THE CLOSURE OF THE SPACE OF HOMEOMORPHISMS ON A MANIFOLD

BY

WILLIAM E. HAVER(1)

ABSTRACT. The space, $\overline{H}(M)$, of all mappings of the compact manifold M onto itself which can be approximated arbitrarily closely by homeomorphisms is studied. It is shown that $\overline{H}(M)$ is homogeneous and weakly locally contractible. If M is a compact 2-manifold without boundary, then $\overline{H}(M)$ is shown to be locally contractible.

1. Let M be a compact manifold and H(M) denote the space of all homeomorphisms of M onto itself. We shall study the space, $\overline{H}(M)$, of all continuous functions of M onto itself which can be approximated arbitrarily closely by elements of H(M). All function spaces on compact spaces will be assumed to have the supremum metric, ρ ; i.e., if X and Y are spaces with d the metric on Y and f and g are functions from X into Y, then $\rho(f,g) = \sup_{x \in X} \{d(f(x),g(x))\}$. Since M is compact, the topology thus generated agrees with the compact-open topology.

A mapping of an *n*-manifold, M^n , onto itself is said to be cellular if for each $y \in M^n$, $f^{-1}(y)$ can be expressed as the intersection of a nested sequence of *n*-cells. Armentrout $(n \le 3)$ [4] and Siebenmann $(n \ge 5)$ [20] have recently shown that $\overline{H}(M^n)$, $n \ne 4$, is precisely the space of all cellular mappings of M^n onto itself. Hence most of the results of this paper could be stated in terms of spaces of cellular mappings. Cellular mappings have been studied extensively (cf., Lacher [15], [16]).

Let $H_{\partial}(M)$ denote the space of all homeomorphisms of M onto itself which equal the identity when restricted to the boundary of M and, following our previous notation, let $\overline{H}_{\partial}(M)$ denote the space of all continuous functions of M onto itself which can be approximated arbitrarily closely by elements of $H_{\partial}(M)$. We shall state some of the major results concerning H(M) and $H_{\partial}(M)$ and then indicate which of the analogous theorems can be proven for $\overline{H}(M)$ and $\overline{H}_{\partial}(M)$:

Received by the editors December 20, 1972 and, in revised form, July 9, 1973.

AMS (MOS) subject classifications (1970). Primary 54H15, 57E05; Secondary 57A60, 57A20.

Key words and phrases. Spaces of homeomorphisms, cellular mappings, closure of the space of homeomorphisms, compact manifolds, infinite dimensional manifolds, homogeneous spaces.

⁽¹⁾ Research partially supported by NSF Grant GP 33872.

- (i) It is well known that for any compact manifold M each of H(M) and $H_{\partial}(M)$ is a separable metric space, a topological group under composition of functions and topologically complete.
- (ii) Let B^n be the standard *n*-ball. The Alexander isotopy [1], first used in 1923, is very useful in dealing with $H_{\partial}(B^n)$ and combined with the fact that $H_{\partial}(B^n)$ is a topological group provides a trivial proof that $H_{\partial}(B^n)$ is locally contractible. Mason [19] showed that $H_{\partial}(B^2)$ is an absolute retract and Anderson [3] proved that $H_{\partial}(B^1)$ is homeomorphic to I_{∂} (separable Hilbert space).
- (iii) Recently Černavskii [6] and Edwards-Kirby [7] proved that for any compact manifold each of H(M) and $H_{\partial}(M)$ is locally contractible.
- (iv) Of current interest is the problem of whether H(M) is an l_2 -manifold (i.e., locally homeomorphic to l_2). Geoghegan [9] has shown that $H(M) \times l_2 \approx H(M)$ and $H_a(M) \times l_2 \approx H_a(M)$.

We shall discuss in this paper the state of the corresponding statements for $\overline{H}(M)$ and $\overline{H}_{a}(M)$:

- (i) $\overline{H}(M)$ and $\overline{H}_{\partial}(M)$ are obviously separable metric spaces. In addition they are not merely topologically complete, but are complete under the supremum metric. Neither space is a topological group, under composition of functions, since the inverse of a cellular map need not be even well defined. However, we do prove (§2) that $\overline{H}(M)$ and $\overline{H}_{\partial}(M)$ are homogeneous.
- (ii) Making use of an Alexander-type homotopy and the fact that $\overline{H}_{\partial}(B^n)$ is homogeneous, we give a simple proof (§3) that this space is locally contractible. Elsewhere the author [13] has shown that $\overline{H}_{\partial}(B^2)$ is an AR and Geoghegan [9] has proven that $\overline{H}_{\partial}(B^1)$ is homeomorphic to l_2 .
- (iii) It is unknown whether $\overline{H}(M)$ is locally contractible for an arbitrary compact manifold. In §4, it is shown that $\overline{H}(M)$ and $\overline{H}_{\partial}(M)$ are weakly locally contractible. Then by modifying slightly the techniques of Edwards-Kirby we show in §5 that if M^2 is a compact 2-manifold then $\overline{H}_{\partial}(M^2)$ is locally contractible.
- (iv) Geoghegan and Henderson [10] proved that $\overline{H}(M) \times l_2 \approx \overline{H}(M)$. In §4, using a theorem of Anderson [2], we give an easy proof of the fact that if $\overline{H}(M)$ is an l_2 -manifold for a particular compact manifold M, then H(M) is an l_2 -manifold.
- If $f \in \overline{H}(M)$ and $\epsilon > 0$, let $N_{\epsilon}(f) = \{g \in \overline{H}(M) | \rho(g, f) < \epsilon\}$. When we wish to speak of a neighborhood in H(M) we write $N_{\epsilon}(f) \cap H(M)$ to denote $\{g \in H(M) | \rho(g, f) < \epsilon\}$. If X and Y are spaces with $X \subset Y$, the complement of X in Y will be denoted by X when there is no possibility of confusion. The boundary of X is written ∂X , the closure of X is written X, and X denotes the identity map on X. We use the symbol Int X to denote the interior of the set X and X and X denote the closed unit interval.

The work of this paper is an extension of a portion of the author's doctoral

dissertation written under the direction of Louis F. McAuley at State University of New York at Binghamton; the proof of Lemma 5.1 was contained in that dissertation.

2. In this section we shall use a result of Edwards-Kirby [7] and an isotopy control devise motivated by a technique of Mason [18] to prove that if M is a compact manifold, then $\overline{H}(M)$ and $\overline{H}_{\partial}(M)$ are homogeneous. (A space, X, is homogeneous if given $x, y \in X$, there exists a homeomorphism $\phi: X \to X$ such that $\phi(x) = y$.)

Lemma 2.1. Suppose $g_0 \in \overline{H}(M)$, $\{\epsilon_i\}_{i=1}^{\infty}$ is a sequence of positive numbers such that $\epsilon_{i+1} < \epsilon_i/2$, $\epsilon_i < 1/2^i$ for each i, and $\{\phi_i \colon \overline{H}(M) \to \overline{H}(M)\}_{i=0}^{\infty}$ is a sequence of homeomorphisms satisfying:

- (a) $\rho(\phi_i \circ \cdots \circ \phi_0(g_0), 1_M) < \epsilon_{i+2}$, for $i \ge 0$.
- (b) If $\rho(f, \phi_{i-1} \circ \cdots \circ \phi_0(g_0)) \ge \epsilon_i$, then $\phi_i(f) = f$, for $i \ge 1$.
- (c) If $\rho(f, \phi_{i-1} \circ \cdots \circ \phi_0(g_0)) \leq \epsilon_{i+1}$, then $\rho(\phi_i(f), \phi_i \circ \cdots \circ \phi_0(g_0)) = \rho(f, \phi_{i-1} \circ \cdots \circ \phi_0(g_0))$, for $i \geq 1$.
- (d) If $\rho(f, \phi_{i-1} \circ \cdots \circ \phi_0(g_0)) \ge \epsilon_{i+1}$, then $\rho(\phi_i(f), \phi_i \circ \cdots \circ \phi_0(g_0)) \ge \epsilon_{i+1}$, for $i \ge 0$.
- (e) If $f \in \overline{H}(M)$, $\rho(f, g_0) = \rho(\phi_0(f), \phi_0(g_0))$. Then $\phi = \lim_{i \to \infty} \phi_i \circ \cdots \circ \phi_0$ is a homeomorphism of $\overline{H}(M)$ onto itself taking g_0 to 1_M .

Proof. Property (a) implies that $\phi(g_0) = 1_M$. To see that ϕ is onto let $f \in \overline{H}(M)$ and suppose $f \neq 1_M$. Choose a large enough integer, i, so that $\rho(f, 1_M) \geq \epsilon_i$. Since $\phi_i \circ \cdots \circ \phi_0$ is a homeomorphism, there is an element f of $\overline{H}(M)$ so that $\phi_i \circ \cdots \circ \phi_0(f) = f$.

However, $\rho(f, \phi_i \circ \cdots \circ \phi_0(g_0)) \ge \rho(f, 1_M) - \rho(\phi_i \circ \cdots \circ \phi_0(g_0), 1_M) \ge \epsilon_i - \epsilon_{i+1}$ and hence, by property (b), $\phi(f) = \phi_i \circ \cdots \circ \phi_0(f) = f$.

Similarly, since $\phi|(\phi_i \circ \cdots \circ \phi_0)^{-1}(\{f|\rho(f,1_M) > \epsilon_i\}) = \phi_i \circ \cdots \circ \phi_0|$ $(\phi_i \circ \cdots \circ \phi_0)^{-1}(\{f|\rho(f,1_M) > \epsilon_i\})$, ϕ is 1-1 and continuous on $\phi^{-1}(\overline{H}(M) - \{1_M\})$. To show that ϕ is indeed 1-1, we need to show that if $f \neq g_0 \in \overline{H}(M)$, then $\phi(f) \neq 1_M$. Let i be the smallest integer so that $\epsilon_{i+1} \leq \rho(f,g_0)$. By properties (c) and (e), $\rho(\phi_i \circ \cdots \circ \phi_0(f), \phi_i \circ \cdots \circ \phi_0(g_0)) \geq \epsilon_{i+1}$. And hence by property (d), $\rho(\phi_i \circ \cdots \circ \phi_0(f), \phi_i \circ \cdots \circ \phi_0(g_0)) \geq \epsilon_{i+1}$. But this implies that

$$\rho(\phi(f), 1_{M}) \ge \rho(\phi(f), \phi_{i} \circ \cdots \circ \phi_{0}(g_{0})) - \rho(\phi_{i} \circ \cdots \circ \phi_{0}(g_{0}), 1_{M})$$
$$\ge \epsilon_{i+1} - \epsilon_{i+2} > \epsilon_{i+1}/2,$$

which shows that $\phi(f) \neq 1_M$.

To show that ϕ is continuous at g_0 , note that if $\rho(f, g_0) < \epsilon_i$, then

404

$$\rho(\phi(f), 1_{M}) \leq \rho(\phi(f), \phi_{i-1} \circ \cdots \circ \phi_{0}(f)) + \rho(\phi_{i-1} \circ \cdots \circ \phi_{0}(f), \phi_{i-1} \circ \cdots \circ \phi_{0}(g_{0})) + \rho(\phi_{i-1} \circ \cdots \circ \phi_{0}(g_{0}), \phi(g_{0}))$$

$$<\left(\sum_{j=i}^{\infty}2\epsilon_{j}\right)+\epsilon_{i}+\epsilon_{i+1}<2\left(\sum_{j=i}^{\infty}\frac{1}{2^{j}}\right)+\frac{1}{2^{i}}+\frac{1}{2^{i+1}}<\frac{1}{2^{i-3}}.$$

Finally, ϕ^{-1} is obviously continuous on $\overline{H}(M) - \{1_M\}$ and we have shown that if $\rho(f, g_0) \ge \epsilon_{i+1}$, then $\rho(\phi(f), 1_M) > \epsilon_{i+1}/2$. Hence ϕ^{-1} is continuous.

As a corollary to their main theorem Edwards-Kirby [7, p. 80] obtain the following result: Let $\{B_i \mid 1 \leq i \leq p\}$ be an open cover of M. Then there exists a neighborhood, Q, of 1_M in H(M) and a map $\phi \colon Q \times [0, p] \to H(M)$ such that: For each $b \in Q$ and each $j, j = 1, \dots, p$, if $j - 1 \leq t \leq j$, then $\phi(b, t) \mid \widetilde{B}_j = \phi(b, j) \mid \widetilde{B}_j$; $\phi(b, 0) = b$ for all $b \in H(M)$; $\phi(b, p) = 1_M$ for all $b \in H(M)$; and $\phi(1_M, t) = 1_M$ for each $t \in [0, p]$. We will make use of the following immediate corollary to the above statement.

Lemma 2.2 (Edwards-Kirby). Given $\eta > 0$, there is a $\delta > 0$ such that if $b \in H(M)$ and $\rho(b, 1_M) < \delta$, then there is a map $H: [0, p] \to H(M)$ such that $b_0 = b$, $b_p = 1_M$, $\rho(b_t, 1_M) < \eta$ for all $t \in [0, p]$ and for each j, $j = 1, 2, \dots, p$, if $j - 1 \le t \le j$, then $b_t | \widetilde{B}_j = b_j | \widetilde{B}_j$ (where H(t) is denoted b_t).

The map H can be defined so that in addition if $b|\partial M = 1_{\partial M}$, then $b_t|\partial M = 1_{\partial M}$, [7, p. 64].

Lemma 2.3. Let M be a compact manifold. For every $\epsilon > 0$ there exists a cover $\{B_1, \dots, B_p\}$ of M and an $\epsilon' > 0$ such that if $f \in \overline{H}(M)$ and $(f, 1_M) > \epsilon$, then for each j, $j = 1, 2, \dots, p$, $\rho(f|B_j, 1_{B_j}) \ge \epsilon'$.

Proof. It suffices to prove the following statement: Let M be a compact manifold. Given $\epsilon > 0$ there is an $\epsilon' > 0$ such that if $b \in H(M)$ with $\rho(b, 1_M) > \epsilon$, then there exist $x, y \in M$ so that $d(x, y) \ge \epsilon'$, $d(h(x), x) \ge \epsilon'$ and $d(h(y), y) \ge \epsilon'$. (To complete the proof of the lemma, first notice that it suffices to deal only with elements of H(M), and then choose an open cover $\{B_1, \dots, B_p\}$ of M of mesh less than ϵ' .)

The above statement is obviously true if M is a compact 0-manifold. Assume inductively that it has been demonstrated for all compact manifolds of dimension $\leq n-1$. Let M be a compact n-manifold and suppose $\epsilon>0$ is given. Pick $\eta>0$ such that $\eta<\epsilon/4$ and such that if S is a subset of M of diameter $<2\eta$, then S is contained in a ball of diameter less than $\epsilon/8$.

Using the inductive hypothesis and the fact that M can be covered by a finite number of coordinate patches we next choose $\epsilon' > 0$ such that

(a)
$$\epsilon' < \eta/4$$
;

- (b) For each $x \in M$, there is a ball, B_x , containing x such that if $w \in \partial B_x$ \cap Int M, then $\epsilon' < d(x, w)$ and if $w \in \partial B_x$, $d(x, w) < \eta/2$;
- (c) If $g \in H(\partial M)$ with $\rho(g, 1_{\partial M}) > \eta/2$, then there exist elements $x, y \in \partial M$ so that $d(x, y) \ge \epsilon'$, $d(b(x), x) \ge \epsilon'$, and $d(b(y), y) \ge \epsilon'$.

Now, suppose $b \in H(M)$ with $\rho(b, 1_M) > \epsilon$. Pick $x \in M$ such that $d(b(x), x) > \epsilon$. Choose a ball, B_x , so that $x \in B_x$, if $w \in \partial B_x \cap \text{Int } M$ then $d(x, w) > \epsilon'$ and if $w \in \partial B_x$, then $d(x, w) < \eta/2$.

Now either (i) there is a $y \in \partial B_x \cap \partial M$ such that $d(b(y), x) \ge \eta$ or (ii) there is a $y \in \partial B_x \cap \text{Int } M$ such that $d(b(y), x) \ge \eta$ or (iii) $b(\partial B_x) \subset N_{\eta}(x)$.

In case (i), $d(b(y), y) \ge d(b(y), x) - d(x, y) \ge n - n/2 > n/2$. Hence by property (c) of the definition of ϵ' , the conclusion of the inductive statement is satisfied.

In case (ii), $d(x, y) > \epsilon'$ and $d(b(y), y) > \eta/2 > \epsilon'$. Hence x and y are the desired points.

In case (iii), let B be a ball of diameter less than $\epsilon/8$ bounded by $b(\partial B_x)$. Now, $b(x) \notin B$, for otherwise $d(x, b(x)) < d(x, B) + \text{diam } B < \eta + \epsilon/8 < \epsilon/4 + \epsilon/8 < \epsilon$. Therefore, $b(\widetilde{B}_x) = B$ and we can choose $y \in \widetilde{B}_x$ such that $d(y, x) \ge \epsilon/2$ (this is possible since diam $M > \epsilon$). Then $d(y, b(y)) \ge d(y, x) - d(x, b(y)) \ge \epsilon/2 - \eta - \epsilon/8 > \epsilon/2 - \epsilon/4 - \epsilon/8 = \epsilon/8 > \epsilon'$.

Lemma 2.4. Let M be a compact manifold and let $\epsilon > 0$ be given. Then there is a $\delta = \delta(\epsilon) > 0$ such that if $b \in H(M)$ and $\rho(b, 1_M) < \delta$, then there is a homeomorphism $\psi \colon \overline{H}(M) \to \overline{H}(M)$ such that

- (a) if $\rho(f, 1_M) \ge \epsilon$, then $\psi(f) = f$;
- (b) if $\rho(f, 1_M) < \delta$, then $\psi(f) = fb^{-1}$.

Proof. By Lemma 2.3 we can choose a cover $\{B_1, \dots, B_p\}$ and a number $\eta > 0$ such that if $\rho(f, 1_M) \ge \epsilon$, then $\rho(f | B_j, 1_{\widehat{B}_i}) \ge 4\eta$, for $j = 1, \dots, p$.

Then by Lemma 2.2, there is a δ , $0 < \delta \le \eta$ such that if $\rho(b, 1_M) < \delta$ then there exists a map $H: [0, p] \to H(M)$ such that $b_0 = b$, $b_p = 1_M$, $\rho(b_t, 1_M) < \eta$ for every $t \in [0, p]$ and for each $j, j = 1, \dots, p$, if $j - 1 \le t \le j$, then $b_t | B_j = b_j | B_j$. Next for each j, we define a map $\lambda_j: \overline{H}(M) \to [0, 1]$ by

$$\lambda_{j}(f) = 0, \quad \text{if } \rho(f|\widetilde{B}_{j}, 1_{\widetilde{B}_{j}}) \leq 3\eta,$$

$$= \frac{\rho(f|\widetilde{B}_{j}, 1_{\widetilde{B}_{j}})}{\eta} - 3, \quad \text{if } 3\eta \leq \rho(f|\widetilde{B}_{j}, 1_{\widetilde{B}_{j}}) \leq 4\eta,$$

$$= 1, \quad \text{if } \rho(f|\widetilde{B}_{j}, 1_{\widetilde{B}_{j}}) \geq 4\eta.$$

For each j, $1 \le j \le p$, define $\psi_j : \overline{H}(M) \to \overline{H}(M)$ by

$$\psi_{j}(f) = f b_{j-1}^{-1} b_{j-\lambda_{i}(f)}.$$

Define $\psi \colon \overline{H}(M) \to \overline{H}(M)$ by $\psi = \psi_p \circ \cdots \circ \psi_1$.

To prove that ψ is a homeomorphism it suffices to show that for each j, ψ_j is a homeomorphism. The fact that if $j-1 \leq t \leq j$, then $b_t|\widetilde{B}_j = b_j|\widetilde{B}_j$ implies that for each positive number, s, $\psi_j|\{f \in \overline{H}(M)|\rho(f|\widetilde{B}_j, 1_{\widetilde{B}_j}) = s\}$ is a homeomorphism of $\{f \in \overline{H}(M)|\rho(f|\widetilde{B}_j, 1_{\widetilde{B}_j}) = s\}$ onto itself. Therefore ψ_j is 1-1 and onto. This fact and the continuity of λ_j proves that ψ_j and its inverse are continuous.

To see that condition (a) is met, note that if $\rho(f, 1_M) \ge \epsilon$, then for each j, $\rho(f|B_j, 1_{B_j}) \ge 4\eta$ and hence $\psi_j(f) = f$.

Now suppose $\rho(f, 1_M) < \delta$. Then $\rho(f, 1_M) < \eta$ and hence $\psi_1(f) = fb^{-1}b_1$. Assume inductively that $\psi_{j-1} \circ \cdots \circ \psi_1(f) = fb^{-1}b_{j-1}$; then since

$$\begin{split} \rho(fb^{-1}b_{j-1}|\tilde{B}_{j}\,,\,1_{M}|\tilde{B}_{j}) &\leq \rho(fb^{-1}b_{j-1}\,,\,1_{M}) \leq \rho(f,\,1_{M}) + \rho(b^{-1},\,1_{M}) + \rho(b_{j-1},\,1_{M}) \leq 3\eta, \\ \psi_{j}(fb^{-1}b_{j-1}) &= fb^{-1}b_{j-1}b_{j-1}^{-1}b_{j} = fb^{-1}b_{j}. \end{split}$$

Therefore

$$\psi(f) = \psi_{p}(\psi_{p-1}(\cdots(\psi_{1}(f))\cdots)) = fb^{-1}b_{p} = fb^{-1}.$$

It is interesting to note that the statement and proof of Lemma 2.4 remain valid if $\overline{H}(M)$ is replaced throughout by H(M).

Lemma 2.5. Given a > 0 there exists b' = b'(a) > 0 such that if b < b', $g \in \overline{H}(M)$ such that $\rho(g, 1_M) < b$, and c > 0 are given then there exists a homeomorphism $\psi \colon \overline{H}(M) \to \overline{H}(M)$ such that

- (i) $\rho(\psi(g), 1_M) < c$;
- (ii) if $\rho(f, g) \ge a$, then $\psi(f) = f$;
- (iii) if $\rho(f, g) \leq b$, then $\rho(\psi(f), \psi(g)) = \rho(f, g)$;
- (iv) if $\rho(f, g) \ge b$, then $\rho(\psi(f), \psi(g)) \ge b$.

Proof. In Lemma 2.4, let $\epsilon = a/2$. Then let $b' = \min(\delta(\epsilon)/2, a/2)$. Suppose b < b' and $g \in \overline{H}(M)$ are given with $\rho(g, 1_M) < b$. Choose $b \in H(M)$ such that $\rho(b, g) < \min(b, c)$ and $\rho(b, 1_M) < b$. Then by Lemma 2.4, there exists a homeomorphism $\psi \colon \overline{H}(M) \to \overline{H}(M)$ such that if $\rho(f, 1_M) \ge a/2$, then $\psi(f) = f$ and if $\rho(f, 1_M) < 2b$, then $\psi(f) = fb^{-1}$. It is trivial to check that ψ satisfies conditions (i)—(iv).

Theorem 2.6. If M is a compact manifold, $\overline{H}(M)$ is homogeneous.

Proof. Let g_0 be an arbitrary element of $\overline{H}(M)$. It is sufficient to show that there exist sequences $\{\epsilon_i\}_{i=1}^{\infty}$ and $\{\phi_i \colon \overline{H}(M) \to \overline{H}(M)\}_{i=0}^{\infty}$ satisfying the hypothesis

of Lemma 2.1 and hence that there exists a homeomorphism $\phi \colon \overline{H}(M) \to \overline{H}(M)$ taking g_0 to 1_M .

Choose a sequence of positive numbers $\{\epsilon_i\}_{i=1}^{\infty}$ such that for each i, $\epsilon_{i+1} < \epsilon_i/2$, $\epsilon_i < 1/2^i$ and $\epsilon_{i+1} \le b'(\epsilon_i)$, where $b'(\epsilon_i)$ is the number promised in Lemma 2.5 for $a = \epsilon_i$. Let $b \in H(M)$ be chosen so that $\rho(b, g_0) < \epsilon_2$. Define the homeomorphism $\phi_0 \colon \overline{H}(M) \to \overline{H}(M)$ by $\phi_0(f) = fb^{-1}$. Note that $\rho(\phi_0(g_0), 1_M) = \rho(g_0b^{-1}, 1_M) = \rho(g_0, b) < \epsilon_2$ and that if $f \in \overline{H}(M)$, $\rho(\phi_0(f), \phi_0(g_0)) = \rho(f, g_0)$.

Now assume inductively that homeomorphisms $\phi_0, \phi_1, \dots, \phi_{j-1}$ have been defined satisfying conditions (a)-(d) of Lemma 2.1.

In Lemma 2.5, let $a = \epsilon_j$, $b = \epsilon_{j+1}$, $c = \epsilon_{j+2}$ and $g = \phi_{j-1} \circ \cdots \circ \phi_0(g_0)$. By the inductive hypothesis, $\rho(g, 1_M) = \rho(\phi_{j-1} \circ \cdots \circ \phi_0(g_0), 1_M) < \epsilon_{j+1}$. Therefore, since $\epsilon_{j+1} < b'(\epsilon_j)$, by Lemma 2.5, there exists a homeomorphism $\phi_j : \overline{H}(M) \to \overline{H}(M)$ such that:

(i)
$$\rho(\phi_i \circ \cdots \circ \phi_0(g_0), 1_M) < \epsilon_{i+2}$$
;

(ii) if
$$\rho(f, \phi_{j-1} \circ \cdots \circ \phi_0(g_0)) \ge \epsilon_j$$
, then $\phi_j(f) = f$;

(iii) if
$$\rho(f, \phi_{i-1} \circ \cdots \circ \phi_0(g_0)) \leq \epsilon_{i+1}$$
, then;

$$\rho(\phi_j(f), \phi_j \circ \cdots \circ \phi_0(g_0)) = \rho(f, \phi_{j-1} \circ \cdots \circ \phi_0(g_0));$$

(iv) if
$$\rho(f, \phi_{j-1} \circ \cdots \circ \phi_0(g_0)) \ge \epsilon_{j+1}$$
, then $\rho(\phi_j(f), \phi_j \circ \cdots \circ \phi_0(g_0)) \ge \epsilon_{j+1}$.

But these are precisely conditions (a)-(d) of Lemma 2.1 that the homeomorphism ϕ_j was to satisfy (condition (e) refers only to ϕ_0). The proof of Theorem 2.6 is completed.

In order to simplify notation we used the symbol $\overline{H}(M)$ throughout this section. The identical proofs also show that $\overline{H}_{\partial}(M)$ is homogeneous (recall the comment following the statement of Lemma 2.2).

Theorem 2.7. Let M be a compact manifold. Then $\overline{H}_{a}(M)$ is homogeneous.

3. In this section we consider $\overline{H}_{\partial}(B^n)$, where B^n is the Euclidean *n*-ball.

Theorem 3.1. $\overline{H}_{\mathbf{a}}(B^n)$ is locally contractible.

Proof. Since $\overline{H}_{\partial}(B^n)$ is homogeneous, it suffices to show that $\overline{H}_{\partial}(B^n)$ is locally contractible at 1_{B^n} . We show, using an Alexander-type homotopy, that $N_{\epsilon}(1_{B^n})$ is contractible within itself to 1_{B^n} .

For any $f \in \overline{H}_{a}(B^{n})$, define $\widehat{f}: \mathbb{R}^{n} \to \mathbb{R}^{n}$ by

$$\hat{f}(x) = f(x), \quad x \in B^n,$$

= $x, \quad x \notin B^n.$

Next define $A: \overline{H}_{\partial}(B^n) \times I \longrightarrow \overline{H}_{\partial}(B^n)$ by

$$A(f, t)(x) = \frac{1-t}{1+t}\hat{f}\left(\frac{1+t}{1-t}x\right), \quad 0 \le t < 1,$$

$$= x, \quad t = 1.$$

We note that A is continuous, A(f, 0) = f, $A(f, 1) = 1_{Bn}$ and $A(f, t) \in \overline{H}_{\partial}(B^n)$ for all $f \in \overline{H}_{\partial}(B^n)$ and $t \in I$. Furthermore, since $\rho(f, 1_{Bn}) < \epsilon$ implies that $\rho(A(f, t), 1_{Bn}) < \epsilon$, A contracts $N_{\epsilon}(1_{Bn})$ within itself to 1_{Bn} for every $\epsilon > 0$.

Actually it is possible to prove that $\overline{H}_{\partial}(B^n)$ is locally contractible without knowing that $\overline{H}_{\partial}(B^n)$ is homogeneous. See [12].

For the special case, n=4, it is not known whether $\overline{H}_{\partial}(B^4)$ is equal to $Ce_{\partial}(B^4)=\{f\colon B^4\longrightarrow B^4|f|\partial B^4=1_{\partial B^4} \text{ and } f \text{ is cellular}\}$. However, the map A does show that $Ce_{\partial}(B^4)$ is locally contractible at 1_{B^4} .

It was mentioned in the introduction that $\overline{H}_{\partial}(B^2)$ is an AR [13]. The following theorem is also contained in [13]:

Theorem 3.2. Let α be an open cover of $\overline{H}_{\partial}(B^2)$. Then there exists a locally finite polyhedron, P, and maps $b \colon \overline{H}_{\partial}(B^2) \to P$, $g \colon P \to \overline{H}_{\partial}(B^2)$ and $\theta \colon \overline{H}_{\partial}(B^2) \times I \to \overline{H}_{\partial}(B^2)$ such that

- (a) for each $f \in H_{\partial}(B^2)$ there is an element, U_f , of α such that $\theta(f, t) \in U_f$, for each $t \in I$;
 - (b) $\theta(f, 1) = f$, for each $f \in \overline{H}_{\partial}(B^2)$;
 - (c) $\theta(f, 0) = gb(f)$, for each $f \in \overline{H}_{\partial}(B^2)$;
 - (d) $\theta(f, t) \in H_{\partial}(B^2)$ for each $f \in \overline{H}_{\partial}(B^2)$ and $t \in [0, 1)$.

This theorem will be used in §5. Theorem 3.2 implies that the inclusion map $i: H_{\partial}(B^2) \to \overline{H}_{\partial}(B^2)$ is a homotopy equivalence. Siebermann [20] has asked whether $i: H(M) \to \overline{H}(M)$ is a homotopy equivalence, for an arbitrary compact manifold M.

- 4. In this section we obtain some general topological results concerning the closure of a uniformly locally contractible space (compare with [8]). These results are then used in order to give partial solutions to the following unsolved problems:
- (i) Let M be a compact manifold. Given $\delta > 0$ does there exist a continuous function $\phi_{\delta} : \overline{H}(M) \to H(M)$ with the property that for each $g \in \overline{H}(M)$, $\rho(g, \phi_{\delta}(g)) < \delta$?
 - (ii) Let M be a compact manifold. Is $\overline{H}(M)$ locally contractible?

Proposition 4.1. Let Y be a metric space and X be a uniformly locally contractible subset of Y. Let $\delta > 0$ be given and let $f: P \to \overline{X}$ be a map of an arbitrary locally finite polyhedron, P, into \overline{X} . Then there exists a map $\phi: P \times I \to \overline{X}$ so that for each $p \in P$:

- (a) $\phi(p, 0) = f(p)$;
- (b) if $t \neq 0$, $\phi(p, t) \in X$;
- (c) if $t \in I$, $d(f(p), \phi(p, t)) < \delta$.

Proof. Let $\delta_1, \delta_2, \cdots$ be a decreasing sequence of positive numbers such that $\delta_1 \leq \delta/3$, $\delta_n \leq 1/3n$, and if $A_n \subset X$ with $\operatorname{diam}(A_n) < 3\delta_{n+1}$, then $i \colon A_n \to X$ is null-homotopic in a subset of X of diameter less than δ_n .

Suppose $P \times (0, 1]$ has a fixed locally finite triangulation. If r is a simplex of $P \times (0, 1]$, define the two positive integers, m_r and n_r as follows:

$$m_{\tau} = \max \{ \dim \sigma | \tau < \sigma \},$$

 $n_{\tau} = \min \{ n | n \text{ is an integer and if } \tau < \sigma, \text{ then } \sigma \subset P \times [1/n, 1] \}.$

Note that if $\tau' < \tau$, $m_{\tau'} \ge m_{\tau}$ and $n_{\tau'} \ge n_{\tau}$.

Consider $P \times (0, 1]$ to have a locally finite triangulation such that if τ is a simplex of $P \times (0, 1]$, then $\operatorname{diam}(f(\pi_1(\tau))) < \delta_{m_T + n_T}$ (where τ_1 is projection on the first coordinate).

We will define a map $\psi \colon P \times (0, 1] \to X$ by induction on the skeleta of $P \times (0, 1]$. Define $\psi_0 \colon (P \times (0, 1])^0 \to X$ as follows. If σ is a 0-simplex of $P \times (0, 1]$, let $\psi_0(\sigma)$ be an element of X such that $\rho(f(\pi_1(\sigma)), \psi_0(\sigma)) < \delta_{m\sigma+n\sigma}$.

Assume inductively that there exist maps $\psi_1, \dots, \psi_{k-1}$ with the following properties for $j = 1, \dots, k-1$:

- (i) ψ_i maps $(P \times (0, 1])^j$ into X;
- (ii) ψ_i extends ψ_{i-1} ;
- (iii) if τ is a j-simplex of $P \times (0, 1]$, then diam $\psi_j(\tau) < \delta_{m_T + n_T j}$.

We define ψ_k : $(P \times (0, 1])^k \to X$ as follows: If τ is a j-simplex of $(P \times (0, 1])^k$, j < k, let $\psi_k | \tau = \psi_{k-1} | \tau$. If τ is a k-simplex of $(P \times (0, 1])^k$, we note that $\dim(\psi_{k-1}(\text{bdry }\tau)) < 3\delta_{m_T + n_T - (k-1)}$. If $k \neq 1$, this is true by the inductive hypothesis since if $\tau' < \tau$, $\dim(\psi_{k-1}(\tau')) < \delta_{m_T' + n_{T'} - (k-1)} < \delta_{m_T + n_T - (k-1)}$. (Remember, if $\tau' < \tau$, then $m_{\tau'} \ge m_{\tau'}$ and $n_{\tau'} \ge n_{\tau'}$.) In the special case k = 1, suppose $\tau = \langle \tau', \tau'' \rangle$. Then

$$\begin{split} \operatorname{diam} (\psi_{k-1}(\mathrm{bdry}\ r)) &= \rho(\psi_0(r'),\,\psi_0(r'')) \\ &\leq \rho(\psi_0(r'),\,f(\pi_1(r'))) + \rho(f(\pi_1(r')),\,f(\pi_1(r''))) + \rho(f(\pi_1(r'')),\,\psi_0(r'')) \\ &< \delta_{m_{r'}+n_{r'}} + \operatorname{diam} (f(\pi_1(r))) + \delta_{m_{r''}+n_{r''}} \\ &< \delta_{m_{r}+n_{r}} + \delta_{m_{r}+n_{r}} + \delta_{m_{r}+n_{r}} = 3\delta_{m_{r}+n_{r}}. \end{split}$$

In either case, $\psi_k | \text{bdry } \tau = \psi_{k-1} | \text{bdry } \tau$ can be extended to a map, $\psi_k | \tau$, in such a way that $\psi_k(\tau)$ is a subset of X of diameter less than $\delta_{m_T + n_T - (k-1) - 1} = \delta_{m_T + n_T - k}$. We have shown that ψ_k satisfies the inductive hypothesis.

Then define $\psi \colon P \times (0, 1] \to X$ by $\psi(p, t) = \lim_{j \to \infty} \psi_j(p, t)$. Finally define $\phi \colon P \times [0, 1] \to X$ by

$$\phi(p, t) = \psi(p, t), \quad \text{if } t \neq 0,$$
$$= f(p), \quad \text{if } t = 0.$$

For $t \neq 0$, local continuity is assured since $P \times (0, 1]$ is locally finite. If $(p, t) \in P \times (0, 1]$ and t < 1/n, let σ be a simplex containing (p, t) and suppose dim $\sigma = s$. The diameter of $\phi(\sigma)$ is less than $\delta_{m_{\sigma} + n_{\sigma} - s}$ by property (c) of the inductive statement. But, $s \leq m_{\sigma}$ and $n_{\sigma} \geq n$; hence diam $(\phi(\sigma)) < \delta_{n_{\sigma}} < \delta_{n}$. Also, if σ' is a vertex of σ , $\rho(f(\pi_{1}(\sigma')), \phi(\sigma')) < \delta_{n_{\sigma} + m_{\sigma}} < \delta_{n}$. Therefore

$$\rho(\phi(p, t), \phi(p, 0)) \le \rho(\phi(p, t), \phi(\sigma')) + \rho(\phi(\sigma'), f(\pi_1(\sigma'))) + \rho(f(\pi_1(\sigma')), f(p))$$

$$< 3\delta_n < 3(1/3n) = 1/n.$$

We have thereby shown that ϕ is continuous.

Finally, if (p, t) is any element of $P \times (0, 1]$, $\rho(\phi(p, t), f(p)) = \rho(\phi(p, t), \phi(p, 0))$ $< 3\delta_1 < \delta$.

Proposition 4.2. Let γ be a metric space and X be a uniformly locally contractible subset of γ . Let $\delta > 0$ be given and let $f: A \to \overline{X}$ be a map of an arbitrary ANR, A, into \overline{X} . Then given $\delta > 0$, there exists a map $\psi: A \times I \to \overline{X}$ so that for each $a \in A$:

- (a) $\psi(a, 0) = f(a)$;
- (b) $\psi(a, 1) \in X$;
- (c) $d(f(a), \psi(a, t)) < \delta$ for all $t \in I$.

Proof. Choose a cover, \mathcal{B} , of A with the property that if $B \in \mathcal{B}$, then diam f(B) is less than $\delta/2$.

Since A is an ANR, by a theorem of Hanner [11], there are a locally finite polyhedron P, maps $g: A \to P$ and $w: P \to A$ and a homotopy $H: A \times I \to A$ such that H(a, 0) = a, H(a, 1) = wg(a) and for each $a \in A$, $H(a, I) \subset B$, for some $B \in \mathcal{B}$.

By Proposition 4.1, there exists a homotopy $\phi: P \times I \to \overline{X}$ such that $\phi(p, 0) = fw(p), \phi(p, 1) \in X$ and $d(fw(p), \phi(p, t)) < \delta/2$. Define $\psi: A \times I \to X$ by

$$\psi(a, t) = f(H(a, 2t)), \qquad 0 \le t \le \frac{1}{2},$$

= $\phi(g(a), 2t - 1), \qquad \frac{1}{2} \le t \le 1.$

Note that ψ is continuous, since $f(H(a, 1)) = fwg(a) = \phi(g(a), 0)$. Also, $\psi(a, 0) = f(H(a, 0)) = f(a)$ and $\psi(a, 1) = \phi(g(a), 1) \in X$. By the definition of H, if $0 \le t \le \frac{1}{2}$, then $d(\psi(a, 0), \psi(a, t)) < \delta/2$ and by the definition of ϕ , if $\frac{1}{2} \le t \le 1$, then $d(\psi(a, \frac{1}{2}), \psi(a, t)) < \delta/2$.

Proposition 4.3. Let Y be a metric space and X be a uniformly locally contractible subset of Y. Given $\epsilon > 0$, there is a $\delta > 0$ such that if $y \in \overline{X}$ and $f: A \to N_{\delta}(y) \cap \overline{X}$ is a map of an arbitrary ANR, A, into $N_{\delta}(y) \cap \overline{X}$, then there is a map $G: A \times I \to N_{\epsilon}(y) \cap \overline{X}$ such that for all $a \in A$, G(a, 0) = f(a) and G(a, 1) = y.

Proof. Let $\epsilon > 0$ be given and choose $\delta > 0$ small enough so that there exists a homotopy $H:(N_{2\delta}(y)\cap X)\times I \to N_{\epsilon}(y)\cap \overline{X}$ such that H(x,0)=x and H(x,1)=y, for all $x\in N_{2\delta}(y)\cap X$. Now suppose A is an arbitrary ANR and $f\colon A\to N_{\delta}(y)\cap \overline{X}$ is given. We will make use of the map ψ defined in Proposition 4.2 to define $G\colon A\times I\to N_{\epsilon}(y)$.

Let

$$G(a, t) = \psi(a, 2t),$$
 $0 \le t \le \frac{1}{2},$
= $H(\psi(a, 1), 2t - 1),$ $\frac{1}{2} < t \le 1.$

Then G is continuous, maps $A \times I$ into $N_{\epsilon}(y) \cap \overline{X}$, $G(a, 0) = \psi(a, 0) = f(a)$ for all $a \in A$ and $G(a, 1) = H(\phi(a, 1), 1) = y$ for all $a \in A$.

As mentioned in the introduction, if M is a compact manifold, Černavskii [6] and Edwards-Kirby [7] have shown that H(M) and $H_{\partial}(M)$ are locally contractible spaces. Using the fact that if f, g, b are arbitrary elements of H(M) then $\rho(f,g) = \rho(fb^{-1},gb^{-1})$, it is trivial to show that H(M) and $H_{\partial}(M)$ are uniformly locally contractible. Therefore, Propositions 4.1, 4.2, and 4.3 hold where X is replaced by H(M) (or $H_{\partial}(M)$) and X by $\overline{H}(M)$ (or $\overline{H_{\partial}}(M)$). A space Z is said to be weakly locally contractible at $z \in Z$ if given any open set U containing z, there exists an open set V with $z \in V \subset U$ such that if P is any locally finite polyhedron and $f: P \to V$ any mapping, then there is a map $G: P \times I \to U$ such that G(p, 0) = f(p) and G(p, 1) = z for all $p \in P$. To indicate our partial solutions to the problems discussed at the beginning of this section we will restate some of the results of the preceding propositions in the following theorem:

Theorem 4.4. Let M be a compact manifold.

- (i) Given $\delta > 0$ and a map $F: A \to \overline{H}(M)$ of an ANR, A, into $\overline{H}(M)$, then there exists a continuous function $\phi_{\delta}: A \to H(M)$ with the property that $\rho(F(a), \phi_{\delta}(a)) < \delta$, for all $a \in A$. (This statement also holds if $\overline{H}(M)$ is replaced by $\overline{H}_{\delta}(M)$ and H(M) by $\overline{H}_{\delta}(M)$.)
 - (ii) $\overline{H}(M)$ and $\overline{H}_{\partial}(M)$ are weakly locally contractible.

A closed set K of a space X is called Z-set if for any nonempty homotopically trivial open set U in X, U-K is nonempty and homotopically trivial. R. D. Anderson [2] has shown that if $\{Z_i\}_{i>0}$ is a countable collection of Z-sets in l_2 , then $l_2-\bigcup_{i>0}N_i$ is homeomorphic to l_2 .

Proposition 4.5. If M is a compact manifold and $\overline{H}(M)$ is locally homeomorphic to l_2 , then H(M) is locally homeomorphic to l_2 .

Proof. Suppose N is a neighborhood of 1_M in $\overline{H}(M)$ that is homeomorphic to l_2 . We will show that $N \cap H(M)$ is homeomorphic to l_2 , thereby demonstrating the proposition.

For each positive integer i, let $Z_i = \{f \in N | \text{ there exists } x \in M \text{ with diam } f^{-1}(x) \geq 1/i\}$. Now, $N \cap H(M) = N - \bigcup_{i>0} Z_i$. So to show that $N \cap H(M)$ is homeomorphic to l_2 it suffices, by Anderson's theorem, to prove that for each i, Z_i is a Z-set. By standard arguments (cf., [14, p. 57]), Z_i is a closed (rel N) subset of N. Suppose U is a nonempty homotopically trivial open subset of N and let $f: S^{n-1} \to U - Z_i$ be given. Then choose a map $g: B^n \to U$ so that $g|S^{n-1} = f$. By Proposition 4.1 (applied to the case where X = H(M), $P = B^n$ and $\delta = \rho(g(B^n), U)$) there exists a map $\phi: B^n \times I \to U$ such that, for each $w \in B^n$, $\phi(w, t) \in H(M)$ if $t \neq 1$ and $\phi(w, 1) = g(w)$. Now label the points of B^n radially so that $B^n = \{tx | x \in S^{n-1}, 0 \leq t \leq 1\}$. Define $F: B^n \to U - Z_i$ by $F(tx) = \phi(tx, t)$. Note that $F|S^{n-1} = f$ and for each t < 1, $F(tx) = \phi(tx, t) \in H(M) \cap U \subset U - Z_i$.

5. In this section we show that if M^2 is a compact 2-manifold, then $\overline{H}_{\partial}(M^2)$ is locally contractible. Lemma 5.1 will be proven using a slight modification of the lifting process of Edwards-Kirby (and is valid in all dimensions). We then make use of the canonical approximation result for $\overline{H}_{\partial}(B^2)$ (Theorem 3.2) to show that $\overline{H}_{\partial}(M^2)$ is locally contractible.

If U is a subset of a manifold M, a proper imbedding of U into M is an imbedding $b: U \to M$ such that $b^{-1}(\partial M) = U \cap \partial M$. If C and U are compact subsets of M with $C \subset U$, let I(U, C; M) denote the set of proper imbeddings of U into M which are the identity when restricted to C. Let $\overline{I}(U, C; M)$ denote the set of all mappings of U into M which can be approximated arbitrarily closely by elements of I(U, C; M).

The statement of Lemma 5.1 corresponds to that of Lemma 4.1 of [7] except that in the situation under consideration it is not possible to obtain a homotopy by using the Alexander isotopy as in the Edwards-Kirby paper. (The inversion devise of Siebenmann (see [20, Main Idea]) was developed to handle a similar situation and is valid in all dimensions. Unfortunately, it also does not lead to the desired homotopy.) We are, however, able to obtain a homotopy for the 2-manifold case (Proposition 5.3).

We have omitted the details of the proof of Lemma 5.1 in those places where the argument parallels that of [7].

Lemma 5.1. Let positive numbers a, b, δ be given with $1 < a < b \le 2$. Then there exists a positive number $\epsilon_{(a,b,\delta)} \le \delta$ so that if

$$\overline{I}_{(a,b,\delta)} = \{ f \in \overline{I}(B^k \times 4B^n, \partial B^k \times 4B^n; B^k \times R^n) | \\
\rho(f|B^k \times ((a+b)/2)B^n, 1_{B^k \times ((a+b)/2)B^n}) < \epsilon_{(a,b,\delta)} \}$$

then there exists a continuous function

$$\phi_{(a,b,\delta)}: \overline{I}_{(a,b,\delta)} \to \overline{I}(D^k - 4B^n, \partial B^k \times 4B^n; B^k \times R^n)$$

such that for all $f \in \overline{I}_{(a,b,\delta)}$:

(1)
$$\phi_{(a,b,\delta)}(f)|B^{k}\times(4B^{n}-bB^{n})=1_{B^{k}\times(4B^{n}-bB^{n})};$$

(2)
$$\phi_{(a,b,\delta)}(f)|B^k \times aB^n = f|B^k \times aB^n;$$

(3)
$$\rho(\phi_{(a,b,\delta)}(f), 1_{Bk\times 4B^n}) < \delta/2.$$

Proof. As in the proof of Lemma 4.1 of [7] it suffices to show that there exists an $\epsilon'_{(a,b,\delta)} > 0$ and a map $\phi: \overline{I}'_{(a,b,\delta)} \to \overline{I}(B^k \times 4B^n, \partial B^k \times 4B^n; B^k \times R^n)$ satisfying conditions (1)–(3), where

$$\overline{I}_{(a,b,\delta)}^{\prime} = \{ f \in \overline{I}(B^k \times 4B^n, (\partial B^k \times 4B^n) \cup ([\delta/16, 1]B^k \times 3B^n); B^k \times R^n) |$$

$$\rho(f|B^{k}\times((a+b)/2)B^{n},\ 1_{B^{k}\times((a+b)/2)B^{n}})<\epsilon'_{(a,b,\delta)}\}$$

plays the role of $\overline{I}_{(a,b,\delta)}$.

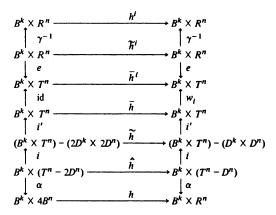
We shall produce such a map ϕ by assigning to each pair (b, i), where $b \in \overline{I}'_{(a,b,\delta)} \cap I(B^k \times 4B^n, (\partial B^k \times 4B^n) \cup ([\delta/16, 1]B^k \times 3B^n); \ B^k \times R^n) = \overline{I}'_{(a,b,\delta)} \cap I$ and i is a positive integer, an imbedding $b^i : B^k \times 4B^n \to B^k \times R^n$ in such a way that:

- (i) $b^i|B^k \times aB^n = b|B^k \times aB^n$;
- (ii) $b^i|(\partial B^k \times 4B^n) \cup B^k \times (4B^n bB^n) = 1_{(\partial B^k \times 4B^n) \cup B^k \times (4B^n bB^n)};$
- (iii) given $\eta > 0$ there exists $\delta > 0$ and an integer N such that if i, j > N and $d(b(x), g(x)) < \delta$ for all $x \in B^k \times ((a+b)/2) B^n$, then $d(b^i(x), g^j(x)) < \eta$ for all $x \in B^k \times 4B^n$;
 - (iv) if $b|B^k \times ((a+b)/2)B^n = 1_{B^k \times ((a+b)/2)B^n}$, then $\rho(b^i, 1_{B^k \times 4B^n}) < \delta/4$.

The construction of a collection of such imbeddings would complete the proof of Lemma 5.1 as the following argument indicates: Let $f \in \overline{I}'_{(a,b,\delta)}$ and choose a sequence of elements of $\overline{I}'_{(a,b,\delta)} \cap I$, $\{b_i\}$, which converges to f. Then define $\phi(f)$ to be $\lim_{i\to\infty}b_i^i$. By property (i), $\phi(f)|B^k\times aB^n=f|B^k\times aB^n$ since for any $x\in B^k\times aB^n$, $b_i^i(x)=b_i(x)$ and $\{b_i(x)\}$ converges to f(x). Similarly, property (ii) assures that $\phi(f)|(\partial B^k\times 4B^n)\cup B^k\times (4B^n-bB^n)$ is the identity map. Property (iii) guarantees that ϕ is well defined (independent of the choice of the sequence $\{b_i\}$), $\phi(f)$ is an element of $\overline{I}(B^k\times 4B^n,\partial B^k\times 4B^n;B^k\times R^n)$, and that ϕ is continuous. Property (iv) guarantees that if $f|B^k\times ((a+b)/2)B^n=$

 $1_{B^{k}\times((a+b)/2)B^{n}}$, then $\rho(\phi(f), 1_{B^{k}\times 4B^{n}}) \leq \delta/4$. Hence, we can choose $\epsilon'_{(a,b,\delta)}$ small enough (making use of the continuity of ϕ) and thereby redefine $\overline{I}'_{(a,b,\delta)}$ so that $\rho(\phi(f), 1_{B^{k}\times 4B^{n}}) < \delta/2$ for all $f \in \overline{I}'_{(a,b,\delta)}$.

Given a pair (b, i), we shall make use of a modification of the lifting diagram of [7] to obtain the map b^i .



Let T^n denote the n-fold product of S^1 and identify an n-cell in T^n with $2B^n$. Let $\overline{e} \colon R^n \to T^n$ be a covering projection such that $\overline{e} \mid 2B^n$ is the identity and let $e \colon B^k \times R^n \to B^k \times T^n$ be equal to $\operatorname{id} \times \overline{e}$. Let $D^n, 2D^n, 3D^n, 4D^n$ be concentric n-cells in $T^n - 2B^n$ such that $jD^n \subset \operatorname{Int}(j+1)D^n$ for j=1, 2, 3. Also let $D^k, 2D^k, 3D^k, 4D^k$ be concentric k-cells in $\operatorname{Int} B^k$ such that $\delta/16B^k \subset D^k$ and $jD^k \subset \operatorname{Int}(j+1)D^k$ for j=1, 2, 3. In addition, let $4D^n$ and $4D^k$ be chosen small enough so that the diameter of each component of $e^{-1}(4D^k \times 4D^n)$ is less than $\delta/4$. Then let $\overline{a} \colon T^n - D^n \to \operatorname{Int}((a+b)/2)B^n$ be a fixed immersion with the property that \overline{a} restricted to $((3a+b)/4)B^n$ is the identity [17]. We shall choose $\epsilon'_{(a,b,\delta)}$ small enough so that $b(B^k \times aB^n) \subset B^k \times ((3a+b)/4)B^n$ for all $b \in \overline{I}'_{(a,b,\delta)} \cap I$. Let a denote the product immersion $\operatorname{id} \times \overline{a} \colon B^k \times (T^n - D^n) \to B^k \times \operatorname{Int}((a+b)/2)B^n$. If $\epsilon'_{(a,b,\delta)}$ is chosen small enough, for each $b \in \overline{I}'_{(a,b,\delta)}$ of we can canonically choose an embedding $b \colon B^k \times (T^n - 2D^n) \to B^k \times (T^n - D^n)$ so that the lower square of the diagram commutes.

We note that $\hat{b}|(B^k-2D^k)\times (T^n-2D^n)$ is the identity map, since b is the identity on $[\delta/16,1]B^k\times 3B^n$ and $\delta/16B^k\subset D^k$. Therefore, to obtain b, we extend \hat{b} to be the identity on $(B^k-2D^k)\times T^n$. If $\epsilon'_{(a,b,\delta)}$ is chosen small enough, then if $x\in (3D^k\times 3D^n)-(2D^k\times 2D^n)$, then $\hat{b}(x)\in (3+1/2)D^k\times (3+1/2)D^n$. Consider the restriction of \hat{b} to $(B^k\times T^n)-(3D^k\times 3D^n)$. By the Schoenflies theorem [5] we can extend this restriction of \hat{b} to a homeomorphism $\hat{b}:B^k\times T^n\to B^k\times T^n$. This extension may not be canonical, i.e., if $\{\hat{b}_i\}$ is a Cauchy sequence of imbeddings, it does not follow that $\{\bar{b}_i\}$ is a Cauchy sequence of imbeddings.

Until this point the construction of the diagram is independent of i and varies only with the imbedding b. Consider $4D^k \times 4D^n$ to be $\{tx | x \in \partial (4D^k \times 4D^n), 0 \le t \le 4\}$. We then define the homeomorphism $w_i : B^k \times T^n \to B^k \times T^n$ which takes $(3 + 1/2)D^k \times (3 + 1/2)D^n$ to $(1/i)D^k \times (1/i)D^n$ by

(a)
$$w_i | B^k \times T^n - (4D^k \times 4D^n) = 1_{B^k \times T^n - (4D^k \times 4D^n)},$$

$$w_i(tx) = [(t - (3 + \frac{1}{2}))(2)(4 - \frac{1}{i}) + \frac{1}{i}]x, \quad 3 + \frac{1}{2} \le t \le 4,$$
(b)
$$= \frac{t}{(3 + \frac{1}{2})i}x, \quad 0 \le t \le 3 + \frac{1}{2}.$$

Then $\overline{b^i}$: $B^k \times T^n \to B^k \times T^n$ is defined by $\overline{b^i}(x) = w_i \overline{b}(x)$. Then $\overline{b^i}$ lifts to the homeomorphism b^i : $B^k \times R^n \to B^k \times R^n$. We note that b^i has the property that for some constant, M, $d(b^i)$, id) < M. Finally, let y: Int $(bB^k \times bB^n) \to R^k \times R^n$ be a homeomorphism which is a radial expansion and is the identity on $((3a+b)/4)B^k \times ((3a+b)/4)B^n$. We extend b^i by the identity to a homeomorphism b^i : $R^k \times R^n \to R^k \times R^n$ and define b^i : $B^k \times 4B^n \to B^k \times R^n$ by

$$b^{i}(x) = \gamma^{-1} \tilde{b}^{i} \gamma(x), \qquad x \in B^{k} \times bB^{n},$$

= x, \qquad x \in B^{k} \times (4B^{n} - bB^{n}).

Since $d(b^i, id) < M, b^i$ is continuous and therefore is a homeomorphism.

To check property (i) note that $ai^{-1}i'^{-1}w_i^{-1}ey(x) = x$ for all $x \in B^k \times ((3a+b)/4)B^n$, and that ϵ' was chosen small enough so that if $x \in B^k \times aB^n$, then $b(x) \in B^k \times ((3a+b)/4)B^n$. That property (ii) is satisfied was guaranteed by the choice of the homeomorphism γ .

Each stage in the construction of b^i is canonical except the use of the Schoenflies theorem. Therefore, to show that property (iii) is satisfied we must only show that given $\eta' > 0$, there exists $\delta' > 0$ and an integer N such that if $d(b(x), g(x)) < \delta'$ for all $x \in (B^k \times T^n) - (2D^k \times 2D^n)$ and if i, j > N, then $\rho(\overline{b}^i, \overline{g}^i) < \eta'$. Let N be chosen so that $2/N < \eta'$ and $\delta' < \eta'/16$. If $x \in 3D^k \times 3D^n$, then b(x) and g(x) are elements of $(3 + 1/2)D^k \times (3 + 1/2)D^n$ and hence $d(\overline{b}^i(x), \overline{g}^i(x)) < 2/N < \eta'$. If $x \notin 3D^k \times 3D^n$, $\overline{b}(x) = b(x)$ and $\overline{g}(x) = g(x)$ and hence $d(\overline{b}^i(x), \overline{g}^i(x)) = d(w_i\overline{b}(x), w_i\overline{g}(x)) < 16\delta' < \eta'$.

Finally, if $b|B^k \times ((a+b)/2)B^n = 1_{B^k \times ((a+b)/2)B^n}$ and i is any positive integer, $\overline{b^i}|(B^k \times T^n) - (4D^k \times 4D^n) = 1_{(B^k \times T^n) - (4D^k \times 4D^n)}$. But, $4D^k$ and $4D^n$ were chosen small enough so that the diameter of each component of $e^{-1}(4D^k \times 4D^n)$ is less than $\delta/4$. Therefore, $\rho(b^i, 1_{B^k \times 4B^n}) < \delta/4$.

Lemma 5.2. Let n+k=2. Let positive numbers a, b, δ be given with $1 < a < b \le 2$. Then there exists a positive number $\epsilon_{(a,b,\delta)} \le \delta$ so that if

$$\begin{split} \overline{I}_{(a,b,\delta)} &= \{ f \in \overline{I}(B^k \times 4B^n, \, \partial B^k \times 4B^n; \, B^k \times R^n) | \\ & \rho(f \mid B^k \times ((a+b)/2)B^n, \, 1_{B^k \times ((a+b)/2)B^n}) < \epsilon_{(a,b,\delta)} \} \end{split}$$

and $\eta > 0$ is given then there exists a map $G_{(a,b,\delta,\eta)}: \overline{I}_{(a,b,\delta)} \to H_{\partial}(B^k \times 4B^n)$ such that for all $f \in \overline{I}_{(a,b,\delta)}$:

- (1) $G_{(a,b,\delta,n)}(f)|B^k \times (4B^n bB^n) = 1_{B^k \times (4B^n bB^n)};$
- (2) $\rho(G_{(a,b,\delta,\eta)}(f)|B^k \times aB^n, f|B^k \times aB^n) < \eta;$
- (3) $\rho(G_{(a,b,\delta,\eta)}(f), 1_{B^k \times 4B^n}) < \delta.$

Proof. Let $\epsilon_{(a,b,\delta)}$ be the positive number obtained in Lemma 5.1. By Theorem 3.2 there is a mapping θ^1 : $\overline{H}_{\partial}(B^k \times bB^n) \to H_{\partial}(B^k \times 4B^n)$ such that $\theta^1(f)|B^k \times (4B^n - bB^n) = 1_{B^k \times (4B^n - bB^n)}$ and $\rho(\theta^1(f), f) < \min(\delta/2, \eta)$, for all $f \in \overline{H}_{\partial}(B^k \times bB^n)$. (This follows from applying Theorem 3.2 to the 2-ball $B^k \times bB^n$ and an arbitrary open cover of diameter less than $\min(\delta/2, \eta)$, obtaining a map of $\overline{H}_{\partial}(B^k \times bB^n)$ into $H_{\partial}(B^k \times bB^n)$ and then extending the elements of $H_{\partial}(B^k \times bB^n)$ by the identity on $B^k \times (4B^n - bB^n)$.) Define $G_{(a,b,\delta,\eta)}$: $\overline{I}_{(a,b,\delta)} \to H_{\partial}(B^k \times 4B^n)$ by

$$G_{(a,b,\delta,\eta)}(f) = \theta^{1}(\phi_{(a,b,\delta)}(f)|B^{k} \times bB^{n}),$$

where $\phi_{(a,b,\delta)}$ is the mapping obtained in Lemma 5.1.

It is easy to check that this map satisfies properties (1)-(3).

Proposition 5.3. If n + k = 2, then there exists a neighborhood Q of $1_{Bk \times 4B^n}$ in $\overline{I}(B^k \times 4B^n, \partial B^k \times 4B^n; B^k \times R^n)$ and a homotopy

$$\psi: Q \times [0, 1] \rightarrow \overline{I}(B^k \times 4B^n, \partial B^k \times 4B^n; B^k \times R^n)$$

such that $\psi(f, 0) = f$, $\psi(f, 1) \in \overline{I}(B^k \times 4B^n, (\partial B^k \times 4B^n) \cup (B^k \times B^n); B^k \times R^n)$, $\psi(f, t)|\partial(B^k \times 4B^n) = f|\partial(B^k \times 4B^n)$, for all $f \in Q$ and $t \in [0, 1]$.

Proof. For each positive integer, i, let $v_i = 1/2^i$. Choose the neighborhood Q small enough so that if $f \in Q$, then $\rho(f, 1_{Bk \times 4B^n}) < \epsilon_{(1+v_2, 1+v_1, v_4)}$.

Assume inductively that mappings f_1, \dots, f_j have been defined so that for each $i, 1 \le i \le j$, $f_i \in H_{\partial}(B^k \times 4B^n)$, f_i depends canonically on f_i , and

(1)
$$f_i|B^k \times (4B^n - (1+\nu_i)B^n) = 1_{B^k \times (4B^n - (1+\nu_i)B^n)},$$

(2)
$$\rho(f_i, 1_{B^k \times 4B^n}) < v_{i+3},$$

$$(3) \ \rho(f_i|B^k\times(1+v_{i+1})B^n,ff_1^{-1}\cdots f_{i-1}^{-1}|B^k\times(1+v_{i+1})B^n)<\epsilon_{(1+v_{i+2},1+v_{i+1};v_{i+4})},$$

(5)
$$\rho \left(f f_1^{-1} \cdots f_i^{-1} | B^k \times \left(\frac{1 + \nu_{i+2} + 1 + \nu_{i+1}}{2} \right) B^n, \right.$$

$$\left. \frac{1}{(B^k \times ((1 + \nu_{i+2} + 1 + \nu_{i+1}) \vee 2) B^n)} \right) < \epsilon_{(1 + \nu_{i+2}, 1 + \nu_{i+1}, \nu_{i+4})}.$$

Now applying Lemma 5.2, for each $f \in Q$, let f_{i+1} be defined by

$$f_{j+1} = G_{(1+\nu_{j+1}, 1+\nu_{j+1}, \nu_{j+4})}, \epsilon_{(1+\nu_{j+3}, 1+\nu_{j+2}, \nu_{j+5})} (ff_1^{-1} \cdots f_j^{-1}).$$

[The map G is well defined by Condition (5) of the inductive hypothesis—in the case j+1=1, Q was chosen small enough to meet this requirement.]

Conditions (1)-(4) of the inductive hypothesis are guaranteed by the application of Lemma 5.2. Condition (5) follows from (2) and (3): If $x \in B^k \times ((1+v_{j+3}+1+v_{j+2})/2)B^n$, then $f_{j+1}(x) \in B^k \times (1+v_{j+2})B^n$, since

$$\rho(f_{j+1}, 1_{B^k \times 4B^n}) < v_{j+4} \quad \text{and} \quad \frac{v_{j+3}}{2} + \frac{v_{j+2}}{2} + v_{j+4} = \frac{1}{2^{j+4}} + \frac{1}{2^{j+3}} + \frac{1}{2^{j+4}} = 1/2^{j+2} = v_{j+2}.$$

Therefore,

$$d(ff_1^{-1} \cdots f_{j+1}^{-1}(x), x) = d(ff_1^{-1} \cdots f_j^{-1}(f_{j+1}^{-1}(x)), f_{j+1}(f_{j+1}^{-1}(x)))$$

$$< \epsilon_{(1+\nu_{j+3}, 1+\nu_{j+2}, \nu_{j+5})},$$

Let $g = \lim_{j \to \infty} f f_1^{-1} \cdots f_j^{-1}$. Now, g is continuous since if $x \in B^k \times B^n$, then g(x) = x and if $x \in B^k \times [1 + v_{j+1}, 1 + v_j]B^n$, then $d(g(x), x) < 1/2^j$. (Assume $x \in B^k \times [1 \times v_{j+1}, 1 + v_j]B^n$. Note that $f_{j-1}^{-1} f_j^{-1}(x) \in B^k \times ((1 + v_j + 1 + v_{j-1})/2)B^n$. By property (1), $g(x) = f f_1^{-1} \cdots f_j^{-1}(x)$. Hence

$$\begin{split} d(g(x), x) &= d(f f_1^{-1} \cdots f_j^{-1}(x), x) \\ &\leq d(f f_1^{-1} \cdots f_{j-2}^{-1}(f_{j-1}^{-1}(f_j^{-1}(x))), f_{j-1}^{-1}(f_j^{-1}(x))) + d(f_{j-1}^{-1}(f_j^{-1}(x)), x) \\ &\leq \epsilon_{(1+\nu_j, 1+\nu_{j-1}, \nu_{j+2})} + (\nu_{j+3} + \nu_{j+2}) \\ &\leq \nu_{j+2} + \nu_{j+3} + \nu_{j+2} = 1/2^{j+2} + 1/2^{j+3} + 1/2^{j+2} < 1/2^{j}.) \end{split}$$

For each $j, j = 0, 1, \cdots$, we can define an Alexander homotopy $\psi_j : Q \times [0, 1] \to \overline{I}(B^k \times 4B^n, \partial B^k \times 4B^n; B^k \times R^n)$ by $\psi_j(f, t) = f f_1^{-1} \cdots f_{j-1}^{-1} A(f_j^{-1}, 1-t)$, where A is the Alexander isotopy defined in §3 with $B^k \times (1+v_j)B^n$ playing the role of B^n . Note that for each $t \in [0, 1]$, $\rho(\psi_j(f, t), g) < 1/2^{j-1}$. For if $x \in B^k \times 4B^n - (1+v_j)B^n$, $\psi_j(f, t)(x) = g(x)$ and if $x \in B^k \times (1+v_j)B^n$, $d(\psi_j(f, t)(x), g(x)) \le d(f_j(f, t)(x), g(x)) \le d(f_j(f, t)(x), g(x))$

 $d(\psi_j(f,t)(x),x) + d(g(x),x) < 1/2^j + 1/2^j = 1/2^{j-1}$, by the previous argument. Also, $\psi_j(f,0) = f(f_1^{-1} \cdots f_{j-1}^{-1})$ and $\psi_j(f,1) = f(f_1^{-1} \cdots f_j^{-1})$. We obtain the desired map $\psi: Q \times [0,1] \to \overline{I}(B^k \times 4B^n, \partial B^k \times 4B^n; B^k \times R^n)$ by composing the homotopies ψ_0, ψ_1, \cdots in the following manner:

$$\psi(f, t) = \psi_j\left(f, 2^{j+1}\left(t - \frac{2^j - 1}{2^j}\right)\right), \quad \frac{2^j - 1}{2^j} \le t \le \frac{2^{j+1} - 1}{2^{j+1}},$$

and letting $\psi(f, 1) = g$.

Theorem 5.4. If M^2 is a compact 2-manifold, then $\overline{H}_{\partial}(M^2)$ is locally contractible, and hence if $\partial M^2 = \phi$, $\overline{H}(M^2)$ is locally contractible.

Proof. Since $\overline{H}_{\partial}(M^2)$ is homogeneous, it suffices to check local contractibility at 1_{M^2} . But this follows from Proposition 5.3 exactly as in [7].

The only place the fact that n+k=2 is used is in the application of Theorem 3.2. Therefore, an affirmative answer to the following question would show that $\overline{H}_{\partial}(M^m)$ is locally contractible for any compact m-manifold, M^m : Given $\delta > 0$ does there exist a continuous mapping $\theta \colon \overline{H}_{\partial}(B^m) \to H_{\partial}(B^m)$ such that $\rho(f,\theta(f)) < \delta$, for all $f \in \overline{H}_{\partial}(B^m)$?

REFERENCES

- J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407.
- 2. R. D. Anderson, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64-67. MR 38 #6634.
 - 3. _____, Spaces of homeomorphisms of finite graphs (to appear).
- 4. S. Armentrout, Concerning cellular decompositions of 3-manifolds that yield 3-manifolds, Trans. Amer. Math. Soc. 133 (1968), 307-332. MR 37 #5859.
- 5. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 22 #8470b.
- 6. A. V. Černavskii, Local contractibility of the homeomorphism group of a manifold, Dokl. Akad. Nauk SSSR 182 (1968), 510-513 = Soviet Math. Dokl. 9 (1968), 1171-1174. MR 38 #5241.
- 7. R. D. Edwards and R. C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63-88. MR 44 #1032.
- 8. S. Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613-622. MR 4, 87.
- 9. R. Geoghegan, On spaces of homeomorphisms, embeddings, and functions. I, Topology 11 (1972), 159-177. MR 45 #4349.
 - 10. R. Geoghegan and D. W. Henderson, Stable function spaces (to appear).
- 11. O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Mat. 1 (1951), 389-408. MR 13, 266.

- 12. W. Haver, Homeomorphisms and UV⁶⁰ maps, Proc. First Conf. on Monotone Mappings and Open Mappings (SUNY at Binghamton, Binghamton, N. Y., 1970), State Univ. of New York at Binghamton, Binghamton, N. Y., 1971, pp. 112-121. MR 44 #1000.
- 13. ———, Monotone mappings of a two-disk onto itself which fix the disk's boundary can be canonically approximated by homeomorphisms, Pacific J. Math. (to appear).
- 14. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton Math. Series, vol. 4, Princeton Univ. Press, Princeton, N. J., 1941. MR 3, 312.
- 15. C. Lacher, Cell-like mappings. I, Pacific J. Math. 30 (1969), 717-731. MR 40 #4941.
- 16. ———, Cell-like mappings. II, Pacific J. Math. 35 (1970), 649-660. MR 43 #6936.
- 17. J. A. Lees, Immersions and surgeries of topological manifolds, Bull. Amer. Math. Soc. 75 (1969), 529-534. MR 39 #959.
- 18. W. K. Mason, The space H(M) of homeomorphisms of a compact manifold onto itself is homeomorphic to H(M) minus any 6-compact set, Amer. J. Math. 92 (1970), 541-551. MR 43 #6953.
- 19. ———, The space of all self-homeomorphisms of a two-cell which fix the cell's boundary in an absolute retract, Trans. Amer. Math. Soc. 161 (1971), 185-205. MR 44 #3283.
- 20. L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271-294. MR 45 #4431.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916