A PROPERTY FOR INVERSES IN A PARTIALLY ORDERED LINEAR ALGEBRA

BY

TAEN-YU DAI AND RALPH DeMARR

ABSTRACT. We consider a Dedekind σ -complete partially ordered linear algebra A which has the following property: if $x \in A$ and $1 \le x$, then $-u \le x^{-1}$, where $u = u^2$. This property is used to show that A must be commutative. We also show that A is the direct sum of two algebras, each of which behaves like an algebra of real-valued functions.

1. Introduction and definitions. In his memoir [7] R. V. Kadison discusses various characterizations of an algebra of continuous real-valued functions on a compact Hausdorff space. In particular, §3 is devoted to characterizing an ordered algebra as an algebra of real-valued functions (the algebra theorem of M. H. Stone). In [2] and [3] the authors discuss various ways of characterizing a partially ordered linear algebra (pola) as an algebra of real-valued functions. The purpose of this paper is to characterize a pola having a special property for inverses. The motivation for this property comes from the following example. Let B be the pola of all continuous real-valued functions defined on [0, 1], where the algebraic operations and the partial order are defined pointwise. It is well known that B has the Archimedean property but is not Dedekind σ -complete (definitions below). We may embed \widetilde{B} in a Dedekind σ -complete pola A as follows. Define $A = \{(\widetilde{x}, \alpha) : \widetilde{x} \in \widetilde{B} \text{ and } \alpha \text{ is real}\}$. If the algebraic operations are defined componentwise, then A is a real linear algebra. The partial order in A is defined as follows. Take $x = (\widetilde{x}, \alpha) \in A$ and $y = (\widetilde{y}, \beta) \in A$. We write $x \le y$ if and only if $0 \le \widetilde{\gamma}(\tau) - \widetilde{x}(\tau) \le \beta - \alpha$ for all $\tau \in [0, 1]$. It is easy to verify that A is Dedekind σ -complete. See Example 1 for the details. Examples are given in §5.

Note that $B = \{(\widetilde{x}, 0) : \widetilde{x} \in \widetilde{B}\}$ is a subalgebra of A which is algebraically (but not order) isomorphic to \widetilde{B} . However, we may introduce a new partial order in B so that B is also order isomorphic to \widetilde{B} (see §4). This can be done abstractly by noting that A has the following property. Take $u = (\widetilde{0}, 1) \in A$ and note that $0 \le u = u^2$. Now if $x \in A$ and $1 \le x$, then x has an inverse and $-u \le x^{-1}$.

We now give the basic definitions needed in this paper. A pola (denoted by

Received by the editors September 10, 1974 and, in revised form, December 15, 1974.

AMS (MOS) subject classifications (1970). Primary 06A70; Secondary 15A45.

Key words and phrases. Dedekind σ-complete partially ordered linear algebra, algebra of

- A) is a real linear associative algebra which is partially ordered so that it is a directed partially ordered linear space and $0 \le xy$ whenever $x, y \in A$, $0 \le x$, $0 \le y$. We also assume that A has a multiplicative identity $1 \ge 0$. A Dedekind σ -complete pola (dsc-pola) A is one having the property: if $x_n \in A$, $0 \le \cdots \le x_2 \le x_1$, then inf $\{x_n\}$ exists. Order convergence is defined as usual. A dsc-pola A has the Archimedean property: if $x, y \in A$ and $nx \le y$ for every positive integer n, then $x \le 0$. For more details and examples see the references.
- 2. Basic lemmas and theorems. In this paper we assume that A is a dsc-pola (not necessarily commutative) which has the following property: if $x \in A$ and $1 \le x$, then x has an inverse and $-u \le x^{-1}$, where $u \in A$ is a fixed element such that $0 \le u = u^2$.

We put e = 1 - u and note that $e = e^2$ and eu = ue = 0. The first step is to show that u commutes with every element of A.

LEMMA 2.1. If
$$w \in A$$
, $0 \le w$ and $w^2 = 0$, then $w = 0$.

PROOF. Since $1 \le 1 + nw$ for every positive integer n, we have $-u \le (1 + nw)^{-1} = 1 - nw$, so that $nw \le 1 + u$ for all n. From the Archimedean property we get $w \le 0$. Hence, w = 0.

LEMMA 2.2. If
$$0 \le z \le u$$
, then $uz = zu$.

PROOF. Put w = ezu. Note that $0 \le u - w = (u - w)^2$. Hence, $1 \le 1 + n(u - w)$ for every positive integer n so that $-u \le [1 + n(u - w)]^{-1} = 1 - n(n + 1)^{-1}(u - w)$, which gives $-(u - w) \le (n + 1)(1 + w)$ for all n. Thus, $0 \le 1 + w$ (from the Archimedean property). Since $w^2 = 0$, we get $0 \le (1 + w)^n = 1 + nw$ for every positive integer n so that $-nw \le 1$ for all n. Using the Archimedean property again, we get $0 \le w$. From Lemma 2.1 we get w = ezu = 0.

We may repeat the above argument for the element uze to show that uze = 0. Hence, uz = uz(u + e) = uzu = (u + e)zu = zu.

LEMMA 2.3. If $-\beta u \le x \le \beta u$ for some real number $\beta \ge 0$, then xu = ux.

PROOF. This lemma follows directly from Lemma 2.2.

LEMMA 2.4. If $0 \le y \le z$ and $y^n \le nz$ for every positive integer n, then $y \le 1 + u$.

PROOF. If $0 \le \lambda < 1$, then $\sum_{k=1}^{\infty} (\lambda y)^k \le \sum_{k=1}^{\infty} \lambda^k(kz) < \infty$. Hence, $1 \le (1 - \lambda y)^{-1}$; see Theorem I.6.1 of [2]. Therefore, $-u \le 1 - \lambda y$ or $\lambda y \le 1 + u$ for all $\lambda < 1$. From the Archimedean property we get $y \le 1 + u$.

LEMMA 2.5. If $1 \le x$, then $-u \le x^{-1} \le 1 + u(x-1)$ and $-u \le x^{-1} \le 1 + (x-1)u$.

PROOF. The basic property of this paper asserts that $-u \le x^{-1}$. The other inequalities follow directly from $0 \le (x^{-1} + u)(x - 1)$ and $0 \le (x - 1)(x^{-1} + u)$.

LEMMA 2.6. If
$$1 \le y$$
 and $yu = uyu$ (or $uy = uyu$), then $yu = uy$.

PROOF. From Lemma 2.5 we get $-u \le y^{-1} \le 1 + (y-1)u$ or $0 \le u + y^{-1} \le 1 + yu$. We now show by mathematical induction that $0 \le (u + y^{-1})^n \le 1 + 3^n(u + yu)$ for every positive integer n. This is easy to verify for n = 1. If the above inequalities are true for n = k, then

$$0 \le (u + y^{-1})^{k+1} \le (u + y^{-1}) \left[1 + 3^k (u + yu) \right]$$

$$\le 1 + yu + 3^k (u + yu + yu + u) \le 1 + 3^{k+1} (u + yu),$$

where we have used the fact that uyu = yu, $y^{-1}u + u \le u + yu$ and other elementary inequalities. This completes the induction.

It follows that $[3^{-1}(u+y^{-1})]^n \le 1 + 2yu$ for every positive integer n. Using Lemma 2.4, we get $0 \le u + y^{-1} \le 3(1+u)$. Therefore, $-5u \le uy^{-1} \le 5u$ and $-5u \le y^{-1}u \le 5u$. From Lemma 2.3 we get $uy^{-1} = uy^{-1}u$ and $uy^{-1}u = y^{-1}u$. Hence, $uy^{-1} = y^{-1}u$ so that yu = uy.

To prove this lemma when we assume that uy = uyu one starts with the inequality $0 \le u + y^{-1} \le 1 + uy$ (from Lemma 2.5) and then shows (as above) that $0 \le (u + y^{-1})^n \le 1 + 3^n(u + uy)$ for all n. Hence, $u + y^{-1} \le 3(1 + u)$ and the rest of the proof follows as above.

LEMMA 2.7. If
$$1 \le x$$
, then $ux = xu$.

PROOF. Define $y_1 = 1 + u(x - 1)$ and $y_2 = 1 + (x - 1)u$. Note that $1 \le y_1$, $1 \le y_2$ and $y_1u = uy_1u = uxu = uy_2u = uy_2$. From Lemma 2.6 we get $uy_1 = y_1u = uy_2 = y_2u$. But $ux = uy_1 = y_2u = xu$.

THEOREM 2.8. If $z \in A$, then uz = zu.

PROOF. Since A is directed, we may write $z = x_1 - x_2$, where $1 \le x_1$ and $1 \le x_2$. The theorem follows from Lemma 2.7.

We may now define $B = \{x : ex = x\}$ and $N = \{x : ux = x\}$. It is easy to see that B and N are real linear algebras and that A is the direct sum of B and N. The remaining lemmas will be used later to describe the various properties of B and N.

LEMMA 2.9. If
$$1 \le x$$
, then $-5u \le ux^{-1} \le 5u$.

PROOF. Since ux = xu, we have xu = uxu. We now refer to the proof of Lemma 2.6 to get $-5u \le ux^{-1} \le 5u$.

LEMMA 2.10. If $x \in A$, $t \in N$ and both x and x + t have inverses, then $ex^{-1} = e(x + t)^{-1}$.

PROOF. Since $t \in N$, we have et = 0. Hence, ex = e(x + t) and the result follows easily, but one must use the fact that ex = xe.

LEMMA 2.11. If
$$1 \le x$$
, then $-u \le ex^{-1}$.

PROOF. Since $1 \le x(1 + nu)$ for every positive integer n, we have $-u \le (1 + nu)^{-1}x^{-1} = [1 - n(n+1)^{-1}u]x^{-1} = [e + (n+1)^{-1}u]x^{-1}$ for all n. From the Archimedean property it follows that $-u \le ex^{-1}$.

LEMMA 2.12. If
$$1 \le x$$
, then $ex^{-1} \le 1$.

PROOF. Using Lemma 2.11, we get $0 \le (u + ex^{-1})(x - 1)$, from which it follows that $0 \le u + ex^{-1} \le e + ux$. We now show by mathematical induction that $0 \le (u + ex^{-1})^n \le e + n(ux)$ for all n. The inequalities are clearly true for n = 1. If they are true for n = k, then

$$0 \le (u + ex^{-1})^{k+1} \le (e + kux)(u + ex^{-1}) = ex^{-1} + kux$$
$$\le u + ex^{-1} + kux \le e + ux + kux = e + (k+1)ux.$$

This completes the induction.

Since $e \le 1$, we get $0 \le (u + ex^{-1})^n \le n(1 + ux)$ for all n. From Lemma 2.4 we get $u + ex^{-1} \le 1 + u$ so that $ex^{-1} \le 1$.

LEMMA 2.13. If
$$1 \le x \le y$$
, then $-u \le exy^{-1} \le 1$.

PROOF. Since $-u \le x^{-1}$, we get $0 \le (y-x)(x^{-1}+u)$, from which $1 \le [y+u(y-x)x]x^{-1}$. From Lemmas 2.11 and 2.12 we get $-u \le ex[y+u(y-x)x]^{-1} \le 1$. Since $u(y-x)x \in N$, we may use Lemma 2.10 to get $-u \le exy^{-1} \le 1$.

LEMMA 2.14. If
$$0 \le z \le 1 + t$$
, where $t \in N$ and $0 \le t$, then $-u \le ez \le 1$.

PROOF. Since $1 \le 1 + nz \le 1 + n(1 + t)$ for every positive integer n, we can use Lemmas 2.10 and 2.13 to get $-u \le e(1 + nz) [(n + 1)1 + nt]^{-1} = (n + 1)^{-1}e(1 + nz) \le 1$. From the Archimedean property we get $-u \le ez \le 1$.

LEMMA 2.15. If $a \in B$, $s \in N$ and $-s \le a \le s$, then a = 0. (Note that ea = a and es = 0.)

PROOF. It is clear that $0 \le s + a \le 2s$. Therefore, $0 \le n(s + a) \le 1 + 2ns$ for every positive integer n. Hence, from Lemma 2.14 we get $-u \le ne(s + a) = na \le 1$ for all n. From the Archimedean property we get a = 0.

LEMMA 2.16. If
$$0 \le x \le y$$
 and $1 \le y$, then $-u \le exy^{-1} \le 1$.

PROOF. Since $0 \le y^{-1} + u$, we get $0 \le x(y^{-1} + u) \le y(y^{-1} + u) = 1 + yu$. Since $yu \in N$ and $0 \le yu$, we may use Lemma 2.14 to get $-u \le ex(y^{-1} + u) = exy^{-1} \le 1$.

LEMMA 2.17. If $0 \le z$ and $ez \le x$, where $1 \le x$, then $0 \le ez + ux$.

PROOF. Since $0 \le z = ez + uz \le x + uz$ and $1 \le x + uz$, we may use Lemma 2.16 to get $-u \le ez(x + uz)^{-1} \le 1$. Since $uz \in N$, it follows from Lemma 2.10 that $-u \le ezx^{-1}$. Hence, $-ux \le ez$ or $0 \le ez + ux$.

3. The structure of N. Since $0 \le u$, it is clear that N is a directed pola and that u is the identity for N. We will see that the structure of N is actually characterized in [2] but first we need two lemmas.

LEMMA 3.1. N is order-convex.

PROOF. We need only show that if $-t \le x \le t$ and $t \in N$, then $x \in N$ (recall that N is directed). Since x = ex + ux and $-t \le ux \le t$, we get $-2t \le ex \le 2t$. From Lemma 2.15 we obtain ex = 0 so that $x = ux \in N$.

LEMMA 3.2. N is closed with respect to order convergence.

PROOF. Let $\{x_n\}$ be a sequence of elements from N such that o-lim $x_n = x$. Thus, for some element $z \in A$ we have $-z \le x_n \le z$ for all n. Hence, $-uz \le ux_n = x_n \le uz$ for all n, which means $-uz \le x \le uz$. Since $uz \in N$ and N is order-convex, we have $x \in N$.

These lemmas enable us to assert that N is Dedekind σ -complete. Hence, N is a dsc-pola with identity u. We may now apply the results of [2]. Note that in [2] the term "polac" is used instead of "dsc-pola". Let N_1 denote the functional part of N as described in [2, p. 658].

THEOREM 3.3. $N = N_1$.

PROOF. Take any $t \in N$ such that $u \le t$. Put x = e + t = 1 + (t - u) so that $1 \le x$. From Lemma 2.9 we get $-5u \le ux^{-1} \le 5u$, which means that $ux^{-1} \in N_1$. Hence, $0 \le (ux^{-1})^2$. Since $u \le t \le t^2$ and $t^2(ux^{-1})^2 = (ux^{-1})^2t^2 = u$, we see that $t^2 \in N_1$. Since N_1 is order-convex, we can assert that $t \in N_1$. Since N is directed, we get $N = N_1$.

In particular this means that N is commutative. The reader is referred to [2] for a more detailed discussion.

4. The structure of B. In the special case that $u \le 1$ we have $0 \le e$ and one may show that $B = B_1$ = the functional part of B. In fact, one may show that $A = A_1$ = the functional part of A. We leave this as an exercise for the reader.

In general, we must introduce a new partial order in B. To do this we define $K = \{ez : 0 \le z\} \subset B$. The reader may easily verify that K is a generating cone in B and that K is closed with respect to multiplication.

LEMMA 4.1. If $a \in K$ and $-a \in K$, then a = 0.

PROOF. Suppose $0 \le y$ and $0 \le z$ are such that a = ey and -a = ez. Since

 $ey \le y$ and $ez \le z$, we get $-(y+z) \le a \le y+z$. But e(y+z) = a-a = 0 so that $y+z = u(y+z) \in N$. From Lemma 2.15 we get a=0.

We may now define a partial order \leq_o in B as follows: for b, $c \in B$ we write $b \leq_o c$ if and only if $c - b \in K$. Lemma 4.1 is used to assert that \leq_o is antisymmetric.

Lemma 4.2. The real linear algebra B with the partial order \leq_o is a directed pola which has the Archimedean property.

PROOF. It is easily verified that B is a directed pola. Let us now assume that $b, c \in B$ and $nb \leq_o c$ for every positive integer n. Thus, for each n we can find $z_n \in A$ such that $0 \leq z_n$ and $e(nz_n) = c - nb$. We may now take $y \in A$ so that $0 \leq y$ and $c \leq y$. Since $0 \leq y$ and $n \geq 1$, we get $ez_n \leq y - b$ for all n. Next select $x \in A$ so that $1 \leq x$ and $ez_n \leq y - b \leq x$. From Lemma 2.17 we get $0 \leq ez_n + ux$ for all n. Therefore, $0 \leq n(ez_n + ux) = c + n(ux - b)$ for all n. Since the partial order \leq in A has the Archimedean property, we have $0 \leq ux - b$. This means that $e(ux - b) = -b \in K$. Hence, $b \leq_o 0$.

LEMMA 4.3. If $f \in B$ and $e \leq_o f$, then there exists $g \in B$ such that $0 \leq_o g$ and fg = gf = e.

PROOF. There exists $y \in A$ such that $0 \le y$ and ey = f - e. Since f = e(1+y) and $1 \le 1+y$, we have $f(1+y)^{-1} = (1+y)^{-1}f = e$ and $0 \le u + e(1+y)^{-1}$ from Lemma 2.11. If we put $g = e(1+y)^{-1}$, then it is easy to show that g has the desired properties.

THEOREM 4.4. B is commutative.

PROOF. Define $F = \bigcup_{n=1}^{\infty} \{f \in B : -ne \leq_o f \leq_o ne\}$. It is clear that F is an order-convex subalgebra of B which has e as an order unit. Also, F has the Archimedean property. It is known that F is isomorphic to an algebra of bounded real-valued functions; see [8, p. 255, Exercise 24]. This means that F is commutative. If a, $b \in B$ and $e \leq_o a$ and $e \leq_o b$, then there exist elements c, $d \in B$ such that $0 \leq_o c$, $0 \leq_o d$ and ac = ca = e = bd = db. But $0 \leq_o ec = c \leq_o ac = e$ and $0 \leq_o ed = d \leq_o bd = e$, which means that $c \in F$ and $d \in F$. Thus, cd = dc and it follows easily that ab = ba. Since B is directed, it follows that B is commutative.

From the above results it follows that A is a commutative algebra. In this connection the authors recommend the very interesting paper of Jamison [6].

5. Examples. The basic example was described in the introduction. The reader should note that Example 4 is an important counterexample.

Example 1. This example was described in the introduction. Here we wish to show that A is Dedekind σ -complete. Let $x_n \in A$ be a sequence such that

 $0 \leqslant \cdots \leqslant x_2 \leqslant x_1$. Now $x_n = (\widetilde{x}_n, \lambda_n)$ and we must have $0 \leqslant \cdots \leqslant \lambda_2 \leqslant \lambda_1$. Define $\mu = \inf \{\lambda_n\}$ and note that $0 \leqslant \widetilde{x}_n(\tau) - \widetilde{x}_k(\tau) \leqslant \lambda_n - \mu$ for all $\tau \in [0, 1]$ and all $n \leqslant k$. Thus, the sequence $\{\widetilde{x}_n\}$ of functions converges uniformly to a continuous function \widetilde{y} . If we put $y = (\widetilde{y}, \mu)$, then it is easy to show that $y = \inf \{x_n\}$.

Example 2. Let \widetilde{B} be the real linear algebra of all continuous real-valued functions defined on the real line. Let

$$A = \{(\widetilde{x}; \alpha_1, \alpha_2, \dots) : \widetilde{x} \in \widetilde{B} \text{ and } \alpha_n \text{ real for all } n\}.$$

If the algebraic operations are defined componentwise, then A is a real linear algebra. The partial order \leq in A is defined as follows: if $x = (\widetilde{x}; \alpha_1, \alpha_2, \ldots)$ and $y = (\widetilde{y}; \beta_1, \beta_2, \ldots)$, then $x \leq y$ if and only if $0 \leq \widetilde{y}(\tau) - \widetilde{x}(\tau) \leq \beta_n - \alpha_n$ for all n and for all $\tau \in [-n, n]$. As in Example 1 we can show that A is a dsc-pola. The reader should note that order convergence of sequence of elements from A implies that the corresponding functions converge uniformly on every finite interval. The above idea can be generalized to any algebra \widetilde{B} of functions on a locally compact space.

We may define $u = (\widetilde{0}; 1, 1, ...)$ and then show that if $1 \le x$, then $-u \le x^{-1}$. Note that in this case the elements of B and N need not be bounded functions.

EXAMPLE 3. Let A be the set of all real-valued functions defined on the real line. If $x, y \in A$, we define x = y and $x \le y$ to mean that $x(\tau) = y(\tau)$ and $x(\tau) \le y(\tau)$ for almost all τ (Lebesgue measure). Thus, A is a dsc-pola, where the algebraic operations are defined pointwise (almost everywhere). Let $u \in A$ be the characteristic function of the set of positive real numbers. Thus, $u \le 1$ so that $0 \le e$. Note that the elements of B and N behave like real-valued functions but cannot be represented by real-valued functions which are defined everywhere on some set.

EXAMPLE 4. Let A be the real linear algebra of all matrices of the form $x = \begin{bmatrix} \alpha & \beta \\ 0 & \nu \end{bmatrix}$. If we define $0 \le x$ to mean that $0 \le \alpha$, $0 \le \beta$ and $\alpha + \beta \le \nu$, then A is a dsc-pola. If we put $u = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$, then it is a routine computation to show that if $1 \le x$, then $-u \le x^{-1}$ and that -u is the best possible lower bound for inverses of elements x such that $1 \le x$. Note that $0 \le 2u = u^2$ and that A is not commutative.

REFERENCES

- G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638.
- 2. Taen-yu Dai, On some special classes of partially ordered linear algebras, J. Math. Anal. Appl. 40 (1972), 649-682.
- 3. Ralph DeMarr, A class of partially ordered linear algebras, Proc. Amer. Math. Soc. 39 (1973), 255-260. MR 47 #1716.

- 4. D. W. Duboic, A note on David Harrison's theory of preprimes, Pacific J. Math. 21(1967), 15-19. MR 35 #103.
- 5. ——, Second note on David Harrison's theory of preprimes, Pacific J. Math. 24 (1968), 57-68. MR 36 #5049.
- 6. R. E. Jamison, Functional representation of algebraic intervals, Pacific J. Math. (to appear).
- 7. R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. No. 7 (1951). MR 13, 360.
- 8. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33
- 9. B. Z. Vulih, Introduction to the theory of partially ordered spaces, Fizmatgiz, Moscow, 1961; English transl., Wolters-Noordhoff, Groningen, 1967. MR 24 #A3494; 37 #121.

DEPARTMENT OF MATHEMATICS, YORK COLLEGE (CUNY), JAMAICA, NEW YORK 11451

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEW MEXICO, ALBUQUER-QUE, NEW MEXICO 87131