ERRATUM TO "REGULAR OVERRINGS OF REGULAR LOCAL RINGS"

BY

JUDITH SALLY

Theorem 3.1 is incorrect for i > 1. It is not necessarily true, as stated in line (-6) on p. 293 of the proof, that $(Q^2)' \cap R = (Q')^2 \cap R$. The correct theorem is as follows.

THEOREM. Let (R, M) be an n-dimensional regular local ring, n > 1. Let x, x_1, \ldots, x_i be an R-sequence and $T = R[x_1/x, \ldots, x_i/x]$. Then T is an n-dimensional regular domain if and only if one of the following holds:

- (a) the elements x, x_1, \ldots, x_i form a subset of a minimal basis for M,
- (b) (1) $x \in M^2$ and the elements x_1, \ldots, x_i form a subset of a minimal basis for M,
- (2) if P is the contraction in R of a rank n-1 maximal ideal of T containing x then either the elements x, x_1, \ldots, x_i form a subset of a minimal basis for P_P in R_P or x_1, \ldots, x_i form such a subset and $x \in P^{(2)}$.

The proof is an easy modification of that in the paper. If T is regular and (a) does not hold, then x must be in M^2 as was shown. This means that x_1 , ..., x_i form a subset of a minimal basis for M. Otherwise the generators of ker ϕ would be linearly dependent mod $(M, t_1, \ldots, t_i)^2$. Conversely, if (b)(1) holds and T_N is not regular for some rank n maximal ideal N then, as was shown, x_i is in Q^2 . This is a contradiction because it can be easily shown (as in Lemma 4.2) that $x_i \notin Q_Q^2$.

The statement of Corollary 3.6 must be changed accordingly, but none of the main results of the paper (§4-§6) are affected.

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201

Copyright © 1975, American Mathematical Society