AN ASYMPTOTIC FORMULA FOR AN INTEGRAL IN STARLIKE FUNCTION THEORY

RY

R. R. LONDON AND D. K. THOMAS

ABSTRACT. The paper is concerned with the integral

$$H = \int_0^{2\pi} |f|^{\sigma} |F|^{\tau} (\operatorname{Re} F)^{\kappa} d\theta$$

in which f is a function regular and starlike in the unit disc, F = zf'/f, and the parameters σ , τ , κ are real. A study of H is of interest since various well-known integrals in the theory, such as the length of f(|z| = r), the area of $f(|z| \le r)$, and the integral means of f, are essentially obtained from it by suitably choosing the parameters. An asymptotic formula, valid as $r \to 1$, is obtained for H when f is a starlike function of positive order α , and the parameters satisfy $\alpha\sigma + \tau + \kappa > 1$, $\tau + \kappa > 0$, $\kappa > 0$, $\sigma > 0$. Several easy applications of this result are made; some to obtaining old results, two others in proving conjectures of Holland and Thomas.

1. Introduction. Let a function f be regular in the open unit disc D, and such that f(0) = 0, f'(0) = 1. Suppose a function F exists, regular in D, and of positive real part, for which

(1.1)
$$F(z) = zf'(z)/f(z) \quad (0 < |z| < 1), \quad F(0) = 1.$$

Then f is called starlike. It is well known that a starlike function is univalent, and maps D onto a set starshaped with respect to the origin.

Suppose now that f is starlike, and let (1.1) define F. We consider for 0 < r < 1 and real σ , τ , and κ , the integral

$$H(r, \sigma, \tau, \kappa) = \int_0^{2\pi} |f(re^{i\theta})|^{\sigma} |F(re^{i\theta})|^{\tau} (\operatorname{Re} F(re^{i\theta}))^{\kappa} d\theta.$$

With various choices of σ , τ , and κ , this integral is well known in starlike (and univalent) function theory. For example,

$$H(r, 1, 1, 0) = \int_{0}^{2\pi} |f(re^{i\theta})F(re^{i\theta})| d\theta = \int_{0}^{2\pi} r|f'(re^{i\theta})| d\theta$$

is the length of $f(\{z: |z| = r\})$, and

(1.2)
$$H(r, 2, 0, 1) = \int_0^{2\pi} |f(re^{i\theta})|^2 \operatorname{Re} F(re^{i\theta}) d\theta$$
$$= 2 \int_0^r \int_0^{2\pi} \rho |f'(\rho e^{i\theta})|^2 d\theta d\rho = 2A(r, f),$$

Received by the editors November 22, 1974.

AMS (MOS) subject classifications (1970). Primary 30A32; Secondary 30A32. Key words and phrases. Starlike function, order, length, area, integral means.

where A(r, f) is the area of $f(\{z: |z| \le r\})$. Also, for $\lambda > 0$,

(1.3)
$$H(r, \lambda, 0, 0) = \int_0^{2\pi} |f(re^{i\theta})|^{\lambda} d\theta = 2\pi I(r, \lambda, f),$$

and

(1.4)
$$H(r, \lambda, \lambda, 0) = \int_0^{2\pi} |f(re^{i\theta})F(re^{i\theta})|^{\lambda} d\theta$$
$$= \int_0^{2\pi} r^{\lambda} |f'(re^{i\theta})|^{\lambda} d\theta = 2\pi r^{\lambda} J(r, \lambda, f),$$

where $(I(r, \lambda, f))^{1/\lambda}$ and $(J(r, \lambda, f))^{1/\lambda}$ are integral means of f and f' respectively. In the present paper we suppose f to have a certain minimal growth, and find, for suitable σ , τ , and κ , as r tends to one, an asymptotic formula for $H(r, \sigma, \tau, \kappa)$.

A few remarks and definitions precede the statement of this result. From a classical theorem on regular functions of positive real part, and the relationship (1.1), we find for a starlike function f the well-known representation

(1.5)
$$f(z) = z \exp\left(-\int_0^{2\pi} \log(1 - ze^{-it}) d\mu(t)\right) \qquad (z \in D),$$

where μ is nondecreasing on $[0, 2\pi]$ and $\int_0^{2\pi} d\mu(t) = 2$. Any such function μ satisfying (1.5) is continuous apart from jumps of height at most $\int_0^{2\pi} d\mu(t)$. Pommerenke has shown (implicitly) in [4] that

$$\Delta(\varphi, f) = \lim_{r \to 1} \frac{\log |f(re^{i\theta})|}{-\log(1 - r)}$$

is the jump of μ at φ if $0 < \varphi < 2\pi$, and the sum of the jumps at 0 and 2π when $\varphi = 0$ or 2π . For $\alpha(f) = \sup_{\varphi} \Delta(\varphi, f)$ and $M(r) = \max_{|z|=r} |f(z)|$ (0 < r < 1) he has shown

(1.6)
$$\alpha(f) = \lim_{r \to 1} \frac{\log M(r, f)}{-\log(1 - r)}.$$

We call $\alpha(f)$ the order of f, and $\Delta(\varphi, f)$ the radial order of f on $\{re^{i\varphi}\}$.

Starlike functions of positive order are the main concern of the present paper. We shall, in the following, make implicit use of the fact that for such a function f, $\{\varphi: \Delta(\varphi, f) > 0\}$ is countable; and for $0 < c \le \alpha$, $\{\varphi: \Delta(\varphi, f) \ge c\}$ is finite nonempty.

Our result is as follows:

THEOREM 1. Let f be a starlike function of positive order α , and denote by $\varphi_1, \ldots, \varphi_N$ the values of φ in $[0, 2\pi)$ for which α is the radial order of f on $\{re^{i\varphi}\}$. Then if $\sigma > 0$, $\kappa \ge 0$, $\tau + \kappa \ge 0$, and $\alpha\sigma + \tau + \kappa > 1$,

$$H(r, \sigma, \tau, \kappa) \sim \alpha^{\tau+\kappa} C(\alpha \sigma + \tau + 2\kappa) (1-r)^{1-\tau-\kappa} \sum_{\nu=1}^{N} |f(re^{i\varphi_{\nu}})|^{\sigma},$$

as
$$r \to 1$$
, where, for $x > 1$, $C(x) = \int_{-\infty}^{\infty} dt/(1 + t^2)^{1/2} x = \Gamma(1/2x - 1/2)\Gamma(1/2x) \Gamma(1/2x)$.

Theorem 1 has some interesting applications. Let f be starlike of order α . Recalling (1.2) to (1.4), and using, with Theorem 1, the relationship

(1.7)
$$M(r, f) \sim \max(|f(re^{i\varphi_1})|, \ldots, |f(re^{i\varphi_N})|) \qquad (\alpha > 0)$$

(proved at the end of §2) we obtain for $\alpha > 0$:

$$\liminf_{r\to 1} \frac{A(r,f)}{M^2(r,f)} \ge \frac{1}{2}\alpha C(2\alpha+2), \qquad \limsup_{r\to 1} \frac{A(r,f)}{M^2(r,f)} \le \frac{1}{2}N\alpha C(2\alpha+2),$$

for $\alpha > 0$, $\alpha \lambda > 1$:

$$\liminf_{r \to 1} \frac{I(r, \lambda, f)}{(1 - r)M^{\lambda}(r, f)} \ge C(\alpha \lambda), \qquad \limsup_{r \to 1} \frac{I(r, \lambda, f)}{(1 - r)M^{\lambda}(r, f)} \le NC(\alpha \lambda),$$

and for $\alpha > 0$, $(1 + \alpha)\lambda > 1$:

$$\liminf_{r\to 1} \frac{J(r,\lambda,f)}{(1-r)^{1-\lambda}M^{\lambda}(r,f)} \ge \alpha^{\lambda}C(\alpha\lambda+\lambda),$$

$$\limsup_{r\to 1} \frac{J(r,\lambda,f)}{(1-r)^{1-\lambda}M^{\lambda}(r,f)} \leq N\alpha^{\lambda}C(\alpha\lambda+\lambda).$$

These are all results of Sheil-Small [5].

From (1.2), $A(r, f) = \frac{1}{2}H(r, 2, 0, 1)$ and A'(r, f) = H(r, 2, 2, 0)/r; so for $\alpha > 0$ Theorem 1 also yields

(1.8)
$$\lim_{r \to 1} \frac{(1-r)A'(r,f)}{A(r,f)} = 2\alpha.$$

A proof of this result, and a simple proof of (1.8) in the case $\alpha = 0$, are to be found in [3]. We are also able to prove, using Theorem 1, that, for $\alpha \lambda > 1$,

(1.9)
$$\lim_{r\to 1} \frac{(1-r)I'(r,\lambda,f)}{I(r,\lambda,f)} = \alpha\lambda - 1,$$

a result conjectured in [2]. In fact, once we have noticed, from (1.3), that, for any $\lambda > 0$, $I(r, \lambda, f) = H(r, \lambda, 0, 0)/2\pi$, and

$$I'(r,\lambda,f) = \frac{\lambda}{2\pi r} \int_0^{2\pi} |f(re^{i\theta})|^{\lambda} \operatorname{Re} F(re^{i\theta}) d\theta = \frac{\lambda}{2\pi r} H(r,\lambda,0,1),$$

the proof via Theorem 1 follows simply on noting

$$\alpha \lambda C(\alpha \lambda + 2) = (\alpha \lambda - 1) C(\alpha \lambda)$$
, for $\alpha \lambda > 1$.

Another conjecture in [2] is that, for $(1 + \alpha)\lambda > 1$,

(1.10)
$$\lim_{r \to 1} \frac{(1-r)J'(r,\lambda,f)}{J(r,\lambda,f)} = (1+\alpha)\lambda - 1.$$

A corollary of Theorem 1 yields a proof of (1.10) when $(1 + \alpha)\lambda > 1$, $\alpha > 0$, as we shall see in §4.

Our proof of Theorem 1 begins in §2, where some preliminary results are

obtained, and is completed in §3. In all that follows we assume that 0 < r < 1, and that θ is a real number. Also that the o, 0, and \sim notations refer to behaviour as r tends to one. The term r near one means all values of r in $(\eta, 1)$, for some η in (0, 1).

2. Preliminaries. In this section we prove a number of results on what are essentially powers of starlike functions. A function g will be called star-powered whenever

(2.1)
$$g(z) = z \exp\left(-\int_0^{2\pi} \log(1 - e^{-it}z) d\nu(t)\right) \qquad (z \in D),$$

for some nondecreasing function ν on $[0, 2\pi]$. For such a g, we define as for a starlike function g the terms order of g and radial order of g on $\{re^{i\varphi}\}$.

The results we now prove are directed towards finding for a star-powered function g, and the function

(2.2)
$$G: G(z) = zg'(z)/g(z) \quad (z \in D \setminus \{0\}), \quad G(0) = 1$$

information about behaviour on various subsets of D.

LEMMA 2.1. Let g be a star-powered function of positive order β , and in the above notation, put $K = \int_0^{2\pi} d\nu(t)$. Then

- (i) for $\epsilon > 0$, and r near one, $M(r, g) < (1 r)^{-\beta \epsilon}$;
- (ii) with G defined by (2.2), $M(r, G) \le 1 + Kr(1 r)^{-1}$.

This is a well-known result when g is starlike [4], [3] and the extension to star-powered functions is simple enough to omit.

LEMMA 2.2. Let g be a star-powered function of positive order β , and denote by ψ_1, \ldots, ψ_p the values of ψ in $[0, 2\pi)$ for which β is the radial order of f on $\{re^{i\varphi}\}$. Put

$$T(r) = [0, 2\pi] \setminus \bigcup_{k=1}^{p} \{\theta \mod 2\pi : |\theta - \psi_{k}| < l(r)\},$$

where $l(r) = (-\log 1 - r)^{-1}$, and let γ be the largest radial order of g less than β . Then for any positive ϵ , and r near one,

$$\sup_{\theta \in T(r)} |g(re^{i\theta})| = O(1)(1-r)^{-\gamma-\epsilon}.$$

PROOF. The function h,

$$h(z) = g(z) \prod_{k=1}^{p} (1 - ze^{-i\psi k})^{\beta},$$

is star-powered and has order γ , so by Lemma 2.1, for $\epsilon > 0$, and r near one, $M(r, h) < (1-r)^{-\gamma - \frac{1}{2}\epsilon}$. Also, for r near one, we have uniformly when $\theta \in T(r)$

$$\prod_{k=1}^{p} |1 - re^{i(\theta - \psi_k)}|^{-\beta} \le |1 - re^{il(r)}|^{-\beta p} \le (\frac{1}{2}l^2(r))^{-\frac{1}{2}\beta p}.$$

Hence

$$\sup_{\theta \in T(r)} |g(re^{i\theta})| = O(1)(1-r)^{-\gamma-1/2\epsilon}(-\log(1-r))^{\beta p},$$

from which the stated result follows.

LEMMA 2.3. Let g be a star-powered function of positive radial order β on $\{re^{i\varphi}\}$ $(0 \le \varphi < 2\pi)$. Suppose that λ is a positive number, and δ a positive function on (0, 1) for which $\lambda(1 - r) < \delta(r) = o(1)$. Then

$$|g(re^{i\theta})| < (1 + \lambda^2 + o(1))^{-\frac{1}{2}\beta}|g(re^{i\varphi})|$$

uniformly when $\lambda(1-r) < |\theta - \varphi| < \delta(r)$.

PROOF. Let

(2.3)
$$g(z) = zh(z)(1 - ze^{-i\varphi})^{-\beta} \quad (z \in D)$$

then, by an elementary argument,

(2.4)
$$|g(re^{i\theta})| < (1+o(1))r|h(re^{i\theta})|(1-r)^{-\beta} \left(1+\left(\frac{\theta-\varphi}{1-r}\right)^2\right)^{-\frac{1}{2}\beta}$$

uniformly when $|\theta - \varphi| < \delta(r)$. For h we shall prove

(2.5)
$$|h(re^{i\theta})| < |h(re^{i\varphi})| \exp\left(o(1) \int_0^{|\theta-\varphi|/2(1-r)} (1+t^2)^{-\frac{1}{2}} dt\right)$$

uniformly when $\lambda(1-r) < |\theta - \varphi| < \delta(r)$. The lemma then follows by combining (2.3) and (2.4) to form

$$|g(re^{i\theta})| < (1 + o(1))|g(re^{i\varphi})| \left(1 + \left(\frac{\theta - \varphi}{1 - r}\right)^2\right)^{-\frac{1}{2}\beta}$$

$$\cdot \exp\left(o(1)\int_0^{|\theta - \varphi|/2(1 - r)} (1 + t^2)^{-\frac{1}{2}} dt\right),$$

valid uniformly for $\lambda(1-r) < |\theta - \varphi| < \delta(r)$, and by noting that for any suitably small positive ϵ

$$y_{\epsilon} \colon y_{\epsilon}(x) = (1 + x^2)^{-\frac{1}{2}\beta} \exp\left(\epsilon \int_0^{\frac{1}{2}x} (1 + t^2)^{-\frac{1}{2}} dt\right) \qquad (x > \lambda)$$

is a decreasing function.

For the proof of (2.5), let η be a positive function on (0, 1) for which $\eta(r) = o(1)$, yet $\delta(r) = o(1)|1 - re^{i\eta(r)}|$, and put

$$E(r) = \{\theta \mod 2\pi \colon |\theta - \varphi| < \eta(r)\}, \quad E'(r) = [0, 2\pi] \setminus E(r).$$

Write

$$g(z) = z \exp\left(-\int_0^{2\pi} \log(1 - e^{-it}z) d\nu(t)\right) \qquad (z \in D),$$

then from (2.3) we deduce

(2.6)
$$h(z) = \exp\left(-\int_0^{2\pi} \log(1 - e^{-it}z) \, d\tau(t)\right) \qquad (z \in D)$$

where

(2.7)
$$\tau(t) = \nu(t) - \begin{cases} \beta, & \varphi < t \leq 2\pi, \\ 0, & 0 \leq t \leq \varphi. \end{cases}$$

We have, for any real t,

$$\begin{aligned} \log|1 - re^{i(\varphi - t)}| - \log|1 - re^{i(\theta - t)}| &= \operatorname{Re} \int_{\varphi - t}^{\theta - t} \frac{\partial}{\partial u} \left(\log \frac{1}{1 - re^{iu}} \right) du \\ &\leq \max_{0 \leq t \leq 2\pi} \int_{t}^{t + |\theta - \varphi|} \frac{du}{|1 - re^{iu}|} &= 2 \int_{0}^{\frac{1}{2}|\theta| - \varphi|} \frac{du}{|1 - re^{iu}|} \,. \end{aligned}$$

So with the aid of (2.7) we obtain

$$\int_{E(r)} (\log|1 - re^{i(\varphi - t)}| - \log|1 - re^{i(\theta - t)}|) d\tau(t)$$

$$(2.8) \qquad \leq 2 \left(\int_{E(r)} d\tau(t) \right) \left(\int_{0}^{\frac{1}{2}|\theta - \varphi|} \frac{du}{|1 - re^{iu}|} \right)$$

$$= o(1) \int_{0}^{\frac{1}{2}|\theta - \varphi|} \frac{du}{|1 - re^{iu}|} = o(1) \int_{0}^{|\theta - \varphi|/2(1 - r)} (1 + u^{2})^{-\frac{1}{2}} du,$$

uniformly when $|\theta - \varphi| < \delta(r)$. Now observe that, by the choice of η ,

$$\left|\frac{1 - re^{i(\theta - t)}}{1 - re^{i(\varphi - t)}} - 1\right| \leqslant \left|\frac{e^{i(\theta - \varphi)} - 1}{1 - re^{i\eta(r)}}\right| = o(1)$$

uniformly for $t \in E'$ and $|\theta - \varphi| < \delta(r)$. Hence

(2.9)
$$\int_{E'(r)} (\log|1 - re^{i(\varphi - t)}| - \log|1 - re^{i(\theta - t)}|) d\tau(t) < o(1) \int_{0}^{2\pi} d\tau(t) = o(1)$$
 uniformly when $|\theta - \varphi| < \delta(r)$. Combining (2.8) and (2.9), and using (2.6) we obtain (2.5) uniformly for $\lambda(1 - r) < |\theta - \varphi| < \delta(r)$.

LEMMA 2.4. Let g be a star-powered function of positive radial order β on $\{re^{i\varphi}\}\ (0 \le \varphi < 2\pi)$, and define G by (2.2). Then for 0 < c < C

(i)
$$|G(re^{i\theta})| \sim \beta(1-r)^{-1} \left(1 + \left(\frac{\theta-\varphi}{1-r}\right)^2\right)^{-\frac{1}{2}},$$

and

Re
$$G(re^{i\theta}) \sim \beta(1-r)^{-1} \left(1 + \left(\frac{\theta-\varphi}{1-r}\right)^2\right)^{-1}$$
,

uniformly when $|\theta - \varphi| < C(1 - r)$.

(ii)
$$\operatorname{Im} G(re^{i\theta}) \sim \beta(\theta - \varphi)(1 - r)^{-2} \left(1 + \left(\frac{\theta - \varphi}{1 - r}\right)^{2}\right)^{-1}$$

uniformly when $c(1-r) < |\theta - \varphi| < C(1-r)$.

(iii)
$$|g(re^{i\theta})| \sim |g(re^{i\varphi})| \left(1 + \left(\frac{\theta - \varphi}{1 - r}\right)^2\right)^{-\frac{1}{2}\beta}$$

uniformly when $|\theta - \varphi| < C(1 - r)$.

PROOF. Parts (i) and (ii) are easily proved if $G(z) = \beta z/(1-z)$, $\varphi = 0$, so in deriving (i) and (ii) we shall prove no more than

(2.10)
$$\left| G(re^{i\theta}) - \frac{\beta re^{i(\theta-\varphi)}}{1 - re^{i(\theta-\varphi)}} \right| = \frac{o(1)}{1 - r}$$

uniformly when $|\theta - \varphi| < \delta(r)$, where δ is any positive o(1) function on (0, 1). We have, from (2.1) and (2.2), for some nondecreasing function ν ,

$$G(z) = 1 + \int_0^{2\pi} \frac{e^{-it}z}{1 - e^{-it}z} d\nu(t) \qquad (z \in D)$$

and this we rewrite in terms of

(2.11)
$$\tau(t) = \nu(t) - \begin{cases} \beta, & \varphi < t \leq 2\pi, \\ 0, & 0 \leq t \leq \varphi, \end{cases}$$

as

(2.12)
$$G(re^{i\theta}) - \frac{\beta re^{i(\theta-\varphi)}}{1 - re^{i(\theta-\varphi)}} = 1 + \int_0^{2\pi} \frac{re^{i(\theta-t)}}{1 - re^{i(\theta-t)}} d\tau(t).$$

Let η and ϵ be positive functions on (0, 1) for which $\epsilon(r) = \delta(r) + \eta(r) = o(1)$, and $1 - r = o(1)|1 - re^{i\eta(r)}|$. Put

$$P(r) = \{\theta \mod 2\pi \colon |\theta - \varphi| < \epsilon(r)\}, \qquad Q(r) = [0, 2\pi] \setminus P(r),$$

and consider now only values of r for which Q(r) is nonempty. Then from (2.11) we see that

(2.13)
$$\left| \int_{P(r)} \frac{re^{i(\theta - t)}}{1 - re^{i(\theta - t)}} d\tau(t) \right| \le \frac{1}{1 - r} \int_{P(r)} d\tau(t) = \frac{o(1)}{1 - r}$$

uniformly for real θ . Moreover, for $|\theta - \varphi| < \delta(r)$ and $t \in Q(r)$, $\eta(r) \le |\theta - t| \le 2\pi - \eta(r)$, so we also have, uniformly for $|\theta - \varphi| < \delta(r)$,

$$(2.14) \qquad \left| \int_{Q(r)} \frac{re^{i(\theta-t)}}{1-re^{i(\theta-t)}} d\tau(t) \right| \leq \left| \frac{1}{1-re^{i\eta(r)}} \right| \int_{Q(r)} d\tau(t) = \frac{o(1)}{1-r},$$

by the choice of η . Now combining (2.12), (2.13) and (2.14), the required estimate (2.10) is easily obtained.

We next derive (iii). Using the identity

(2.15)
$$\frac{\partial}{\partial \theta} \log |g(re^{i\theta})| = -\operatorname{Im} G(re^{i\theta})$$

and (ii) of this lemma, we have, uniformly for $c(1-r) < \theta - \varphi < C(1-r)$,

$$\begin{split} \log \left| \frac{g(re^{i\theta})}{g(re^{i(\varphi+c(1-r))})} \right| &\sim -\beta \int_{\varphi+c(1-r)}^{\theta} \frac{t-\varphi}{(1-r)^2 + (t-\varphi)^2} dt \\ &= -\beta \int_{c(1-r)}^{\theta-\varphi} \frac{u}{(1-r)^2 + u^2} du = -\beta \int_{c}^{(\theta-\varphi)/1-r} \frac{t}{1+t^2} dt \\ &= -\frac{\beta}{2} \log \left(\frac{1 + ((\theta-\varphi)/(1-r))^2}{1+c^2} \right). \end{split}$$

From this, and a similar argument, we deduce

$$\left|\frac{g(re^{i\theta})}{g(re^{i(\varphi+c(1-r))})}\right| \sim \left(\frac{1+c^2}{1+((\theta-\varphi)/(1-r))^2}\right)^{\frac{1}{2}\beta},$$

and

$$\left| \frac{g(re^{i\theta})}{g(re^{i(\varphi-c(1-r))})} \right| \sim \left(\frac{1+c^2}{1+((\theta-\varphi)/(1-r))^2} \right)^{1/2\beta}$$

valid uniformly for $c(1-r) < \theta - \varphi < C(1-r)$, and $-C(1-r) < \theta - \varphi < -c(1-r)$ respectively. When $|\theta - \varphi| \le c(1-r)$ we have, using (2.15) again and Lemma 2.1(ii),

$$\left|\log\left|\frac{g(re^{i\theta})}{g(re^{i\varphi})}\right|\right| = \left|\int_{\varphi}^{\theta} \operatorname{Im} G(re^{it}) dt\right| \leq c(1-r) \left(1 + \frac{Kr}{1-r}\right),$$

from which

$$e^{-c(1-r+Kr)} \le \left| \frac{g(re^{i\theta})}{g(re^{i\phi})} \right| \le e^{c(1-r+Kr)},$$

and this modifies trivially to

$$e^{-c(1-r+Kr)} \left(\frac{1}{1+((\theta-\varphi)/(1-r))^2} \right)^{\frac{1}{2}\beta} \leq \left| \frac{g(re^{i\theta})}{g(re^{i\varphi})} \right|$$

$$\leq e^{c(1-r+Kr)} \left(\frac{1+c^2}{1+((\theta-\varphi)/(1-r))^2} \right)^{\frac{1}{2}\beta}.$$

Since c is an arbitrary positive number, the last two results imply (iii).

To conclude this sequence of lemmas we shall prove a result assumed in §1.

LEMMA 2.5. Let g be a star-powered function of positive order β , and denote by ψ_1, \ldots, ψ_p the values of ψ in $[0, 2\pi)$ for which β is the radial order of f on $\{re^{i\varphi}\}$. Then

$$M(r, g) \sim \max(|g(re^{i\psi 1})|, \ldots, |g(re^{i\psi p})|.$$

PROOF. Let

$$T(r) = [0, 2\pi] \setminus \bigcup_{k=1}^{p} \{\theta \mod 2\pi \colon |\theta - \psi_k| < l(r)\},$$

then from Lemma 2.2, and the inequalities

$$|g(z)| \ge r(1+r)^{\nu(2\pi)-\nu(0)}|1-ze^{-i\psi k}|^{-\beta}$$
 $(|z|=r, k=1, \ldots, p),$

which follows easily from (2.1), we have

(2.16)
$$\sup_{\theta \in T(r)} |g(re^{i\theta})| = o(1)M(r,g).$$

Now using Lemma 2.3, we see via (2.16) that if $\epsilon > 0$ and

$$W(r, \epsilon) = [0, 2\pi] \setminus \bigcup_{k=1}^{p} \{\theta \mod 2\pi \colon |\theta - \psi_k| < \epsilon(1-r)\},$$

then, for r near one,

$$\sup_{\theta \in W(r,\epsilon)} |g(re^{i\theta})| < (1 + \frac{1}{2}\epsilon^2)^{-\frac{1}{2}\beta} M(r,g).$$

So $|g(re^{i\eta(r)})| = M(r, g)$ where, for the same ϵ and r, $|\eta(r) - \psi_k| \le \epsilon(1 - r)$ and $k = k(r) \in \{1, \ldots, N\}$. Since ϵ is an arbitrary positive number we deduce from Lemma 2.4(iii) that

$$M(r, g) < (1 + o(1))|g(re^{i\psi k})|$$

where k = k(r). Hence

$$M(r, g) < (1 + o(1)) \max(|g(re^{i\psi_1})|, \ldots, |g(re^{i\psi_p})|),$$

and obviously this completes the proof.

3. Proof of Theorem 1. Let f be a starlike function of positive order α , and denote by $\varphi_1, \ldots, \varphi_N$ the values of φ in $[0, 2\pi)$ for which α is the radial order of f on $\{re^{i\varphi}\}$. Let $l(r) = (-\log(1-r))^{-1}$, and put

$$U_k(r) = \{\theta \colon |\theta - \varphi_k| < l(r)\} \qquad (k = 1 \text{ to } N),$$

$$T(r) = [0, 2\pi] \setminus \bigcup_{k=1}^{N} \{\theta \mod 2\pi \colon \theta \in U_k(r)\}.$$

Then, for real σ , τ and κ , and r near one, $H(r, \sigma, \tau, \kappa) = \sum_{k=1}^{N} X_k + Y$, where

$$X_k = \int_{U_k(r)} |f|^{\sigma} |F|^{\tau} (\operatorname{Re} F)^{\kappa} d\theta, \qquad Y = \int_{T(r)} |f|^{\sigma} |F|^{\tau} (\operatorname{Re} F)^{\kappa} d\theta.$$

When $\alpha \sigma + \tau + \kappa > 1$, $\tau + \kappa \ge 0$, $\kappa \ge 0$, $\sigma > 0$, we shall find for each X_k the asymptotic formula

(3.1)
$$X_{k} \sim \alpha^{\tau+\kappa} C(\alpha \sigma + \tau + 2\kappa) (1-r)^{1-\tau-\kappa} |f(re^{i\varphi_{k}})|^{\sigma}.$$

and for Y the estimate

(3.2)
$$Y = o(1)(1-r)^{1-\alpha\sigma-\tau-\kappa}.$$

Since, by the representation (1.5), $|f(re^{i\varphi_k})| \ge r(1+r)^{-2}(1-r)^{-\alpha}$, we then have $Y = o(1)\sum_{k=1}^{N} X_k$; and consequently $H(r, \sigma, \tau, \kappa) \sim \sum_{k=1}^{N} X_k$. Our proof of (3.1) is in §3.1, and that of (3.2) in §3.2.

3.1. Denote by φ any one of the φ_k , and by U(r) the corresponding $U_k(r)$. We have to prove

(3.3)
$$\int_{U(r)} |f(re^{i\theta})|^{\sigma} |F(re^{i\theta})|^{\tau} \left(\operatorname{Re} F(re^{i\theta})\right)^{\kappa} d\theta$$
$$\sim \alpha^{\tau+\kappa} C(\alpha\sigma + \tau + 2\kappa)(1-r)^{1-\tau-\kappa} |f(re^{i\varphi})|^{\sigma}$$

for $\alpha \sigma + \tau + \kappa > 1$, $\tau + \kappa \ge 0$, $\kappa \ge 0$, $\sigma > 0$. Let

$$V(r, x) = \{\theta : |\theta - \varphi| < x(1 - r)\}$$
 $(x > 0)$

and write

(3.4)
$$\int_{U(r)} = \int_{V(r,x)} + \int_{U(r)\setminus V(r,x)} = I_1 + I_2,$$

say, where the missing integrand is that in (3.3). For I_1 we have, by Lemma 2.4, for real σ , τ , and κ , and for x > 0,

$$I_{1} \sim \alpha^{\tau+\kappa} (1-r)^{-\tau-\kappa} |f(re^{i\varphi})|^{\sigma} \int_{V(r,x)} \left(1 + \left(\frac{\theta-\varphi}{1-r}\right)^{2}\right)^{-\frac{1}{2}(\alpha\sigma+\tau+2\kappa)} d\theta$$

$$= \alpha^{\tau+\kappa} (1-r)^{1-\tau-\kappa} |f(re^{i\varphi})|^{\sigma} \int_{-\tau}^{x} (1+t^{2})^{-\frac{1}{2}(\alpha\sigma+\tau+2\kappa)} dt.$$

For I_2 consider first the case $\tau + \kappa \neq 0$. Let p and q be chosen so that $\alpha \sigma p > 1$, $(\tau + \kappa)q > 1$, $p^{-1} + q^{-1} = 1$, p > 1; it is easy to verify that this is possible. Then, using the inequality $\kappa \geq 0$, and Hölder's inequality, we obtain

$$I_2 \leqslant \int_{U \setminus V} |f|^{\sigma} |F|^{\tau + \kappa} d\theta \leqslant \left(\int_{U \setminus V} |f|^{\sigma p} \right)^{1/p} \left(\int_0^{2\pi} |F|^{(\tau + \kappa)q} \right)^{1/q},$$

where $U \equiv U(r)$, $V \equiv V(r, x)$. With $I(\lambda) = \int_{U \setminus V} |f|^{\lambda}$, and use of Hayman's well-known estimate [1], applicable here since $(\tau + \kappa)q > 1$, this becomes

(3.6)
$$I_2 = O(1)(1-r)^{(1/q)-\tau-\kappa}(I(qp))^{1/p}.$$

To deal with I we put

$$g(z) = z(1 - ze^{-i\varphi})^{\frac{1}{2}(\alpha\lambda + 1)}(f(z)/z)^{\lambda} \qquad (z \in D \setminus \{0\})$$

where $\alpha \lambda > 1$, and write

$$\begin{split} r^{1-\lambda}I(\lambda) &= \int_{U\setminus V} |g(re^{i\theta})| |1 - re^{i(\theta-\varphi)}|^{-\frac{1}{2}(\alpha\lambda+1)} d\theta \\ &= \int_{\varphi-l(r)}^{\varphi-x(1-r)} + \int_{\varphi+x(1-r)}^{\varphi+l(r)} = J_1 + J_2. \end{split}$$

On $\{re^{i\varphi}\}$ g has radial order $\frac{1}{2}(\alpha\lambda-1)>0$, so the lemmas of §2 apply. From Lemma 2.4(ii) and (2.15), we see that, for r near one, $|g(re^{i\theta})|$ increases throughout the interval $(\varphi-x'(1-r), \varphi-x(1-r))$. So on applying Lemma 2.3 to $|g(re^{i\theta})|$ for θ in $(\varphi-l(r), \varphi-x'(1-r))$ we have for $r>r_0(x)$ that in $(\varphi-l(r), \varphi-x(1-r))$, $|g(re^{i\theta})|<|g(re^{i(\varphi-x(1-r))})|$. This result applied to J_1 , and a similar one applied to J_2 , give for $r>r_0(x)$

$$r^{1-\lambda}I(\lambda) \leq \max|g(re^{i(\varphi\pm x(1-r))})| \int_{I/\lambda} |1-re^{i(\theta-\varphi)}|^{-\frac{1}{2}(\alpha\lambda+1)}d\theta.$$

Now using Lemma 2.4(iii) we obtain, for $r > r_0(x)$,

$$I(\lambda) < |g(re^{i\varphi})| \int_{U \setminus V} |1 - re^{i(\theta - \varphi)}|^{-\frac{1}{2}(\alpha\lambda + 1)} d\theta.$$

For $\epsilon > 0$, x suitably large, and r near one, it is easy to prove that

$$\int_{U\setminus V} |1 - re^{i(\theta - \varphi)}|^{-\frac{1}{2}(\alpha\lambda + 1)} d\theta < \epsilon \int_{V} |1 - re^{i(\theta - \varphi)}|^{-\frac{1}{2}(\alpha\lambda + 1)} d\theta$$

by making the substitution $\theta - \varphi = t(1 - r)$ and using $\alpha \lambda > 1$. Moreover, for any given positive x, and r near one,

$$\int_{V} |1 - re^{i(\theta - \varphi)}|^{-\frac{1}{2}(\alpha\lambda + 1)} d\theta \le \int_{0}^{2\pi} |1 - re^{i(\theta - \varphi)}|^{-\frac{1}{2}(\alpha\lambda + 1)} d\theta$$

$$< A(1-r)^{-\frac{1}{2}(\alpha\lambda-1)}$$

where A denotes an absolute constant. So when $x > x_0(\epsilon)$ and $r > r_0(\epsilon)$ we have

$$(3.7) I(\lambda) < A \epsilon |g(re^{i\varphi})|(1-r)^{-\frac{1}{2}(\alpha\lambda-1)} < A \epsilon (1-r)|f(re^{i\varphi})|^{\lambda}$$

for $\alpha \lambda > 1$, and since $\alpha \sigma p > 1$ we may substitute (3.7) into (3.6) with $\lambda = \sigma p$ and obtain, for any $\epsilon > 0$,

$$(3.8) \quad I_2 < A \epsilon (1-r)^{1-\tau-\kappa} |f(re^{i\varphi})|^{\sigma}. \qquad (x > x_0(\epsilon), r > r_0(\epsilon)).$$

To prove (3.8) when $\tau + \kappa = 0$ we first deduce $I_2 \le I(\sigma)$ using $\kappa \ge 0$, and then note that (3.7) applies with $\lambda = \sigma$ since $\alpha \sigma = \alpha \sigma + \tau + \kappa > 1$. Now using (3.4), (3.5) and (3.8) we easily obtain (3.3).

3.2. We have to prove that for $\alpha \sigma + \tau + \kappa > 1$, $\tau + \kappa \ge 0$, $\kappa \ge 0$, $\sigma > 0$,

(3.9)
$$\int_{T(r)} |f(re^{i\theta})|^{\sigma} |F(re^{i\theta})|^{\tau} (\operatorname{Re} F(re^{i\theta}))^{\kappa} d\theta = o(1)(1-r)^{1-\alpha\sigma-\tau-\kappa}.$$

Assume $\tau + \kappa > 0$ so that p and q exist satisfying $\alpha \sigma p > 1$, $(\tau + \kappa)q > 1$, $p^{-1} + q^{-1} = 1$, p > 1. Then, since $\kappa \ge 0$, we have by Hölder's inequality

(3.10)
$$\int_{T(r)} |f|^{\sigma} |F|^{\tau} (\operatorname{Re} F)^{\kappa} \leq \left(\int_{T(r)} |f|^{\sigma p} \right)^{1/p} \left(\int_{0}^{2\pi} |F|^{(\tau+\kappa)q} \right)^{1/q} = O(1)(1-r)^{1/q-\tau-\kappa} \left(\int_{T(r)} |f|^{\sigma p} \right)^{1/p},$$

where we have used Hayman's result [1], applicable since $(\tau + \kappa)q > 1$.

We now let $\lambda = \sigma \rho$, so that $\alpha \lambda > 1$, and consider $\int_{T(r)} |f|^{\lambda} d\theta$. Denote by $\varphi_1, \ldots, \varphi_N, \ldots$ the sequence of φ for which on $\{re^{i\varphi}\}$ the radial order of f is positive, and by α_k the radial order of f on $\{re^{i\varphi k}\}$. Then, since $\alpha \lambda > 1$, we define a star-powered function g by

$$g(z) = z \left(\frac{f(z)}{z}\right)^{\lambda} \prod_{0 \le \gamma_k \le 1} (1 - ze^{-i\varphi_k})^{\gamma_k + \xi} \qquad (z \in D \setminus \{0\})$$

where $\gamma_k = \alpha_k \lambda - \alpha \lambda + 1$, $\xi = \min(\alpha \lambda - 1, 1 - \gamma_k)$.

Any radial order of g less than the order is also less than $\alpha\lambda - 1$. Thus, by Lemma 2.2, for some positive δ ,

$$\sup_{\theta \in T(r)} |g(re^{i\theta})| = O(1)(1-r)^{1-\alpha\lambda+\delta}.$$

Hence

$$\int_{T(r)} |f|^{\lambda} d\theta = O(1)(1-r)^{1-\alpha\lambda+\delta} \int_{0}^{2\pi} \prod_{0 \leq \gamma_{k} < 1} |1-re^{i(\theta-\varphi_{k})}|^{-\gamma_{k}-\xi} d\theta$$

$$= O(1)(1-r)^{1-\alpha\lambda+\delta} \int_0^{2\pi} |1-re^{i\theta}|^{-1} d\theta,$$

since $\gamma_k + \xi \le 1$, and the points φ_k for which $0 \le \gamma_k < 1$ are distinct and finite in number. The last integral is $O(\log 1/(1-r))$, so

(3.11)
$$\int_{T(r)} |f|^{\lambda} d\theta = o(1)(1-r)^{1-\alpha\lambda}$$

and (3.9) follows easily from this (with $\lambda = \sigma p$) and (3.10). To prove (3.9) when $\tau + \kappa = 0$, we first use $\kappa \ge 0$ to deduce

$$\int_{T(r)} |f|^{\sigma} |F|^{\tau} (\operatorname{Re} F)^{\kappa} d\theta \leq \int_{T(r)} |f|^{\sigma} d\theta,$$

and then note that (3.11) applies with $\lambda = \sigma$, since $\alpha \sigma = \alpha \sigma + \tau + \kappa > 1$.

4. Proof of a conjecture by Holland and Thomas. With the aid of a corollary to Theorem 1, we can outline a proof of the conjecture (1.10) in the case $\alpha > 0$, that is (in the notation of (1.10))

(4.1)
$$\lim_{r \to 1} \frac{(1-r)J'(r,\lambda)}{J(r,\lambda)} = (1+\alpha)\lambda - 1, \text{ for } \alpha > 0, (1+\alpha)\lambda > 1$$
 where

(4.2)
$$J(r,\lambda) = \frac{1}{2\pi r^{\lambda}} \int_{0}^{2\pi} |f(re^{i\theta})F(re^{i\theta})|^{\lambda} d\theta.$$

In proving a similar result for I (also conjectured by Holland and Thomas), we used Theorem 1 to represent both I and I'. The same approach will suffice for J but not for J' since we have

$$(4.3) J'(r,\lambda) = \frac{\lambda}{2\pi r^{\lambda+1}} \int_0^{2\pi} |f(re^{i\theta})F(re^{i\theta})|^{\lambda} (\operatorname{Re} F(re^{i\theta}) + \operatorname{Re} F(re^{i\theta}) - 1) d\theta$$

where

$$F(z) = zF'(z)/F(z)$$
 $(z \in D)$.

However, when $(1 + \alpha)\lambda > 1$, a representation of J' can be squeezed out from the proof of Theorem 1.

The following results on Fare needed:

(i) If f has positive radial order on $\{re^{i\varphi}\}$

Re
$$F(re^{i\theta}) \sim \left(1 + \left(\frac{\theta - \varphi}{1 - r}\right)^2\right)^{-\frac{1}{2}} (1 - r)^{-1}$$

uniformly when $\theta - \varphi < O(1)(1-r)$.

(ii)
$$|F(z)| \le 2r/(1-r^2), \quad (|z|=r).$$

(i) follows from an argument similar to that in Lemma 2.4(i); for (ii) see [3]. Next we have the

COROLLARY TO THEOREM 1. Let f and $\varphi_1, \ldots, \varphi_N$ be given as in Theorem 1, and suppose that $\sigma > 0$, $\tau \ge 0$, $\alpha \sigma + \tau > 1$. If Φ is any real function on D for which

(i)
$$\Phi(re^{i\theta}) \sim \left(1 + \left(\frac{\theta - \varphi_k}{1 - r}\right)^2\right)^{-\frac{1}{2}} (1 - r)^{-1}$$

uniformly when $|\theta - \varphi_k| < O(1)(1 - r)$, and

(ii)
$$|\Phi(z)| = O(1)(1-r)^{-1}$$
 $(|z|=r),$

then

$$\int_0^{2\pi} |f(re^{i\theta})|^{\sigma} |F(re^{i\theta})|^{\tau} \Phi(re^{i\theta}) d\theta \sim \alpha^{\tau} C(\alpha \sigma + \tau + 1)(1 - r)^{-\tau} \sum_{k=1}^N |f(re^{i\varphi_k})|^{\sigma}.$$

Clearly we may take $\Phi=\text{Re }F$ in the corollary. In this way we find a representation for

$$\int_0^{2\pi} |f(re^{i\theta})F(re^{i\theta})|^{\lambda} \operatorname{Re} F(re^{i\theta}) d\theta$$

when $\alpha > 0$, $(1 + \alpha)\lambda > 1$. Theorem 1 supplies representations for

$$\int_0^{2\pi} |f(re^{i\theta})F(re^{i\theta})|^{\lambda} \operatorname{Re} F(re^{i\theta}) d\theta$$

when $\alpha > 0$, $\lambda > 0$, and for $J(r, \lambda)$ when $\alpha > 0$, $(1 + \alpha)\lambda > 1$. With these results it is not difficult to obtain (4.1) via (4.2) and (4.3).

REFERENCES

1. W. K. Hayman, On functions with positive real part, J. London Math. Soc. 36 (1961), 35-48. MR 27 #311.

- 2. F. Holland and D. K. Thomas, On the order of a starlike function, Trans. Amer. Math. Soc. 158 (1971), 189-201. MR 43 #3438.
- 3. R. R. London and D. K. Thomas, An area theorem for starlike functions, Proc. London Math. Soc. (3) 20 (1970), 734-748. MR 41 #7087.
- 4. Ch. Pommerenke, On starlike and convex functions, J. London Math. Soc. 37 (1962), 209-224. MR 25 #1279.
- 5. T. Sheil-Small, Starlike univalent functions, Proc. London, Math. Soc. (3) 21 (1970), 577-613. MR 43 #2207.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY COLLEGE OF SWANSEA, SWANSEA SA2 8PP, WALES