j , H_j , g_j , and F_j were selected for $j \ge k - 1$. Set

$$Q_k = \left\{ \sum_{j=1}^{k-1} \epsilon_j x_j \colon x_j \in \text{support } \hat{g}_j, \epsilon_j = -1, 0, 1, j = 1, \dots, k-1 \right\}.$$

By the assumption on E, $Q_k + E \cap E$ is finite. Therefore, we can find U_k , a symmetric neighborhood of 0 in \hat{D} , so that $U_k + U_k \subseteq V_{k-1}$, and for all $x \in Q_k$,

$$(4) (x + U_L) \cap (E \setminus \{x\}) = \emptyset.$$

Let V_k be an open symmetric neighborhood of 0, so that

$$(5) V_k + V_k \subseteq U_k.$$

Select K_k corresponding to ϵ_k and V_k , as in Lemma 1.7. Set $F^{(k)} = \bigcup_{j=1}^{k-1} F_j$. By Lemma 1.4, $E \cap K_k$ is a non-Sidon set, and by Lemma 1.8, choose a finitely supported function f_k , so that $H_k = \operatorname{support} f_k \subset (K_k \cap E) \setminus F^{(k)}$, $\|f_k\|_{A((E \cap K_k) \cup F^{(k)})} = 1$ and $\|f_k\|_{\infty} < 1/k$. Again by Lemma 1.7, find $g_k \in C_{V_k + V_k}(\widetilde{D})$ corresponding to ϵ_k and H_k , and set

(6)
$$F_{k} = \text{support } \hat{g}_{k} \cap (E \setminus \{0\}).$$

Our selection process is now complete. Clearly, (2)(a), (b) hold for all k. We now verify (2)(c):

$$\|f_k\|_{A(F_k)} = \sup_{\nu \in l^1(F_k)} |(f_k, \nu)|/|\rho||_{\infty}$$

and by (6)

$$= \sup_{\nu \in l^{1}((E \cap K_{L}) \cup F^{(k)})} |(f_{k}, \nu)| / \|g_{k} * \widehat{\nu}\|_{\infty}.$$

But, $\|\hat{\nu} * g_k\|_{\infty} \le \|g_k\|_1 \|\hat{\nu}\|_{\infty} \le 2 \|\hat{\nu}\|_{\infty}$. Therefore,

$$\|f_{k}\|_{A(F_{k})} \ge \sup_{\nu \in l^{1}((E \cap K_{k}) \cup F^{(k)})} \frac{1}{2} |(f_{k}, \nu)| / \|\hat{\nu}\|_{\infty}$$

$$= \frac{1}{2} \| f_k \|_{A((E \cap K_L) \cup F^{(k)})} = \frac{1}{2}.$$

The proof of part (1) is handled in the same way as the proof of Theorem 1.2 of [1]: When we select V_k , in addition to the constraint in (5), we insist that V_k be sufficiently small in order that the methods of [1] apply.

We now prove (3). (4) and (5) easily imply that if $\sum_{i=1}^{M} x_i \in E$, where $x_i \in F_i$ $\cup \{0\}$, then all, except for possibly one of the summands, equal 0. Therefore, $(*_{j=1}^{n} \hat{g}_j)$ converges pointwise to a function on E, which equals 1 on $\bigcup_{j=1}^{\infty} H_j = \text{support } f$, and equals 0 on $E \setminus F$. Furthermore, since the hypothesis of part (iii) in Lemma 1.7 holds, we obtain

$$\left\| \begin{array}{c} n \\ * \\ j=1 \end{array} \widehat{g}_j \right\|_{A((\widehat{D})_d)} < \prod_{j=1}^n (1+\epsilon_j) < 2, \quad \text{for all } n.$$

By the metrizability of the weak* topology on bounded sets in $B(E) = C_E(\widetilde{D})$, and by the weak* compactness of bounded sets in B(E), it follows that there exists a measure $\mu \in M(\widetilde{D})$ so that $\widehat{\mu} = 1$ on support f and $\widehat{\mu} = 0$ on $E \setminus F$. The proof of the theorem in the case that Γ is countable is now complete.

Let Γ be any discrete abelian group, and $E \in \mathcal{P}(\Gamma)$ a non-Sidon set. Let $E' \subset E$ be a countable non-Sidon set in Γ ; set $F = E \cap \operatorname{gp}(E')$. It is easy to see that F is a Sidon set in Γ if and only if it is a Sidon set in $\operatorname{gp}(E')$. Therefore, since $\operatorname{gp}(E')$ is countable, $\widetilde{A}(F) \supseteq A(F)$ (the algebras are defined with respect to $M(\operatorname{gp}(E')^{\widehat{}})$); i.e., there exists $\mu \in M(\operatorname{gp}(E'))$ so that $\widehat{\mu}|_F \in c_0(F) \setminus A(F)$. By Theorem 2.7.2 of [9], there exists $\nu \in M(G)$ so that $\widehat{\nu}|_F = \widehat{\mu}|_F$, and since $\chi_{\operatorname{gp}(E')} \in M(G)$, we have

$$f = \chi_{gp(E')} \hat{\nu}|_{E} \in \widetilde{A}(E).$$

Since $\hat{\mu}|_{F} \notin A(F)$, by Theorem 2.7.4 of [9], it follows that $f \notin A(E)$. \square Remark 2.1. When $\Gamma = \mathbb{Z}$, part (i) of Theorem A follows from the following elementary fact: Let $E \subset \mathbb{Z}$ be a non-Sidon set. Given any N > 0, there exists $0 \le l < N$ so that $(N\mathbb{Z} + l) \cap E$ is non-Sidon. Part (ii) may also be obtained, though the arguments are essentially the same as in the proof of the theorem, without the use of Lemma 1.4, which rests on [4]. We do not know how to prove our theorem for general groups without resorting to Drury's theorem.

We now proceed to deduce a generalization of Theorem 3.1 in [7] (Corollary 2.3 below).

Let G be a compact abelian group, and $E \subseteq G$ a closed set. We define, as in [7],

$$D(E) = \left\{ f \in C(E) : \sup_{\mu \in M(E), \ \mu \neq 0} \left| \int f d\mu \right| / \|\widehat{\mu}\|_{\infty} < \infty \right\}.$$

If K(E) is any space of functions on E, we let

$$K_0(E) = \{ f \in K(E) : f(0) = 0 \}.$$

Let $E \subset G$ be a closed countable set with 0 as its only accumulation point; then, $c_0(E_d) = C_0(E)$. Also, it follows easily from the Hahn-Banach theorem, and Parseval's formula that $D_0(E) = \widetilde{A}_0(E_d)$.

Lemma 2.2. Let $E \subset G$ be as above. Then $A_0(E) = A_0(E_d)$ $(A(E) \text{ and } A(E_d)$ are the restriction algebras defined with respect to $L^1(\Gamma)$ and $L^1(\widetilde{\Gamma})$, respectively).

Proof. Finitely supported functions on E (on E_d) are norm dense in $A_0(E)$ ($A_0(E_d)$). It suffices, therefore, to prove that if f is finitely supported on E, then $||f||_{A(E_d)} = ||f||_{A(E_d)}$. Since E is a closed and countable set, $(A(E))^* = C_E(\widetilde{\Gamma})$. The proof now proceeds as in Lemma 1.5. \square

Corollary 2.3. Let $E \subseteq G$ be a closed countable non-Helson set with a finite number of limit points, then $D(E) \supseteq A(E)$.

Proof. Without loss in generality, we assume that 0 is the only limit point of E. Since E is a closed countable non-Helson set, E_d is a non-Sidon set in G_d . It is also clear that $E_d \in \mathcal{P}(G_d)$. The conclusion now follows from the remark preceding 2.2, Lemma 2.2, and Theorem A. \square

- 3. Open questions. Let $E \in \mathcal{P}(\Gamma)$.
- (a) We recall that $E \subset \Gamma$ is a Sidon set if and only if there exists $\beta > 0$ so that $\|f^2\|_{A(E)} \ge \beta \|f\|_{A(E)}^2$ (cf. [6, 8.3.8]). Therefore, in the proof of Theorem A, when choosing f_j at the jth step, in addition to requiring that $\|f_j\|_{A(E)} = 1$, and $\|f_j\|_{\infty} < 1/j$, we may also demand that

(1)
$$||f_i^2||_{A(E)} < 1/j^2.$$

It then follows, as in the proof of Theorem B that, $f = \sum_{j} \in \mathcal{X}(E) \setminus A(E)$. But, since support $f_i \cap \text{support } f_j = \emptyset$ whenever $i \neq j$, $f^2 = \sum_{i=1}^{2} f_i^2$; by (1), $f^2 \in A(E)$.

Question. For any n > 1, can we find $f \in \mathcal{X}(E) \setminus A(E)$, so that $f, \dots, f^{n-1} \in \mathcal{X}(E) \setminus A(E)$, but $f^n \in A(E)$?

(b) Consider $A'(E) = \{ f \in \widetilde{A}(E) : f^2 \in A(E) \}$. Let $f = \sum f_j$ be as above, and $\epsilon = (\epsilon_j)_{j=1}^{\infty}$, where $\epsilon_j = -1$ or 1. It is clear that $f_{\epsilon} = \sum \epsilon_j f_j \in \widetilde{A}(E) \setminus A(E)$, $f_{\epsilon}^2 = f^2 \in A(E)$. Furthermore, since $\|f_j\|_{A(F_j)} \ge \frac{1}{2}$, it follows that $\|f_{\epsilon} - f_{\epsilon'}\|_{\widetilde{A}(E)} \ge \frac{1}{2}$, where $\epsilon \neq \epsilon'$. Therefore, A'(E) is a closed nonseparable subalgebra of $\widetilde{A}(E)$. On the other hand, it follows, as in the proof of Theorem 1 of [5], that the maximal ideal space of A'(E) is precisely E.

Question. Does there exist a non-Sidon set $E \in \mathcal{F}(\Gamma)$ so that the maximal-ideal space of $\mathcal{A}(E)$ is precisely E (see also [8])?

(c) Let $E \subset \Gamma$ be a non-Sidon set. Does $A(E) \supseteq A(E)$?

I would like to thank my advisor, Professor O. C. McGehee, for his constant encouragement. Also, I thank Professors Y. Katznelson and H. Rosenthal for stimulating conversations on topics related to this work.

REFERENCES

- 1. R. C. Blei, On trigonometric series associated with separable, translation invariant subspaces of $L^{\infty}(G)$, Trans. Amer. Math. Soc. 173 (1972), 491-499.
- 2. M. Déchamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. Fourier (Grenoble) 22 (1972).

- 3. R. Doss, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361-363. MR 36 #5619.
- 4. S. W. Drury, Sur les ensembles de Sidon, C. R. Acad. Aci. Paris Sér. A-B 271 (1970), A162-A163. MR 42 #6530.
- 5. C. Graham, On a Banach algebra of Varopoulos, J. Functional Analysis 4 (1969), 317-328. MR 40 #4768.
- 6. Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968. MR 40 #1734.
- 7. Y. Katznelson and C. McGehee, Measures and pseudomeasures on compact subsets of the line, Math. Scand. 23 (1968), 57-68. MR 40 #4688.
- 8. ———, Some Banach algebras associated with quotients of $L^1(R)$, Indiana Univ. Math. J. 21 (1971), 419–436. MR 44 #7224.
- 9. W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808.
- 10. N. Varopoulos, Sets of multiplicity in locally compact abelian groups, Ann. Inst. Fourier (Grenoble) 16 (1966), fasc. 2, 123-158. MR 35 #3379.
- 11. ———, On a problem of A. Beurling, J. Functional Analysis 2 (1968), 24-30. MR 39 #3317.
- 12. ———, Groups of continuous functions in harmonic analysis, Acta Math. 125 (1970), 109-154. MR 43 #7868.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268