AN EXTREMAL LENGTH PROBLEM ON A BORDERED RIEMANN SURFACE(1)

BY

JEFFREY CLAYTON WIENER

ABSTRACT. Partition the contours of a compact bordered Riemann surface R' into four disjoint closed sets α_0 , α_1 , α_2 and γ with α_0 and α_1 nonempty. Let F denote the family of all locally rectifiable 1-chains in $R'-\gamma$ which join α_0 to α_1 . The extremal length problem on R' considers the existence of a real-valued harmonic function u on R' which is 0 on α_0 , 1 on α_1 , a constant on each component ν_k of α_2 with $\int \nu_k *du = 0$ and *du = 0 along γ such that the extremal length of F is equal to the reciprocal of the Dirichlet integral of u, that is, $\lambda(F) = D_{R'}(u)^{-1}$.

Let \overline{R} denote a bordered Riemann surface with a finite number of boundary components and S a compactification of \overline{R} with the property that $\partial \overline{R} \subset S$. We consider the extremal length problem on \overline{R} (as a subset of S) when α_0 , α_1 , and α_2 are relatively closed subarcs of $\partial \overline{R}$ and when α_0 , α_1 and α_2 are closed subsets of $\partial S = (S - \overline{R}) \cup \partial \overline{R}$.

Introduction. A. Marden and B. Rodin [5, pp. 237–269] extended the extremal length problem on a compact bordered Riemann surface by considering the Kerékjártó-Stoilöw compactification R^* of an open Riemann surface R. They partitioned the ideal boundary $\beta = R^* - R$ of R into four disjoint sets $\alpha_0, \alpha_1, \alpha_2$ and γ with α_0 and α_1 nonempty and α_0, α_1 and $\alpha_0 \cup \alpha_1 \cup \alpha_2$ closed in R^* . They showed that if the extremal length of the family F^* of all locally rectifiable 1-chains in $R^* - \gamma$ which join α_0 to α_1 is finite, then there exists a real-valued harmonic function u on R which is 0 on α_0 , 1 on α_1 , a constant on each component τ_k of α_2 with the constant chosen so that $\int_{\tau_k} {}^*du = 0$ and ${}^*du = 0$ along γ (in the sense of limits along curves tending to the ideal boundary) such that $\lambda(F^*) = D_R(u)^{-1}$.

Let \overline{R} denote a bordered Riemann surface with a finite number of boundary components and S a compactification of \overline{R} with the property that $\partial \overline{R} \subset S$ (see Theorem 4). Set $\beta = S - \overline{R}$ and $\partial S = \beta \cup \partial \overline{R}$. Partition $\partial \overline{R}$ into the four

Received by the editors December 4, 1973 and, in revised form, April 19, 1974.

AMS (MOS) subject classifications (1970). Primary 31A05, 31A15.

Key words and phrases. Extremal length, harmonic function, Kerékjártó-Stoilöw compactification, canonical exhaustion, double of a surface, regular exhaustion.

⁽¹⁾ The results in this paper were part of the author's doctoral dissertation which was written at Washington University, St. Louis, under the direction of Professor James A. Jenkins.

228 J. C. WIENER

sets α_0 , α_1 , α_2 and γ , where α_0 and α_1 are nonempty, α_0 , α_1 and α_2 are each composed of a finite number of relatively closed subarcs of $\partial \overline{R}$ and closed contours of \overline{R} , the closures on S of α_0 , α_1 and α_2 are pairwise disjoint and $\gamma = \partial S - (\alpha_0 \cup \alpha_1 \cup \alpha_2)$. Let F denote the family of all locally rectifiable 1-chains in $S - \gamma$ which join α_0 to α_1 . Theorem 5 solves the extremal length problem on \overline{R} .

Theorems 6 and 7 consider the extremal length problem on \overline{R} when α_0 , α_1 and α_2 are closed subsets of ∂S .

REMARK 1. Suppose that the closure on S of each component of $\alpha_0 \cup \alpha_1 \cup \alpha_2$ is a closed subset of \overline{R} . By considering the double of \overline{R} across γ and using [5] we can solve the extremal length problem on \overline{R} . For this reason throughout this paper we shall assume that this is not the case.

REMARK 2. Suppose that \overline{R} is any bordered Riemann surface and that the sets α_0 , α_1 and α_2 are chosen so that they intersect a finite number of contours of \overline{R} . By doubling \overline{R} across the remaining contours we obtain a bordered Riemann surface with a finite number of boundary components. Therefore, since we will only consider the case when $\alpha_0 \cup \alpha_1 \cup \alpha_2$ intersects a finite number of contours of \overline{R} , it suffices to consider the extremal length problem on a bordered Riemann surface with a finite number of boundary components.

1. Preliminaries. Throughout this paper we tacitly assume that all harmonic functions are real-valued and that all curves and chains are locally rectifiable.

Let \overline{R} denote a bordered Riemann surface with a finite number of boundary components and border $\partial \overline{R}$. Each component of $\partial \overline{R}$, called a contour of \overline{R} , can be classified as either type I or type II, where a contour of \overline{R} is said to be of type I if it is the homeomorphic image of a circle or type II if it is the homeomorphic image of the open unit interval.

Partition the contours of \overline{R} into four sets α_0 , α_1 , α_2 and γ , where α_0 and α_1 are nonempty. Define the family F of all locally rectifiable chains in $\overline{R} - \gamma$ joining α_0 to α_1 by $C \in F$ if and only if C is a continuous map from a union of closed intervals $[a_0, a_1] \cup [a_2, a_3] \cup \cdots \cup [a_{n-1}, a_n]$ into $\overline{R} - \gamma$ with $C(a_0) \in \alpha_0$, $C(a_n) \in \alpha_1$ and, for odd j < n, $C(a_j)$ and $C(a_{j+1})$ belong to the same component of α_2 .

Traditionally the elements of F are called curves.

Let $\rho |dz|$ denote a metric (linear density) on \overline{R} and H the family of all metrics $\rho |dz|$ on \overline{R} such that $L(F, \rho |dz|) = \inf_{c \in F} \int_c \rho |dz|$ and $A(\rho |dz|, \overline{R}) = \iint_{\overline{R}} \rho^2 dx dy$ are defined and not simultaneously 0 or $+\infty$. The least upper bound $\lambda(F)$ of $L^2(F, \rho |dz|)/A(\rho |dz|, \overline{R})$ over all $\rho |dz| \in H$ is called the extremal length of F. It is a conformal invariant ([2], [3], [4], [8] or [10]).

If F^* denotes the family of all curves on \overline{R} which separate α_0 and α_1 , then $\lambda(F^*)$ is called the conjugate extremal length of F. For the results in this paper $\lambda(F^*) = \lambda(F)^{-1}$ (see [8, pp. 124, 128]).

Let u denote a harmonic function on \overline{R} . Then $*du = -u_y dx + u_x dy$ is a linear differential on \overline{R} . We say that *du = 0 along a differentiable curve z(t) = x(t) + iy(t) if $-u_y x_t + u_x y_t = 0$ for all t and that the flux of u across z(t) is the integral of *du over z(t).

The following theorem will be needed (see [2, p. 147] or [8, p. 36]).

THEOREM 1. Let G be a subdomain of a Riemann surface R, and suppose that a harmonic function u_{Ω} , defined in G, is assigned to every sufficiently large regular subdomain Ω of R. Then, if $D_G(u_{\Omega} - u_{\Omega'}) \rightarrow 0$ as $\Omega, \Omega' \rightarrow R$, there exists a harmonic function u in G with the following properties:

- (i) $D_G(u_{\Omega} u) \rightarrow 0$ as $\Omega \rightarrow R$,
- (ii) $D_G(u_{\Omega}) \to D_G(u)$ as $\Omega \to R$,
- (iii) $u_{\Omega}(z) u_{\Omega}(z_0) \rightarrow u(z)$ as $\Omega \rightarrow R$.

In (iii), z_0 is an arbitrary point in G, fixed in advance, and the convergence is uniform on every compact subset of G.

2. Known results. Partition the contours of a compact bordered Riemann surface T into four distinct sets α_0 , α_1 , α_2 and γ with α_0 and α_1 non-empty. Further, if α_2 is nonempty, partition its contours into a finite number of distinct sets $\{\tau_k\}$.

Let u denote the unique harmonic function on T, see [2, p. 157], which is 0 on α_0 , 1 on α_1 , a constant on each part τ_k of α_2 with the constant chosen so that the flux of u across τ_k is zero and *du = 0 along γ . Let F denote the family of all curves in $T - \gamma$ which join α_0 to α_1 . The following result is known [5, pp. 250–251].

THEOREM 2.
$$\lambda(F) = D_T(u)^{-1}$$
.

Marden and Rodin [5] used the Kerékjártó-Stoilöw compactification of a Riemann surface to extend this result.

Let R be a Riemann surface and R^* its Kerékjártó-Stoilöw compactification [2, pp. 81–87]. Partition the ideal boundary of R, R^*-R , into four disjoint sets α_0 , α_1 , α_2 and γ with α_0 and α_1 nonempty and α_0 , α_1 and $\alpha_0 \cup \alpha_1 \cup \alpha_2$ closed in R^* . Let F^* denote the family of curves in $R^*-\gamma$ which join α_0 to α_1 . Marden and Rodin proved that if $\lambda(F^*) < \infty$, then there is a harmonic function u on R which is 0 on α_0 , 1 on α_1 , a constant on each component τ_k of α_2 with the flux of u across τ_k equal to 0 and *tu = 0 along γ (in the sense of limits along curves tending to the ideal boundary) so that

THEOREM 3. $\lambda(F^*) = D_R(u)^{-1}$.

3. The compactification S. The compactification of \overline{R} that we will use to generalize Theorem 3 is obtained by modifying Ahlfors and Sario's construction of the Kerékjártó-Stoilöw compactification of an open Riemann surface [2, pp. 82–87].

Let T be a topological space. A set $\beta \subseteq T$ is said to be nonseparating on T if every domain $G \subseteq T$ remains connected after removal of all points in $G \cap \beta$.

For convenience denote by Q, with or without subscripts, any domain on \overline{R} which is not relatively compact, but has compact boundary. Note that Q is never void.

DEFINITION. An ideal boundary component of \overline{R} is a nonvoid collection q of sets Q which satisfy the following conditions: if $Q_0 \in q$ and $Q \supset Q_0$, then $Q \in q$; if $Q_1, Q_2 \in q$ there exists a $Q_3 \in q$ with $Q_3 \subset Q_1 \cap Q_2$; the intersection of all closures of $Q, Q \in q$, is empty.

The proof of the following theorem is analogous to that of Ahlfors and Sario [2, pp. 82-87] and shall be omitted.

THEOREM 4. There exists a unique compactification S of \overline{R} such that S is a locally connected Hausdorff space, $\beta = S - \overline{R}$ is totally disconnected and β is nonseparating on S.

Note that $\partial \overline{R}$ is a subset of S.

4. Pseudosymmetric exhaustion. In order to consider the possibility that $\alpha_0 \cup \alpha_1 \cup \alpha_2$ contains a component whose closure on S contains a point of $S - \overline{R}$ it will be necessary to construct a "nearly canonical" exhaustion $\{R_n\}$ of \overline{R} such that R_1 intersects each contour of \overline{R} .

Let T denote the union of all type II contours of \overline{R} . Suppose that T is nonempty. We modify Ahlfors and Sario's proof of the existence of an exhaustion of an open Riemann surface [2, pp. 144–145] to construct a "nearly canonical" exhaustion of \overline{R} .

Cover \overline{R} by a countable number of parameter discs and parameter half-discs V_{0n}, V'_{0n} , where $V_{0n} \subset \overline{R} - T$ and $V'_{0n} \cap T \neq 0$. Without loss of generality assume that each V'_{0j} intersects only one type II contour of \overline{R} , say T_j , and that T_1, \dots, T_q are the q distinct components of T.

Let Γ be a simple arc in $\overline{R} - \partial \overline{R}$ with $\Gamma \cap V'_{0j} \neq 0$ for $j = 1, \dots, q$. Assume that $V_{01}, \dots, V_{0m}, V'_{01}, \dots, V'_{0q}$ cover Γ and pass to the double $D(\overline{R})$ of \overline{R} at T.

Let Cl denote closure on $D(\overline{R})$. Following Ahlfors and Sario we construct a regular exhaustion $\{\text{Cl }W_k^*\}$ of $D(\overline{R})$ such that each component H_{kj} of Cl $W_{k+1}^* - W_k^*$ is a compact bordered Riemann surface with a finite number of

analytic Jordan boundary curves B_1, \dots, B_r on the boundary of Cl W_k^* and certain others on the boundary of Cl W_{k+1}^* .

For $m=1,2,\cdots,r-1$ join B_m and B_{m+1} by two distinct arcs bounding a narrow strip s_m so that $\operatorname{Cl} s_m \cap \operatorname{Cl} s_j = 0$ for $m \neq j$. Deleting $\bigcup s_m$ from H_{kj} we obtain a compact bordered Riemann surface H'_{kj} bounded by a piecewise analytic Jordan curve K_j and the boundary curves of H_{kj} in the boundary of $\operatorname{Cl} W_{k+1}^*$. There is a Jordan curve J_{kj} in H'_{kj} bounding with K_j a doubly-connected domain in H_{kj} [4, Lemma 8.1]. There is a Jordan curve Γ_{kj} in this domain which separates the boundary components of the domain. For each j add the subdomain of H_{kj} bounded by Γ_{kj} and B_1, \cdots, B_m as well as these curves to $\operatorname{Cl} W_k^*$ to obtain a compact bordered Riemann surface W_k . The exhaustion $\{W_k\}$ is canonical.

Set $R_k = W_k \cap \overline{R}$. Then $\{R_n\}$ is a sequence of compact bordered Riemann surfaces on \overline{R} with the following properties:

- (i) $\bigcup R_n = \overline{R}$, $R_n \subset R_{n+1} \subset \overline{R}$, $\partial \overline{R} T \subset \partial R_n$, and $\partial \overline{R} \cap t \neq 0$ for each component t of T;
- (ii) ∂R_n is composed of analytic Jordan curves, open analytic Jordan arcs in $\overline{R} \partial \overline{R}$ with end points on $\partial \overline{R}$ and subarcs of components of T;
- (iii) each component of $\overline{R} R_n$ is noncompact and its boundary consists of a single open analytic arc in $\overline{R} \partial \overline{R}$ with end points on $\partial \overline{R}$;
 - (iv) ∂R_n and T are orthogonal at their points of intersection.

The exhaustion $\{R_n\}$ of \overline{R} will be called a pseudosymmetric exhaustion of \overline{R} .

5. First result. We are ready to prove the following theorem.

Theorem 5. Let S denote the compactification of \overline{R} defined above. Suppose that α_0 , α_1 and α_2 are subsets of $\partial \overline{R}$ which satisfy the following conditions:

- (i) α_0 and α_1 are nonempty;
- (ii) α_0 , α_1 and α_2 are composed of a finite number of relatively closed arcs and full contours of \overline{R} ;
 - (iii) α_0 , α_1 and α_2 have pairwise disjoint closures on S.

Set $\beta=S-\overline{R}$, $\gamma=\beta\cup(\partial\overline{R}-(\alpha_0\cup\alpha_1\cup\alpha_2))$ and denote by F the family of all curves in $\overline{R}-\gamma$ which join α_0 to α_1 . There exists a harmonic function u on \overline{R} which is 0 on α_0 , 1 on α_1 , a constant on each component τ_k of α_2 with the constant chosen so that the flux of u across τ_k is 0 and *du=0 along γ such that $0<\lambda(F)=D_{\overline{R}}(u)^{-1}<\infty$.

A precise meaning for *du = 0 along $\gamma \cap \partial \overline{R}$ exists. On $\gamma - \partial \overline{R}$ the sense is of a limit along curves tending to each component of $\gamma - \partial \overline{R}$.

For the remainder of this paper Cl will represent the closure on S.

PROOF. Let $\{R_n\}$ denote a pseudosymmetric exhaustion of \overline{R} and δ a component of $\alpha_0 \cup \alpha_1 \cup \alpha_2$. If $\operatorname{Cl} \delta \subset \partial \overline{R}$, assume that $\delta \subset \partial R_1$. If not, let σ denote the type II contour of \overline{R} which intersects δ . If $\sigma - \delta \neq 0$, let f denote a homeomorphism of σ onto $\{t: 0 < t < 1\}$. There is a constant $b \ (0 < b < 1)$ such that $f^{-1}(\{t: b \leq t < 1\}) = \delta \cap \sigma$ or $f^{-1}(\{t: 0 < t \leq b\})$ $= \delta \cap \sigma$. Set $\epsilon = \min(b, \frac{1}{2})$. Assume that $f^{-1}(\{t: b - \epsilon < t < b + \epsilon\}) \subset \partial R_1$.

Set $\alpha_{jn}=\alpha_j\cap \partial R_n$ (j=0,1) and (j=0,1) and (j=0,1) and (j=0,1) and (j=0,1) and (j=0,1). For each (j=0,1), let (j=0,1) denote the family of all curves in (j=0,1), which join (j=0,1) to (j=0,1) and let (j=0,1) and (j=0,1) are (j=0,1) and (j=0,1) an

There exists a finite collection of pairwise disjoint open analytic Jordan arcs $\{J_j\}_{j=1}^A$ in $\overline{R} - \partial \overline{R}$ with end points on $\partial \overline{R} \cap \gamma$ and analytic Jordan curves $\{J_j\}_{j=A+1}^B$ in $\overline{R} - \partial \overline{R}$ which, when taken together, separate $\alpha_0 \cup \alpha_2$ and α_1 . Suppose that J_j $(j=1,\cdots,B)$ separates the subset $\alpha_1(j)$ of α_1 and $\alpha_0 \cup \alpha_2 \cup (\alpha_1 - \alpha_1(j))$.

For $j=1,\cdots,A$ let p_{1j} and p_{2j} denote the end points of J_j on $\partial \overline{R} \cap \gamma$. Take two open connected sets U_{1j} and U_{2j} on $\partial \overline{R}$ (relative to $\partial \overline{R}$) with $p_{1j} \in U_{1j} \subset \partial \overline{R} \cap \gamma$ and $p_{2j} \in U_{2j} \subset \partial \overline{R} \cap \gamma$. There exists an open analytic Jordan arc L_j in $\overline{R} - \partial \overline{R}$ with end points q_{1j} on $U_{1j} - \{p_{1j}\}$ and q_{2j} on $U_{2j} - \{p_{2j}\}$ so that L_j separates $\alpha_1(j)$ and J_j and so that J_j , the arc on U_{1j} joining p_{1j} and q_{1j} , the arc on U_{2j} joining p_{2j} and q_{2j} , and L_j bound a simply-connected domain D_j on $\overline{R} - \partial \overline{R}$; we can assume that the domains D_1, \cdots, D_A have pairwise disjoint closures on \overline{R} . Hence, there is a conformal mapping f_j of $Cl\ D_j$ onto $\{z=x+iy\colon\ 0\leqslant x\leqslant a_j$ and $0\leqslant y\leqslant b_j\}$ so that $f_j(p_{1j})=0$, $f_j(p_{2j})=ib_j$, $f_j(q_{1j})=a_j$ and $f_j(q_{2j})=a_j+ib_j$ $(0\leqslant a_j,b_j)$.

Considering a canonical exhaustion of $\overline{R} - \partial \overline{R}$ we conclude that for each k = A + 1, $\cdot \cdot \cdot$, B there is an analytic Jordan curve L_k in $\overline{R} - \partial \overline{R}$ such that L_k separates $\alpha_1(k)$ and J_k , and such that J_k and L_k bound a doubly-connected domain D_k on $\overline{R} - \partial \overline{R}$. Let f_k denote a conformal mapping of $\operatorname{Cl} D_k$ onto $\{z\colon 1 < |z| < d_k\}$.

We can assume that D_1, \dots, D_B have pairwise disjoint closures on \overline{R} . Let G denote the family of all curves in $D = \bigcup_{j=1}^B D_j$ defined by $l \in G$ if for some $k, l \subset \operatorname{Cl} D_k - \gamma$ and l joins L_k to J_k . Since each curve in F contains a curve in $G, \lambda(G) \leq \lambda(F)$. Also, $\lambda(G) > 0$. Thus, $\lambda(F) > 0$ and the sequence $\{D_{R_n}(u_n)\}$ converges to a finite limit.

Take n < m. Then

$$D_{R_n}(u_m, u_n) = \int_{\partial R_n} u_m * du_n = \int_{\alpha_{1n}} * du_n = D_{R_n}(u_n).$$

Hence,

$$0 < D_{R_n}(u_m - u_n) = D_{R_n}(u_m) - D_{R_n}(u_n) < D_{R_m}(u_m) - D_{R_n}(u_n)$$
(1)
for $n < m$.

Therefore,

$$D_{R_n}(u_m - u_n) \longrightarrow 0$$
 as $m, n \longrightarrow \infty$ $(m \ge n)$.

Let Q_N denote the double of R_N at $\alpha_{0N} - \operatorname{Cl} \gamma_N$. Extend each u_n , $n \ge N$, to a harmonic function u'_n on Q_N [2, p. 129]. From Theorem 1, with $z_0 \in \alpha_{0N} - \operatorname{Cl} \gamma_N$, there exists a harmonic function v_N on Q_N with the following properties:

(i)
$$D_{Q_N}(u'_n - v_N) \longrightarrow 0$$
 as $n \longrightarrow \infty$,

(ii)
$$D_{Q_N}(u'_n) \to D_{Q_N}(v_N)$$
 as $n \to \infty$,

(iii)
$$u'_n(z) \rightarrow v_N(z)$$
 for $z \in Q_N$,

and the convergence is uniform on every compact subset of Q_N .

It is easily seen after a similar reflection across $\gamma \cup \gamma^*$ (γ^* is the reflection of γ in the first doubling process) that ${}^*dv_N = 0$ along $\gamma \cup \gamma^*$.

From (iii) it follows that v_N is the restriction to Q_N of a harmonic function v on Q, the double of \overline{R} across $\alpha_0 - \operatorname{Cl} \gamma$.

We must show that

$$\lim D_{Q_N}(u'_N) = D_Q(v) = \lim D_{Q_N}(v_N).$$

This follows, since for $n \ge N$, $D_{Q_n}(u'_n) \ge D_{Q_N}(u'_n)$ and $D_{Q_N}(u'_N) < D_{Q_N}(u'_n)$ For the harmonic function $u = v | \overline{R}$,

- (i) $u|R_N=v_N|R_N,$
- (ii) $D_{R_n}(u_n u) \rightarrow 0$ as $n \rightarrow \infty$,
- (iii) $D_{R_n}(u_n) \to D_{\overline{R}}(u)$ as $n \to \infty$,
- (iv) $^*du = 0$ along γ ,
- (v) $u_n(z) \rightarrow u(z)$ for $n \rightarrow \infty$ and $z \in \overline{R}$,

and the convergence is uniform on every compact subset of \vec{R} .

6. Second result. Theorem 6 will show that if α_0 , α_1 and α_2 are certain closed subsets of ∂S , then the conclusion of Theorem 5 is valid.

THEOREM 6. Let S denote the compactification of \overline{R} defined above. Set $\beta = S - \overline{R}$ and $\partial S = \beta \cup \partial \overline{R}$. Suppose that α_0 , α_1 and α_2 are closed subsets of ∂S which satisfy the following conditions:

- (6.1) α_0 and α_1 each contain an arc on ∂S or a type I contour of \overline{R} ;
- (6.2) α_0 , α_1 and α_2 are composed of points of β , type I contours of \overline{R} and a finite number of arcs on ∂S ;
 - (6.3) α_0 , α_1 and α_2 are pairwise disjoint;
- (6.4) For each $\beta' \in (\alpha_0 \cup \alpha_1 \cup \alpha_2) \cap (Cl(\partial \overline{R}) \partial \overline{R})$ there is a neighborhood of β' on S which fails to meet $\beta (\alpha_0 \cup \alpha_1 \cup \alpha_2)$.

Set $\gamma = \partial S - (\alpha_0 \cup \alpha_1 \cup \alpha_2)$ and denote by F the family of all curves in $S - \gamma$ which join α_0 to α_1 . Let $\beta^* = (\operatorname{Cl}(\partial \overline{R}) - (\alpha_0 \cup \alpha_1 \cup \alpha_2 \cup \partial \overline{R}))$. There exists a continuous function u on $S - \beta^*$ which is harmonic on \overline{R} , 0 on α_0 , 1 on α_1 , a constant on each component v_j of α_2 with the flux of u across v_j equal to 0 and *du = 0 along γ such that $0 < \lambda(F) = D_{\overline{R}}(u)^{-1} < \infty$.

The conditions imposed upon $u|(S-\overline{R})$ are understood to be as limits in a sense to be made precise below.

PROOF. Without loss of generality assume that $\alpha_0 \cup \alpha_1 \cup \alpha_2$ contains a component δ' with $\delta' - \beta \neq 0$ and $\delta' \cap \beta \neq 0$. Let $\{R_n\}$ denote a pseudosymmetric exhaustion of \overline{R} and δ any component of $\alpha_0 \cup \alpha_1 \cup \alpha_2$ that intersects $\partial \overline{R}$. If $\delta \subset \partial \overline{R}$, assume that $\delta \subset \partial R_1$. If not, as we traverse $\partial \overline{R}$ in the positive sense we traverse the type II contours $\sigma_1, \dots, \sigma_q$ of \overline{R} which intersect δ .

Consider the case where $\sigma_j - \delta \neq 0$ for j = 1 or q. Without loss of generality assume that $\sigma_q - \delta \neq 0$ and let f_k (k = 1 and q) denote a homeomorphism of σ_k onto $\{t \colon 0 < t < 1\}$. If $\sigma_1 - \delta \neq 0$, there is a constant a_1 $(0 < a_1 < 1)$ such that $f_1^{-1}(\{t \colon a_1 \leq t < 1\}) = \delta \cap \sigma_1$; if not, set $a_1 = \frac{1}{2}$. Let a_q $(0 < a_q < 1)$ denote the constant such that $f_q^{-1}(\{t \colon 0 < t \leq a_q\}) = \delta \cap \sigma_q$ and set $\epsilon = \min(a_1, 1 - a_1, a_q, 1 - a_q)$. Assume that $f_k^{-1}(\{t \colon a_k - \epsilon < t < a_k + \epsilon\}) \subset \partial R_1$ for k = 1 and q.

Set $\Gamma_n=\operatorname{Cl}(\partial R_n-\partial \overline{R})$. Each component Γ'_n of $\Gamma_n-\partial \overline{R}$ is either an open analytic Jordan arc in $\overline{R}-\partial \overline{R}$ with end points on two distinct type II contours of \overline{R} or a type I contour of R_n in $\overline{R}-\partial \overline{R}$. If Γ'_n is a type I contour of R_n , let $C'(\Gamma'_n)$ denote the component of $S-\Gamma'_n$ with $C'(\Gamma'_n)\cap \partial \overline{R}=0$. Without loss of generality assume that each $C'(\Gamma'_n)$ intersects at most one of the following sets: $\alpha_0, \alpha_1, \alpha_2$. If $C'(\Gamma'_n)$ intersects α_k (k=0,1 or 2) write $C(\Gamma'_n, k)$ for $C'(\Gamma'_n)$, otherwise $C(\Gamma'_n)$.

Suppose that Γ'_n is not a type I contour of R_n and that our exhaustion satisfies the following remark, which is valid for some subsequence; let $A'(\Gamma'_n)$ denote the component of $S - \Gamma'_n$ which satisfies either $A'(\Gamma'_n) \cap (\alpha_0 \cup \alpha_1 \cup \alpha_2) \cap \operatorname{Cl}(\partial \overline{R}) = 0$ or for some k = 0, 1 or $2, A'(\Gamma'_n) \cap \alpha_k \cap \operatorname{Cl}(\partial \overline{R}) \neq 0$ and $A'(\Gamma'_n) \cap \alpha_j \cap \operatorname{Cl}(\partial \overline{R}) = 0$ for $j \neq k$. Write $A(\Gamma'_n, k)$ for $A(\Gamma'_n)$ if the latter occurs and $B(\Gamma'_n)$ if the former.

We can assume that $A(\Gamma'_n, k) \cap (\bigcup_{j=0}^2 \alpha_j - \alpha_k) = 0$ and $B(\Gamma'_n) \cap (\bigcup_{j=0}^2 \alpha_j) = 0$. Further, from (6.4), we can assume that each $A(\Gamma'_n, k)$ fails to meet $\gamma - \partial \overline{R}$.

We have associated with each component Γ'_n of Γ_n some $A(\Gamma'_n, k), B(\Gamma'_n)$, $C(\Gamma'_n)$ or $C(\Gamma'_n, k)$ domain on S. For each k=0,1 and 2 let $\Gamma_n(k)$ denote the union of all components Γ'_n of Γ_n which are associated with some $A(\Gamma'_n, k)$ domain and let $\Gamma_{Cn}(k)$ denote the union of all components Γ'_n of Γ_n which are associated with some $C(\Gamma'_n, k)$ domain. Take $n \ge j \ge 1$. Set $\Gamma_{Ajn}(k) = \{\Gamma' : \Gamma'$ is a component of $\Gamma_{Cn}(k)$ and $\Gamma' \subset A(\Gamma'_j, k)$ for some component Γ'_j of $\Gamma_j(k)$ and $\Gamma_{\gamma j} = \Gamma_j - \bigcup_{L=0}^2 \Gamma_j(L)$. Let $M_{\gamma j}$ denote the totality of all $B(\Gamma'_j), C(\Gamma'_j), C(\Gamma'_j, 0), C(\Gamma'_j, 1)$ and $C(\Gamma'_j, 2)$ domains, where Γ'_j is a component of $\Gamma_{\gamma j}$.

For k = 0.1 and 2 set

 $S_{jn}=R_n-M_{\gamma j}, \, \alpha_{kn}(A)=\alpha_k\cap\partial S_{jn}\cap\partial\overline{R} \ \ (=\alpha_k\cap\partial R_n\cap\partial\overline{R}), \, \alpha_{kjn}=\alpha_{kn}(A)\cup\Gamma_n(k)\cup\Gamma_{Cj}(k)\cup\Gamma_{Ajn}(k), \, \text{and}$

$$\gamma_{jn}=\partial S_{jn}-\bigcup_{L=0}^2\alpha_{Ljn}.$$

Set
$$T_j = S - M_{\gamma j}$$
, $\alpha_{kj} = (\alpha_k \cap T_j) \cup \Gamma_{Cj}(k)$ and

 $\gamma_j = (T_j \cap \gamma) \cup (\Gamma_{\gamma j} - \bigcup_{L=0}^2 \Gamma_{Cj}(L))$. In the sense of limits along curves tending to points of $\alpha_k \cap \beta \cap T_j$ and $\gamma \cap \beta \cap T_j$, $\alpha_{kj} = \lim_{n \to \infty} \alpha_{kjn}$, $\gamma_j = \lim_{n \to \infty} \gamma_{jn}$ and $T_j = \lim_{n \to \infty} S_{jn}$.

For fixed j, let F_{jn} denote the family of all curves in $S_{jn} - \gamma_{jn}$ which join α_{0jn} to α_{1jn} and let u_{jn} denote the harmonic function on the compact bordered Riemann surface S_{jn} satisfying Theorem 2. Let F_j denote the family of all curves in $T_j - \gamma_j$ which join α_{0j} to α_{1j} . Clearly,

$$\lambda(F_i) \ge \lambda(F_{in+1}) \ge \lambda(F_{in}) \ge \lambda(F_{i1}) > 0.$$

Also, since the family G_j of all curves in $T_j - (\beta \cup \gamma_j)$ which join $\alpha_{0j} - \beta$ to $\alpha_{1j} - \beta$ is a subset of F_j , from Theorem 5, $\lambda(F_j) \leq \lambda(G_j) < \infty$. Hence,

$$0 < \lim_{n \to \infty} \lambda(F_{jn}) \leq \lambda(F_j) < \infty.$$

To establish the inequality $\lim_{n\to\infty}\lambda(F_{jn}) \ge \lambda(F_j)$ we follow the procedure of Marden and Rodin [5, pp. 151-156] by defining a family F_{j0} in T_j such that $\lambda(F_{j0}) = \lambda(F_i)$ and $\lambda(F_{j0}) = \lim_{n\to\infty}\lambda(F_{jn})$.

Take $l_N \in F_{iN}$ and $n \leq N$ so that l_N intersects

$$\bigcup_{L=0}^{2} ((\alpha_{LN}(A) - \alpha_{Ln}(A)) \cup \Gamma_{N}(L) \cup \Gamma_{AjN}(L)).$$

We will define a type of restriction of l_N to S_{jn} , denoted by $l_N || S_{jn}$, with the property that $l_N || S_{jn} \in F_{jn}$. Assume that l_N is parametrized so that $l_N(0) \in \alpha_{0jN}$ and $l_N(1) \in \alpha_{1jN}$. There is a greatest t such that $l_N(t) \in \alpha_{0jn}$; call it t_1 . Suppose that l_N intersects $\alpha_{2jn} - \alpha_{2n}(A)$. Let t_2 be the smallest t such

that $l_N(t) \in \alpha_{2jn} - \alpha_{2n}(A)$ and denote by C_2 the component of $\alpha_{2jn} - \alpha_{2n}(A)$ which contains $l_N(t_2)$. Let t_3 be the greatest t such that $l_N(t) \in C_2$. Continue in this manner defining points t_{2k} , t_{2k+1} such that t_{2k} is the smallest t and t_{2k+1} the largest t such that $l_N(t)$ lies on a component C_{2k} of $\alpha_{2jn} - \alpha_{2n}(A)$ until we define t_{m-2} , t_{m-1} $(m \ge 4)$ and even) such that $l_N|\{t: t_{m-1} < t \le 1\} \cap (\alpha_{2jn} - \alpha_{2jN}) = 0$. Letting t_m be the smallest t such that $l_N(t) \in \alpha_{1jn}$ and $l_N(t) \in \alpha_{1jn}$ and $l_N(t)$ the component of $l_N(t)$ which contains $l_N(t)$, we obtain an even number of stopping times $l_N(t)$ and a component sequence $l_N(t)$ of distinct components of $l_N(t)$ and a component sequence $l_N(t)$ of distinct components of $l_N(t)$ of $l_N(t)$.

Suppose that l_N does not intersect $\alpha_{2jn} - \alpha_{2n}(A)$. Let t_2 be the smallest t such that $l_N(t) \in \alpha_{1jn}$ and let C_2 denote the component of α_{1jn} which contains $l_N(t_2)$. We obtain the stopping times $0 \le t_1 < t_2 \le 1$, stopping points $l_N(t_1)$, $l_N(t_2)$ and a component sequence C_1 , C_2 . Necessarily, by our assumption on l_N , $t_1 = 0$ and $t_2 = 1$ is impossible.

In each case define $l_N \| S_{jn}$ to be the restriction of l_N to $[t_1, t_2] \cup [t_3, t_4] \cup \cdots \cup [t_{m-1}, t_m]$.

A 1-chain l_0 on T_j will belong to F_{j0} if either $l_0 = l$ for some $l \in F_j$ or if l_0 is a continuous map of an open dense subset of [0, 1] into T_j such that:

- (i) If t_0 is not in the domain dom l_0 of l_0 and $0 < t_0 < 1$, then there exist sequences $\{r_k\}$, $\{s_k\}$ in dom l_0 such that $r_k \uparrow t_0$, $s_k \downarrow t_0$, and a point $\beta_0 \in \beta \cap T_j$ with $l_0(r_k) \longrightarrow \beta_0$, $l_0(s_k) \longrightarrow \beta_0$. If $t_0 = 0$ (respectively 1) we require only a sequence $\{s_k\}$ (respectively $\{r_k\}$).
- (ii) There exists a subsequence $\{S_{jn(k)}\}$ of $\{S_{jn}\}$ such that $l_0\|S_{jn(k)}\equiv (l_0|S_{jn(k)})\|S_{jn(k)}\in F_{jn(k)}$ for all $k\geq 1$.
- (iii) If $t \in \text{dom } l_0$ then there exists a p such that $t \in \text{dom } l_0 || S_{jn(k)}$ for all $k \ge p$.

We will now show that $\lambda(F_{j0}) = \lambda(F_j)$. If a 1-chain $l_0 \in F_{j0}$ can be extended to $\{t \colon 0 < t < 1\}$ with values in T_j , then the extension will be in F_j . Let $\{\xi_n(p)\}_{p=1}^{V_n}$ denote the components of $\bigcup_{L=0}^2 \Gamma_n(L)$. To each $\xi_n(p)$ we associate a simply-connected domain D_{np} in S_{jn} bounded by $\xi_n(p)$ and an open analytic Jordan arc τ_{np} in $S_{jn} - \partial S_{jn}$ with end points on $\partial \overline{R} \cap S_{jn}$, and a homeomorphism f_{np} of $\operatorname{Cl} D_{np}$ onto $\{z = x + iy \colon 0 \le x \le a_{np}, 0 \le y \le b_{np}\}$, $0 < a_{np}, b_{np}$, which is conformal on $D_{np} - \partial \overline{R}$ with $f_{np}(\xi_n(p)) = \{x \colon 0 \le x \le a_{np}\}$, $f_{np}(\tau_{np}) = \{x + ib_{np} \colon 0 < x < a_{np}\}$ and $f_{np}(\partial \overline{R} \cap D_{np}) = \{iy \colon 0 < y < b_{np}\}$.

Let $\{\xi_n(p)\}_{p=V_n+1}^{W_n}$ denote the components of $\bigcup_{L=0}^2 \Gamma_{Ajn}(L)$. To each $\xi_n(p), p=V_n+1, \cdots, W_n$, we associate an annular domain D_{np} in S_{jn} bounded by $\xi_n(p)$ and an analytic Jordan curve τ_{np} in $S_{jn}-\partial S_{jn}$, and a

homeomorphism f_{np} of $\operatorname{Cl} D_{np}$ onto $\{z: a_{np} \leq |z| \leq b_{np}\}, \ 0 < a_{np} < b_{np},$ which is conformal on D_{np} with $f_{np}(\xi_n(p)) = \{z: |z| = a_{np}\}$ and $f_{np}(\tau_{np}) = \{z: |z| = b_{np}\}.$ We can assume that the domains D_{np} , $p = 1, \dots, W_n$, have pairwise disjoint closures on S_{in} .

We shall show that if no D_{np} is crossed infinitely many times by l_0 then l_0 can be extended continuously to $\{t\colon 0 < t < 1\}$. Choose $t_0 \notin \text{dom } l_0$ with $0 < t_0 < 1$. Let $\{r_m\}$, $\{s_m\}$ and $\beta_1 \in \beta \cap T_j$ be as above. It suffices to show that $l_0(t) \longrightarrow \beta_1$ for $t \longrightarrow t_0$ and $t \in \text{dom } l_0$.

Let G denote a neighborhood of β_1 on T_j . We want a neighborhood of t_0 whose l_0 -image is in a "small" neighborhood of G. To do this we assume that G is a component of $T_j - S_{jN}$ for some N. Let D_{Np} be one of the domains described above for $\xi_N(p) = \operatorname{Cl} G - G$. For n sufficiently large, $l_0(r_n), l_0(s_n) \in G$.

If $l_0(t) \not \to \beta_1$ as $t \to t$ $(t \in \text{dom } l_0)$ for some domains G and D_{Np} , there would exist a sequence $\{v_k\}$ in $\text{dom } l_0$ with $v_k \to t_0$ and $l_0(v_q) \notin G \cup D_{Np}$ for each $q \ge 1$. A subsequence of $\{v_k\}$ is monotone, say $v_k \uparrow t_0$. Choose $r_{k(1)}$ and $v_{k(1)} > r_{k(1)}$ and $S_{jm(1)} \supset S_{jN}$ so that $r_{k(1)}, v_{k(1)} \in \text{dom } l_0 ||S_{jm(1)}$. Since $l_0 ||S_{jm(1)} \in F_{jm(1)}$, there is a crossing of D_{Np} within $\{t: r_{k(1)} < t < v_{k(1)}\}$. Next choose $r_{k(2)}, v_{k(2)}, S_{jm(2)}$ so that $r_{k(1)} < v_{k(1)} < r_{k(2)} < v_{k(2)}$ and $r_{k(2)}, v_{k(2)} \in \text{dom } l_0 ||S_{jm(2)}$. There must be a crossing of D_{Np} within $\{t: r_{k(2)} < t < v_{k(2)}\}$. In this way we see that l_0 crosses D_{Np} infinitely many times. The cases $t_0 = 0$ and $t_0 = 1$, if they arise, are handled analogously.

Let $F_{j0}(n)$ denote the family of all curves in F_{j0} which cross some D_{np} infinitely many times. Clearly, $\lambda(F_{j0}(n)) = \infty$.

Let F'_{j0} denote the family of all curves in F_{j0} which cannot be continuously extended to $\{t: 0 < t < 1\}$. Clearly, $F'_{i0} \subset \bigcup_{n \geqslant j} F_{j0}(n)$. So $\lambda(F'_{j0}) = \infty$.

Now, $F_{j0} = F'_{j0} \cup (F_{j0} - F'_{j0})$. So $\lambda(F_{j0}) = \lambda(F_{j0} - F'_{j0})$ and $\lambda(F_{j0}) = \lambda(F_{j0})$.

We are now ready to show that $\lim_{n\to\infty}\lambda(F_{jn}) \geqslant \lambda(F_{j0})$. Choose any $x < \lambda(F_{j0})$ and any metric $\rho |dz|$ on T_j such that $L^2(F_{j0}, \rho |dz|) > x$ and $A(\rho |dz|, T_j) = 1$. To show that $\lim_{n\to\infty}\lambda(F_{jn}) \geqslant \lambda(F_{j0})$ it suffices to show that

$$\lim_{n\to\infty}L^2(F_{jn},\,\rho\,|dz\,|)\geqslant x.$$

If that failed to hold there would exist a subsequence along which $L^2(F_{jn}, \rho |dz|)$ had a limit y < x. If we can show that to each $\epsilon > 0$ there exists a $l(\epsilon) \in F_{j0}$ satisfying $(\int_{l(\epsilon)} \rho |dz|)^2 \le y + 7\epsilon$, then we have the desired contradiction,

$$y < x < L^2(F_{j0}, \rho | dz |) \le \left(\int_{I(\epsilon)} \rho | dz | \right)^2 \le y + 7\epsilon.$$

238 J. C. WIENER

Fix $\epsilon > 0$. By passage to a subsequence of $\{F_{jn}\}$ we may assume that $|L^2(F_{in}, \rho |dz|) - y| < \epsilon/2^n \qquad (n \ge 1).$

Whenever a subsequence of $\{F_{jn}\}$ or $\{l_n\colon l_n\in F_{jn}\}$ is extracted and the notation is unchanged we tacitly agree that $\{S_{jn}\}$ shall refer to the corresponding subsequence of $\{n\}$.

Choose $l_n \in F_{in}$ so that

$$\left|\left(\int_{l_n}\rho\,|dz\,|\right)^2-y\right|<\epsilon/2^n\qquad(n\geqslant1).$$

From the sequence $\{l_n\}$, possibly after some modifications, we will extract a subsequence which will be used to construct $l(\epsilon)$.

If there is an M such that

$$\{l_M(t) \cap \partial S_{iM}: 0 \le t \le 1\} \subset (\alpha_0 \cup \alpha_1 \cup \alpha_2) \cap \partial \overline{R},$$

take $l(\epsilon) = l_M \in F_{j0}$; the assertion follows. Therefore, assume that this is not the case. We first find a subsequence $\{l_{n(k)}\}$ of $\{l_n\}$ such that all $l_{n(k)} \| S_{jN}$, $n(k) \ge N$, have the same component sequence on ∂S_{jN} . Since there are only a finite number of possible component sequences on ∂S_{jj} we may select a first subsequence of $\{l_n\}$, all elements of which have the same component sequence on ∂S_{jj} . By induction we obtain for each $N \ge j$ a subsequence of the preceding one, all elements of which follow a common component sequence on ∂S_{jN} . Using the diagonal process we obtain a subsequence with the desired property. Continue to designate this subsequence by $\{l_n\}$.

Now modify each l_n so that not only will all $l_n \| S_{jN}, n \ge N$, follow the same component sequence, but also $l_n \| S_{jn-1}$ and $l_{n-1} \| S_{jn-1}$ will have the same sequence of stopping points on ∂S_{jn-1} . To accomplish this use the diagonal process to find a preliminary sequence, again denoted by $\{l_n\}$, with the following property. Suppose that l_N has m stopping points on ∂S_{jN} . Then for each $k \le m$ the kth stopping point ζ_n of $l_n \| S_{jN}, n \ge N$, gives rise to a convergent sequence of points $\{\zeta_n\}$ on a component of $\bigcup_{L=0}^2 (\alpha_{LjN} - \alpha_{LN}(A))$. Around the limit point of this sequence put a topological disc the circumference of which has very small ρ -length.

For each N there are as many discs on ∂S_{jN} as there are stopping points for $l_n \| S_{jN}$, $n \ge N$. Choose the circumference of these discs small enough so that their total ρ -length is less than $2^{-N}\epsilon$. By the diagonal process we achieve a situation in which each stopping point of $l_n \| S_{jN}$ on ∂S_{jn} is inside the appropriate disc for all $n \ge N$. For each disc take a point in the intersection of its circumference and the corresponding component of the component sequence; call such

a point a distinguished stopping point. A modification of l_n will mean the result of replacing part of its path inside a disc by a path on the circumference of the disc. Modify l_N so that all its stopping points are distinguished; in general, modify l_n so that the stopping points of $l_n \| S_{jn-1}$ on ∂S_{jn-1} and $l_n \| S_{jn}$ on ∂S_{jn} are distinguished. Denote the modified sequence again by $\{l_n\}$. This modification has increased the ρ -length of l_n by at most $2^{-n+1}\epsilon + 2^{-n}\epsilon$. For the present sequence $\{l_n\}$,

$$\left| \left(\int_{l_M} \rho \, |dz| \right)^2 - y \right| < \frac{\epsilon}{2^n} + \frac{\epsilon}{2^{n-1}} + \frac{\epsilon}{2^n} = \frac{4\epsilon}{2^n} \; .$$

Clearly, each new l_n is in F_{in} .

By induction, for each n we reparametrize l_n so that $\text{dom } l_n \| S_{jn-1} = \text{dom } l_{n-1}$. So $\text{dom } l_{n-1}$ consists of a finite number of closed intervals $[t_1, t_2] \cup [t_3, t_4] \cup \cdots \cup [t_{m-1}, t_m]$ and $l_{n-1}(t_k) = l_n(t_k)$ for $1 \le k \le m$.

We now construct $l(\epsilon)$. On dom l_1 set $l(\epsilon) = l_1$. In general, if $l(\epsilon)$ has been defined on dom l_{n-1} set $l(\epsilon) = l_n$ on dom $l_n - \text{dom } l_{n-1}$. So $l(\epsilon)$ is a curve on T_j . Its domain is an open subset of [0, 1] which, by reparametrization, may be assumed to be dense.

Note, since $l_n | \text{dom } l_{n-1} = l_n || S_{jn-1}$,

$$\left(\int_{I_{n}\mid\mid S_{j_{n-1}}} \rho \, |dz|\right)^{2} \geq L^{2}(F_{j_{n-1}},\, \rho \, |dz|) > y - \epsilon/2^{n-1}.$$

Also, $(\int_{l_n} \rho |dz|)^2 < y + 4\epsilon/2^n$. Hence,

$$\left(\int_{l_n \mid (\operatorname{dom} l_n - \operatorname{dom} l_{n-1})} \rho \mid dz \mid\right)^2 < \frac{6\epsilon}{2^n}.$$

Therefore, by Schwarz's inequality,

$$\left(\int_{l(\epsilon)}\rho\,|dz|\right)^2 < \left(\int_{l_1}\rho\,|dz|\right)^2 + \sum_{n=1}^{\infty} \frac{6\epsilon}{2^n} < y + 7\epsilon.$$

Clearly, see [5, p. 225], $l(\epsilon) \in F_{i0}$. Hence,

$$0<\lambda(F_j)=\lim_{n\to\infty}D_{S_{in}}(u_{jn})^{-1}<\infty.$$

Take $m \le n$. We will show that $D_{S_{jm}}(u_{jm} - u_{jn}) \to 0$ as $m, n \to \infty$. Note, since $\gamma_{jm} \subset \gamma_{jn}$, u_{jm} is a constant on each component Γ' of $\Gamma_{Cj}(2)$ and the flux of u_{jm} along Γ' is 0,

$$\begin{split} D_{S_{jm}}(u_{jm},\,u_{jn}) &= \int_{\alpha_{1jm}} *du_{jn} + \int_{\alpha_{2jm}} u_{jm} *du_{jn} \\ &= \int_{\alpha_{1jm}} *du_{jn} + \int_{\alpha_{2m}(A) + \Gamma_m(2) + \Gamma_{Ajm}(2)} u_{jm} *du_{jn}. \end{split}$$

Set k=1 and 2. For each component δ of $\Gamma_p(k)$ let $A(\delta,k)$ denote the domain on S associated with δ . Define $\Lambda_{kp}(1)$ to be the union of all components δ of $\Gamma_p(k)$ for which $A(\delta,k)\cap\gamma\cap\partial\overline{R}=0$, $\Lambda_{kp}(2)$ to be the union of all components δ of $\Gamma_p(k)$ for which $(A(\delta,k)\cap\partial S)-(\gamma\cup\beta)$ is an open arc on $\partial\overline{R}$ and set $\Lambda_{kp}(3)=\Gamma_p(k)-(\Lambda_{kp}(1)\cup\Lambda_{kp}(2))$.

For simplicity we shall write $\Gamma' \in \Lambda_{kp}(m)$ or $\Gamma' \in \Gamma_{Ajp}(k)$ whenever we mean that Γ' is a component of that set.

For each δ in $\Lambda_{kp}(1)$ let $\alpha_{kp}(1,\delta)$ and $\alpha_{kp}(2,\delta)$ denote the two components of $\alpha_{kp}(A)$ for which $\alpha_{kp}(1,\delta) \cup \delta \cup \alpha_{kp}(2,\delta)$ is connected. For each δ in $\Lambda_{kp}(2)$ let $\alpha_{kp}(\delta)$ denote the component of $\alpha_{kp}(A)$ and $\gamma_{jp}(\delta)$ the component of γ_{jp} for which $\alpha_{kp}(\delta) \cup \delta \cup \gamma_{jp}(\delta)$ is connected. Finally, for each δ in $\Lambda_{kp}(3)$ let $\gamma_{jp}(1,\delta)$ and $\gamma_{jp}(2,\delta)$ denote the components of γ_{jp} for which $\gamma_{jp}(1,\delta) \cup \delta \cup \gamma_{jp}(2,\delta)$ is connected.

Let E_q , $q=1,\cdots,P$, denote the components of $S_{jn}-(S_{jm}-\partial S_{jm})$. Set $\tau_q=\{\Gamma_n'\in\Gamma_{Ajn}(k)\colon\Gamma_n'\subset E_q\}$, $\Gamma_{Ajmn}(k)=\bigcup_{q=1}^P\tau_q$ and for each $\Gamma'\in\Gamma_{Ajm}(k)$, let $\Gamma_\sigma(\Gamma')$, $\sigma=1,\cdots,\omega$, denote the finite number of components of $\Gamma_{Ajn}(k)-\Gamma_{Ajmn}(k)$ such that $\{\Gamma',\Gamma_1(\Gamma'),\cdots,\Gamma_\omega(\Gamma')\}$ bound a compact bordered Riemann surface E on S_{jn} .

Orient each subarc of ∂S_{jp} , $p \ge 1$, so that $S_{jp} - \partial S_{jp}$ lies locally to the left. Then

$$\int_{\Gamma'} *du_{jn} = \sum_{\sigma=1}^{\omega} \int_{\Gamma_{\sigma}(\Gamma')} *du_{jn} \quad \text{for } \Gamma' \in \Gamma_{Ajm}(k), m \leq n.$$

Thus.

and

$$\int_{\Gamma_{Aim}(2)} *du_{jn} = 0.$$

We now consider the following three cases:

A. Suppose that $\delta_m(q) \in \Lambda_{km}(1) \cap \partial E_q$. Then E_q has positively oriented border

$$\sum_{L=1}^{2} (\alpha_{kn}(L, \delta_n(q)) - \alpha_{km}(L, \delta_m(q))) + \delta_n(q) - \delta_m(q) + \tau_q,$$

where $\delta_n(q) \in \Lambda_{kn}(1) \cap \partial E_q$. Thus,

(4)
$$\int_{\delta_{m}(q)} *du_{jn} = \sum_{L=1}^{2} \int_{\alpha_{kn}(L, \, \delta_{n}(q)) - \alpha_{km}(L, \, \delta_{m}(q))} *du_{jn} + \int_{\delta_{n}(q) + \tau_{q}} *du_{jn}.$$

B. If
$$\delta_m(q) \in \Lambda_{km}(2) \cap \partial E_q$$
, then
$$\partial E_q = \alpha_{kn}(\delta_n(q)) - \alpha_{km}(\delta_m(q)) + \delta_{nq} + \gamma_{jn}(\delta_n(q)) - \gamma_{jm}(\delta_m(q)) - \delta_m(q) + \tau_q,$$
 where $\delta_n(q) \in \Lambda_{kn}(2) \cap \partial E_q$. Thus,

(5)
$$\int_{\delta_{m}(q)} {}^{*}du_{jn} = \int_{\alpha_{kn}(\delta_{n}(q)) - \alpha_{km}(\delta_{m}(q))} {}^{*}du_{jn} + \int_{\delta_{n}(q) + \tau_{q}} {}^{*}du_{jn}.$$
C. If $\delta_{m}(q) \in \Lambda_{km}(3) \cap \partial E_{q}$, then
$$\partial E_{q} = \sum_{L=1}^{2} (\gamma_{jn}(L, \delta_{n}(q)) - \gamma_{jm}(L, \delta_{m}(q))) + \delta_{n}(q) - \delta_{m}(q) + \tau_{q},$$

where $\delta_n(q) \in \Lambda_{kn}(3) \cap \partial E_q$. Thus,

(6)
$$\int_{\delta_m(q)} *du_{jn} = \int_{\delta_n(q)+\tau_q} *du_{jn}.$$

Take k = 1. From (4), (5) and (6) we conclude that

$$\int_{\Gamma_{m}(1)} *du_{jn} = \int_{\alpha_{1n}(A) - \alpha_{1m}(A)} *du_{jn} + \int_{\Gamma_{n}(1) + \Gamma_{Ajmn}(1)} *du_{jn}.$$

Thus, using (2), $\Gamma_{Aimn}(1) \subset \Gamma_{Ain}(1)$ and $\alpha_{1m}(A) \subset \alpha_{1n}(A)$,

$$\int_{\alpha_{1jm}} *du_{jn} = \int_{\alpha_{1jn}} *du_{jn} = D_{S_{jn}}(u_{jn}).$$

We wish to show that

$$\int_{\alpha_{2m}(A)+\Gamma_{m}(2)+\Gamma_{Aim}(2)} u_{jm} * du_{jn} = 0.$$

Let α_2^* denote the noncompact components of α_2 on $\mathrm{Cl}(\partial \overline{R})$ and set $\alpha_{2m}(A)^* = \alpha_2^* \cap \alpha_{2m}(A)$. Clearly, $\int_{\alpha_{2m}(A) - \alpha_{2m}(A)^*} u_{jm}^* du_{jn} = 0$. Also, since u_{jm} is a constant on each component of $\Gamma_{Ajm}(2)$, from (3), $\int_{\Gamma_{Ajm}(2)} u_{jm}^* du_{jn} = 0$. Hence, we need only show that

$$\int_{\alpha_{2m}(A)^* + \Gamma_m(2)} u_{jm}^* du_{jn} = 0.$$

For each $q=1,\cdots,P,\,\partial E_q$ can be decomposed as in A, B or C Fix any q. We consider the three decompositions of ∂E_q .

A. Suppose that $\alpha_{2n}(1, \delta_n(q))$ and $\alpha_{2n}(2, \delta_n(q))$ fail to meet any $A(2, \delta_m(r))$, $r \neq q$. Then $\alpha_{2m}(1, \delta_m(q))$, $\alpha_{2m}(2, \delta_m(q)) \in \alpha_{2m}(A)^*$, $\alpha_{2}(1, \delta_n(q)) \cup \Gamma_n(q) \cup \alpha_{2n}(2, \delta_n(q))$ is a component of α_{2jn} and u_{jm} is a constant on

$$\xi_m = \alpha_{2m}(1, \delta_m(q)) \cup \delta_m(q) \cup \alpha_{2m}(2, \delta_m(q)).$$

Hence, $\int_{\xi_m} u_{jm} * du_{jn} = 0$.

Suppose that there is an $r \neq q$ so that $\alpha_{2n}(1, \delta_n(q)) \cap A(2, \delta_m(r)) \neq 0$. Necessarily, $\partial E_r \cap \partial \overline{R}$ is composed of sets of the form $\alpha_{2n}(1, \delta_n(r))$ and $\alpha_{2n}(2, \delta_n(r))$ or $\alpha_{2n}(\delta_n(r))$ and $\gamma_{jn}(\delta_n(r))$. For simplicity assume that the former occurs, that $\alpha_{2n}(1, \delta_n(q)) = \alpha_{2n}(1, \delta_n(r))$ and that $\alpha_{2n}(2, \delta_n(r)) \cap A(2, \delta_m(t)) = 0$ for $t \neq r$. As above, we conclude that $\int_{\xi_m} u_{jm}^* du_{jn} = 0$, where

$$\xi_m = \alpha_{2m}(1, \delta_m(q)) \cup \delta_m(q) \cup \alpha_{2m}(2, \delta_m(q)) \cup \delta_m(r) \cup \alpha_{2m}(2, \delta_m(r)).$$

Cases B and C are handled analogously.

We have shown that $D_{S_{jm}}(u_{jn}, u_{jn}) = D_{S_{jn}}(u_{jn})$ for $n \ge m$. Thus, $D_{S_{jm}}(u_{jm} - u_{jn}) < D_{S_{jm}}(u_{jm}) - D_{S_{jn}}(u_{jn})$. Hence, since the sequence $\{D_{S_{jp}}(u_{jp})\}$ has a finite limit, $D_{S_{jn}}(u_{jm} - u_{jn}) \longrightarrow 0$ as $m, n \longrightarrow \infty$.

To show that the functions u_{jn} converge to a limit function u_j on T_j we proceed as in the proof of Theorem 5 by considering the double Q_N of S_{jN} at $(\alpha_{0N}(A) - \operatorname{Cl}(\gamma_{jN})) \cup \Gamma_{Cj}(0)$ and the extensions u'_{jn} of u_{jn} $(n \ge N)$ on Q_N . There exists a harmonic function v'_{jN} on Q_N with the following properties:

$$\begin{split} &D_{Q_N}(u'_{jn}-v'_{jN}) \longrightarrow 0 \quad \text{as} \quad n \longrightarrow \infty, \\ &D_{Q_N}(u'_{jn}) \longrightarrow D_{Q_N}(v'_{jN}) \quad \text{as} \quad n \longrightarrow \infty, \\ &u'_{jn}(z) \longrightarrow v'_{jN}(z) \quad \text{as} \quad n \longrightarrow \infty \quad \text{for} \quad z \in Q_N, \end{split}$$

and the convergence is uniform on every compact subset of Q_N .

Let $D(\overline{R})$ denote the double of T_j across $(\alpha_0 \cup \Gamma_{Cj}(0)) - (\beta \cup Cl \gamma)$. Then v'_{jN} is the restriction to Q_N of a continuous function v_j on $D(\overline{R}) \cup (T_j \cap (\beta - \beta^*))$ which is harmonic on $D(\overline{R})$.

To show that $\lim D_{Q_N}(u'_{jN})=\lim D_{Q_N}(v'_{jN})$ it suffices to show that $\lim D_{S_{jN}}(u_{jN})=\lim D_{S_{jN}}(v_{jN})$, $v_{jN}=v'_{jN}|S_{jN}$.

Note that for $n \ge N$,

$$D_{S_{jN}}(u_{jN}-u_{jn}) = D_{S_{jN}}(u_{jN}) - 2D_{S_{jn}}(u_{jn}) + D_{S_{jN}}(u_{jn})$$

tends to 0 as n and N tend to ∞ . Thus,

$$\lim_{n \to \infty} D_{S_{iN}}(u_{jN} - u_{jn}) = D_{S_{iN}}(u_{jN}) - 2\lim_{n \to \infty} D_{S_{in}}(u_{jn}) + D_{S_{jN}}(v_{jN})$$

and

$$0 = -\lim_{n \to \infty} D_{S_{jN}}(u_{jN}) + \lim_{n \to \infty} D_{S_{jN}}(v_{jN}).$$

We now conclude that the continuous function $u_j = v_j' | (T_j - \beta^*)$ on T_j satisfies:

$$\begin{split} &u_{j}|(T_{j}-\beta) \quad \text{is harmonic,} \\ &u_{j}|S_{jN}=v_{jN}'|S_{jN}, \\ &D_{S_{jn}}(u_{jn}-u_{j})\longrightarrow 0 \quad \text{as} \quad n\longrightarrow \infty, \\ &D_{S_{jn}}(u_{jn})\longrightarrow D_{T_{j}}(u_{j})>0 \quad \text{as} \quad n\longrightarrow \infty, \\ &^{*}du=0 \quad \text{along} \quad \gamma_{j}, \end{split}$$

 $u_{jn}(z) \longrightarrow u_j(z)$ as $n \longrightarrow \infty$ for $z \in T_j - \beta$, and the convergence is uniform on every compact subset of T_j .

We have shown that

$$0<\lambda(F_j)=D_{T_j}(u_j)^{-1}<\infty.$$

Suppose that $\bigcup_{k=0}^2 \Gamma_{Cj}(k) = 0$ for all j. Then $F_j \subset F_{j+1}$ and $F = \bigcup F_j$. It follows easily that

$$0<\lambda(F)=\lim \, \lambda(F_j)=\lim \, D_{T_j}(u_j)^{-1}<\infty.$$

If there exist a $j(0) \ge 1$ and a k(0) = 0, 1 or 2 such that $\Gamma_{Cj(0)}(k(0)) \ne 0$, then $\Gamma_{Ci}(k(0)) \ne 0$ for all $j \ge j(0)$. Hence,

$$\lambda(F) \geqslant \lambda(F_{i+1}) \geqslant \lambda(F_i) > 0.$$

Thus, since the family H of all curves in $S - (\beta \cup \gamma)$ which join $\alpha_0 - \beta$ to $\alpha_1 - \beta$ is a subset of F, $0 < \lim \lambda(F_n) \le \lambda(F) < \infty$.

The opposite inequality is established as before.

Note, for $m \leq n$,

$$D_{T_m}(u_m, u_n) = \lim_{i \to \infty} D_{S_{mi}}(u_{mi}, u_{ni}) = \lim_{i \to \infty} D_{S_{ni}}(u_{ni}) = D_{T_n}(u_n).$$

Hence, $D_{T_m}(u_m - u_n) < D_{T_m}(u_m) - D_{T_n}(u_n)$, and $D_{T_m}(u_m - u_n) \longrightarrow 0$ as $m, n \longrightarrow \infty$.

We conclude that there exists a continuous function u on $S - \beta^*$ which is harmonic on \overline{R} , 0 on α_0 , 1 on α_1 , a constant on each component ν of α_2 with the flux of u along ν equal to 0 and $^*du = 0$ along γ such that $0 < \lambda(F) = D_{\overline{R}}(u)^{-1} < \infty$.

7. Final result. It is also possible to assume that α_0 , α_1 and α_2 each contain perfect nowhere dense subsets of $Cl(\partial \overline{R})$.

Suppose that the type II contour σ_1 of \overline{R} intersects a perfect nowhere dense subset of α_k (k=0,1 or 2) and that as we traverse the component of ∂S which contains σ_1 in the positive sense from σ_1 we traverse the type II contours $\sigma_1, \sigma_2, \cdots, \sigma_n$ of \overline{R} . We shall define the *M*-perfect nowhere dense subset of α_k which intersects σ_1 .

For each $j = 1, \dots, n$ let δ_j denote the union of all perfect nowhere

dense subsets of α_k on σ_j and set $\delta_{n+1} = \delta_1$. If $\delta_1 \cap \delta_2 \neq 0$ (respectively $\delta_1 \cap \delta_n \neq 0$) let s(r) denote the largest integer such that $\delta_j \cap \delta_{j+1} \neq 0$ ($\delta_{n+2-j} \cap \delta_{n+1-j} \neq 0$) for $j=1, \cdots, s-1$ ($j=1, \cdots, r$). Define the M-perfect nowhere dense subset δ of α_k which intersects σ_1 as follows:

$$\begin{array}{lll} \delta=\delta_1 & \text{if } \delta_1\cap\delta_2=0 \text{ and } \delta_1\cap\delta_n=0;\\ \delta=\bigcup_{j=1}^s\delta_j & \text{if } \delta_1\cap\delta_2\neq0 \text{ and } \delta_1\cap\delta_n=0;\\ \delta=\bigcup_{j=0}^r\delta_{n-j+1} & \text{if } \delta_1\cap\delta_2=0 \text{ and } \delta_1\cap\delta_n\neq0;\\ \delta=\bigcup_{j=1}^s\delta_j\cup\bigcup_{j=1}^r\delta_{n-j+1} & \text{if } \delta_1\cap\delta_2\neq0 \text{ and } \delta_1\cap\delta_n\neq0. \end{array}$$

If a type I contour σ of \overline{R} contains a perfect nowhere dense subset of α_k we define the *M*-perfect nowhere dense subset of α_k which intersects σ to be the union of all perfect nowhere dense subsets of α_k on σ .

Clearly, two M-perfect nowhere dense subsets of α_k are either equal or disjoint.

Let τ_k and τ_l denote M-perfect nowhere dense subsets of α_k and α_l , respectively, $l \neq k$ and l, k = 0, 1 or 2. Suppose that τ_k and τ_l intersect the contour Σ' of \overline{R} . If Σ' is a type I contour of \overline{R} , take any point p on γ that is "between" τ_k and τ_l , that is, take any point p on γ such that as we traverse Σ' in the positive (respectively negative) sense from p we traverse a subset of τ_k (respectively τ_l) before we traverse a subset of τ_l (respectively τ_k). Set $\Sigma = \Sigma' - \{p\}$ if Σ' is type I and $\Sigma = \Sigma'$ otherwise.

There is a homeomorphism H of Σ onto $\{t\colon 0 < t < 1\}$. Assume that $H(\tau_k)$ is the Cantor set on $T_a = \{t\colon a \le t \le b\}$ (possibly minus one or both end points) and that $H(\tau_l)$ is the Cantor set on $\{t\colon c \le t \le d\}$ (possibly minus one or both end points), $0 \le a < b \le 1$ and $0 \le c < d \le 1$. Assume that a < c. We shall say that τ_k and τ_l intersect if a < c < b and that τ_k and τ_l are disjoint if b < c. If τ_k and τ_l intersect, as we traverse T_a in the positive sense from a to b we meet $\tau_k(1), \tau_l(1), \tau_k(2), \tau_l(2), \cdots, \tau_l(n), \tau_k(n+1)$, where $\tau_k(j)$ is a subset of $\tau_k, \tau_l(j)$ is a subset of τ_l and $1 \le n < \infty$. Call n the number of times τ_l and τ_k intersect on Σ .

Note, if Σ' is a type I contour of \overline{R} and p_1 and p_2 are any two points of γ "between" τ_k and τ_l , then the number of times τ_k and τ_l intersect on $\Sigma' - \{p_1\}$ is equal to the number of times τ_k and τ_l intersect on $\Sigma' - \{p_2\}$.

Let $\{\tau_L(j)\}_{j=1}^{J(L)}$ denote the *M*-perfect nowhere dense subsets of α_L , L=0, 1 and 2. Suppose that the subsets τ' and τ'' of $\tau_k(j)$ intersect a component K of ∂S . We shall say that τ' and τ'' are separated by $A=\bigcup_{L=0}^2\bigcup_{j=1}^{J(L)}(\tau_L(j)-\tau_k(j))$ if as we traverse K in both the positive and negative sense from τ' we traverse subsets of A before traversing τ'' .

For each $j=1,\cdots,J(k)$ decompose $\tau_k(j)$ into a finite number of subsets $\{\tau_k(j,s)\}_{s=1}^{S(j)}$ so that $\tau_k(j,s)$ and A are disjoint and so that for $s\neq t$,

 $\tau_k(j, s)$ and $\tau_k(j, t)$ are separated by A. We shall mean when we say that " α_k contains a finite number of perfect nowhere dense subsets of $\mathrm{Cl}(\partial \overline{R})$ " that α_k is the finite union of the sets $\tau_k(j, s)$, $s = 1, \cdots, S(j)$ and $j = 1, \cdots, J(k)$.

We now state our general result.

THEOREM 7. Let S denote the compactification of \overline{R} defined above. Let $\beta = S - \overline{R}$ and $\partial S = \beta \cup \partial \overline{R}$. Suppose that α_0 , α_1 and α_2 are closed subsets of ∂S which satisfy (6.1), (6.2), (6.3) and

(7.1) α_0 , α_1 and α_2 are each composed of points of β , type I contours of \overline{R} and a finite number of arcs and perfect nowhere dense sets on ∂S .

Set $\gamma = \partial S - (\alpha_0 \cup \alpha_1 \cup \alpha_2)$ and denote by F the family of all curves in $S - \gamma$ which join α_0 to α_1 . Let $\beta^* = \operatorname{Cl}(\partial \overline{R}) - (\alpha_0 \cup \alpha_1 \cup \alpha_2 \cup \partial \overline{R})$. Then there exists a continuous function u on $S - \beta^*$ which is harmonic on \overline{R} , 0 on α_0 , 1 on α_1 , a constant on each component v_j of α_2 with the flux of u across v_j equal to zero and $^*du = 0$ along γ such that $0 < \lambda(F) = D_{\overline{P}}(u)^{-1} < \infty$.

The proof of this result is similar to that of Theorem 6 and will be omitted.

BIBLIOGRAPHY

- 1. L. V. Ahlfors, Complex analysis: An introduction to the theory of analytic functions of one complex variable, 2nd ed., McGraw-Hill, New York, 1966. MR 32 #5844.
- 2. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Math. Ser., no 26, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #5729.
- 3. J. A. Jenkins, *Univalent functions and conformal mapping*, 2nd ed., Springer-Verlag, Berlin and New York, 1965.
 - 4. ——, Lecture notes at Washington University, 1968-1969.
- 5. A. Marden and B. Rodin, Extremal and conjugate extremal distance on open Riemann surfaces with applications to circular-radial slit mappings, Acta Math. 115 (1966), 237-269. MR 34 #2862.
- 6. C. D. Minda, Extremal length and harmonic functions on Riemann surfaces, Trans. Amer. Math. Soc. 171 (1972), 1-22.
 - 7. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 13, 640.
- 8. B. Rodin and L. Sario, Principal functions, Van Nostrand, Princeton N. J., 1968. MR 37 #5378.
- 9. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 1970. MR 41 #8660.
- 10. L. Sario and K. Oikawa, Capacity functions, Die Grundlehren der math. Wissenschaften, Band 149, Springer-Verlag, Berlin and New York, 1969. MR 40 #7441.
- 11. G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, Mass., 1957. MR 19, 1169.

DEPARTMENT OF MATHEMATICS, EMORY UNIVERSITY, ATLANTA, GEORGIA 30322

Current address: Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332