EQUIVARIANT BORDISM AND SMITH THEORY. IV

BY

R. E. STONG

ABSTRACT. This paper analyzes two types of characteristic numbers defined for manifolds with Z_4 action, showing their relation and that neither suffices to detect Z_4 equivariant bordism. This extends work of Bix who had given examples not detected by one type of number.

- 1. Introduction. T. tom Dieck [4] has introduced a notion of equivariant Stiefel-Whitney numbers for actions of a finite group G on closed manifolds and has shown that these numbers determine equivariant G bordism for $G = (Z_2)^k$. Recently, Bix [1] has shown that these numbers do not determine the bordism class for $G = Z_4$.
- In [2], a notion of equivariant characteristic numbers for Z_2 actions was introduced. In this paper that notion will be extended, in the obvious way, to G actions. It will then be shown that these numbers determine tom Dieck's numbers. For Z_4 they give more information than tom Dieck's numbers, but also do not detect bordism.

The author is indebted to Michael Bix for having made an advance copy of his paper available, and to the National Science Foundation for financial support.

2. Characteristic numbers. Let G be a finite group; let R, V_1, \ldots, V_m be the distinct irreducible real representations of G, with R the trivial representation. Form $V = R^{\infty} \oplus V_1^{\infty} \oplus \cdots \oplus V_m^{\infty}$, the direct sum of a countable number of copies of each representation and let BO_n be the Grassmannian of n-planes in V, with the G action ϕ induced by the representation on V. Then (BO_n, ϕ) is a classifying space for n-plane bundles with G action over decent spaces.

Letting $V \to R \oplus V : v \to (0, v)$ and identifying $R \oplus R^{\infty}$ with R^{∞} one assigns to an n-plane α in V the n+1 plane $R \oplus \alpha$ in $R \oplus V \cong V$, which defines an inclusion $i : BO_n \to BO_{n+1}$. This is an equivariant map, and if γ_n is the universal n-plane bundle over BO_n , $i^*(\gamma_{n+1}) = \gamma_n \oplus 1_+$, where 1_+ is the trivial line bundle with trivial G action. Let (BO, ϕ) be the limit of the BO_n 's with these maps.

If (M, ψ) is a compact n manifold with boundary with G action, there is a

classifying map $\tau_M\colon (M,\,\psi)\to (BO_n,\,\phi)$, unique up to equivariant homotopy. If $(M,\,\psi)$ is a regularly imbedded invariant submanifold of ∂V , with $(V,\,\psi')$ a G action, then the tangent bundle of V restricts to $\tau_M\oplus 1_+$ on M, which is classified by $i\circ\tau_M\colon (M,\,\psi)\to (BO_{n+1},\,\phi)$. Thus one has a well-defined homotopy class of maps $\tau_M\colon (M,\,\psi)\to (BO,\,\phi)$ classifying the stable tangent bundle of M, and if $(M,\,Q)$ is regularly imbedded in the boundary of $(V,\,\psi')$ by $f\colon M\to \partial V$, then $\tau_V\circ f=\tau_M$.

Being given a pair (X, A, ρ) with G action one then defines a natural transformation $\tau_* \colon \mathfrak{N}_*^G(X, A, \rho) \to \mathfrak{N}_*^G(X \times BO, A \times BO, \rho \times \phi)$ by sending the class of $f \colon (M, \partial M, \psi) \to (X, A, \rho)$ to the class of $f \times \tau_M \colon (M, \partial M, \psi) \to (X \times BO, A \times BO, \rho \times \phi)$.

For any pair (X, A, ρ) , one has a natural transformation

$$\mu: \mathfrak{N}^G_*(X, A, \rho) \longrightarrow H^G_*(X, A, \rho; Z_2)$$

assigning to $f: (M, \partial M, \psi) \longrightarrow (X, A, \rho)$ the image $f_*([M, \partial M, \psi])$ of the fundamental Smith homology class (see [3, §2]).

The composite

$$\mu \circ \tau_{\star}: \mathfrak{N}_{\star}^{G}(X, A, \rho) \longrightarrow H_{\star}^{G}(X \times BO, A \times BO, \rho \times \phi; Z_{2})$$

gives rise to equivariant characteristic numbers; i.e. every element of the dual Smith cohomology group $H_G^*(X \times BO, A \times BO, \rho \times \phi; Z_2)$ gives a characteristic number for the G bordism of (X, A, ρ) . Restricting to X a point and A empty gives $\mu \circ \tau_* : \mathfrak{R}^G_* \longrightarrow H_*^G(BO, \phi; Z_2)$.

3. Tom Dieck's numbers. To describe tom Dieck's characteristic numbers, one may follow Bix's approach. Let $\pi \colon EG \longrightarrow BG$ be a universal principal G bundle and let (M, ψ) be a G manifold with $(\tau(M), \psi_*)$ its tangent bundle with G action induced by the differential. Then $EG \times_G \tau(M) \longrightarrow EG \times_G M$ is a vector bundle classified by a map $EG \times_G M \xrightarrow{\alpha} BO$, inducing a homomorphism

$$\alpha^*$$
: $H^*(BO; Z_2) \longrightarrow H^*(EG \times_G M; Z_2)$.

Integration along the fibers defines a homomorphism

$$\natural\colon H^*(EG\times_GM;Z_2)\longrightarrow H^*(BG;Z_2)$$

of degree $-(\dim M)$. Assigning to (M, ψ) the homomorphism 4:0 $\alpha*$ defines a homomorphism

$$\chi: \mathfrak{N}_*^G \longrightarrow \operatorname{Hom}(H^*(BO; Z_2), H^*(BG; Z_2))$$

which gives characteristic numbers.

To relate this to Smith homology, consider a space with G action (X, ϕ) . Let C(X) denote the mod 2 chains of X and $C^{\circ}(X)$ the subcomplex of chains invariant under G. Then $H_*^G(X; Z_2)$ is the homology of the complex $C^{\circ}(X)$. In particular, if G acts freely on X, $C^{\circ}(X)$ is isomorphic to C(X/G) and $H_*^G(X; Z_2) \cong H_*(X/G; Z_2)$.

Now consider a class $a \in H_*^G(X; Z_2)$ and a class $b \in H_*(BG; Z_2)$. Representative cycles a' and b' may be chosen in $C^\circ(X)$ and $C^\circ(EG)$, and their product $a' \otimes b'$ is a cycle in $C^\circ(X \times EG)$, giving a class in $H_*(X \times_G EG; Z_2)$. Thus one has a product

$$H_*^G(X; Z_2) \otimes H_*(BG; Z_2) \longrightarrow H_*(X \times_G EG; Z_2)$$

or a homomorphism

$$H_*^G(X; Z_2) \longrightarrow \operatorname{Hom}(H_*(BG; Z_2), H_*(X \times_G EG; Z_2))$$

and applying duality of homology and cohomology gives

$$\bigcap : H_*^G(X; Z_2) \longrightarrow \operatorname{Hom}(H^*(X \times_G EG; Z_2), H^*(BG; Z_2)).$$

Notice that if X is given by a G manifold (M, ψ) , that $\bigcap ([M])$ is just \forall , i.e. integration along the fibers is obtained in this way from the fundamental class of M.

Now letting (BO, ϕ) be the universal action with universal G bundle (γ, ϕ_*) , $EG \times_G \gamma \to EG \times_G BO$ is a vector bundle, classified by a map $c: EG \times_G BO \to BO$. Assigning to $x \in H^G_*(BO, \phi; Z_2)$ the composite $\bigcap (x) \circ c^*$ defines a homomorphism

$$\gamma^*$$
: $H^G_*(BO, \phi; Z_2) \longrightarrow \text{Hom}(H^*(BO; Z_2), H^*(BG; Z_2))$.

PROPOSITION 3.1. The homomorphism χ is the composite of

$$\mu \circ \tau_* : \mathfrak{N}^G_* \longrightarrow H^G_*(BO, \phi; Z_2)$$

and

$$\gamma^* \colon H^G_*(BO, \phi; Z_2) \longrightarrow \operatorname{Hom}(H^*(BO; Z_2), H^*(BG; Z_2)).$$

PROOF. Given (M, ψ) with $\tau: (M, \psi) \longrightarrow (BO, \phi)$ classifying the tangent bundle, the composite

$$EG \times_G M \xrightarrow{`1 \times \tau} EG \times_G BO \xrightarrow{c} BO$$

is the map α . Then $^{\natural} \circ \alpha^* = \bigcap([M]) \circ \alpha^* = \bigcap([M]) \circ (1 \times \tau)^* \circ c^* = \bigcap(\tau_*[M]) \circ c^* = \bigcap(\mu \circ \tau_*(M, \psi)) \circ c^* = \gamma^*(\mu \circ \tau_*(M, \psi))$, using the obvious naturality property of \bigcap .*

4. Actions of Z_4 . First one needs to know the structure of $H_*^{Z_4}(BO, \phi; Z_2)$. As noted in [3, Lemma 2.1], if $T \subset G$ is a central subgroup of order 2, then

$$H_*^G(X, A, \rho; Z_2) \cong H_*^G(X, F_T \cup A, \rho; Z_2) \oplus H_*^G(F_T, F_T \cap A, \rho; Z_2)$$

where F_T is the fixed set of T, and

$$H_*^G(X, F_T \cup A, \rho; Z_2) \cong H_*^{G/T}(X/T, (F_T \cup A)/T, \rho'; Z_2)$$

 $H_*^G(F_T, F_T \cap A, \rho; Z_2) \cong H_*^{G/T}(F_T, F_T \cap A, \rho'; Z_2)$

where ρ' is induced by ρ . In particular, for $G=Z_4$, one may take $T=Z_2$, and one needs to know about the fixed set of Z_2 on BO.

Now the irreducible representations of Z_4 are R, R_- , and C, where R_- is the reals with Z_4 acting as multiplication by -1 and C is the complex numbers with Z_4 acting as multiplication by i. The fixed set of Z_2 on BO_n is then $\bigcup_k BO_{n-k}(R^\infty \oplus R_-^\infty) \times BO_k(C^\infty)$ and taking the limit, the fixed set F of Z_2 on BO is $\bigcup BO(R^\infty \oplus R_-^\infty) \times BO_k(C^\infty)$. The induced Z_2 action on F preserves these components and in particular, $BO(R^\infty \oplus R_-^\infty) \times BO_0(C^\infty) = BO$ is the universal space for Z_2 bundles.

The pair (BO, F) is relatively a free action, hence may be crossed with EZ_4 giving an isomorphism

$$\begin{split} H_{*}^{Z_{4}}(BO,\,F,\,\phi;\,Z_{2}) &\cong H_{*}^{Z_{4}}(BO\times EZ_{4},\,F\times EZ_{4},\,\phi\times u;\,Z_{2}) \\ &\cong H_{*}^{Z_{2}}((BO\times EZ_{4})/Z_{2},\,F\times (EZ_{4}/Z_{2}),\,(\phi\times u)';\,Z_{2}) \\ &\cong H_{*}((BO\times EZ_{4})/Z_{4},\,(F\times EZ_{4}/Z_{2})/Z_{2};\,Z_{2}). \end{split}$$

Now $BO \times EZ_4/Z_4$ maps into $BZ_4 = EZ_4/Z_4$ by projection with fiber BO, and maps by c (of §3) into BO. Looking at the fixed component $BO \times BO_0$ of F, the map $(BO \times BO_0 \times (EZ_4/Z_2))/Z_2 \longrightarrow BO \times EZ_4/Z_4$ is a homotopy equivalence, both being compatibly homotopy equivalent to $BO \times BZ_4$. Thus $BO \times BO_0 \times EZ_4 \longrightarrow BO \times EZ_4$ is an equivariant homotopy equivalence. Thus the exact sequence for the pair $(BO \times EZ_4, F \times EZ_4)$ decomposes, and the boundary homomorphism

$$\partial: H^{\mathbb{Z}_4}_*(BO, F, \phi; \mathbb{Z}_2)$$

$$\rightarrow \bigoplus_{k\neq 0} H^{\mathbb{Z}_2}_{*-1}(BO(R^\infty\oplus R_-^\infty)\times BO_k(C^\infty)\times (EZ_4/Z_2), \phi'\times u'; Z_2)$$

is an isomorphism.

Now one analyzes $\mathfrak{N}^{\mathbb{Z}_4}_*$. One has an exact sequence

$$\mathfrak{N}_{*}^{Z_{4}} \xrightarrow{i} \mathfrak{N}_{*}^{Z_{4}}(All, Free) \xrightarrow{\partial} \mathfrak{N}_{*}^{Z_{4}}(Free)$$

and a free action (M, ψ) bounds the mapping cylinder of $M \to M/Z_2$. Now $\mathfrak{R}^{Z_4}_*$ (All, Free) may be computed by taking the fixed set of Z_2 . The fixed set

of (M^n, ψ) is a union of closed submanifolds F^{n-k} imbedded in the interior of M with induced $Z_2 = Z_4/Z_2$ action. The normal bundle of F^{n-k} is a bundle with Z_4 action so that Z_2 acts as -1 in the fibers; i.e. ν is classified by an equivariant map $\nu: F^{n-k} \longrightarrow BO_k(C^\infty)$. Thus

$$\mathfrak{N}^{\mathbb{Z}_4}_*(\mathrm{All}, \mathrm{Free}) \cong \bigoplus_k \mathfrak{N}^{\mathbb{Z}_2}_{*-k}(BO_k(C^{\infty})).$$

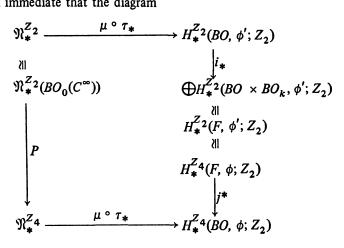
The mapping cylinder splitting and ∂ give an isomorphism of $\mathfrak{N}^{\mathbb{Z}_{4}}_{*-1}$ (Free) with the summand $\mathfrak{N}^{\mathbb{Z}_{2}}_{*-1}(BO_{1}(C^{\infty}))$.

From the splitting, one obtains an isomorphism

$$P: \bigoplus_{k \neq 1} \mathfrak{N}_{*-k}^{\mathbb{Z}_2}(BO_k(C^{\infty})) \xrightarrow{\cong} \mathfrak{N}_{*}^{\mathbb{Z}_4}$$

assigning to $v: F^{n-k} \to BO_k(C^{\infty})$ the induced Z_4 action on $D(v)/(x \sim -x|x \in S(v))$, the real projective space bundle of $v \oplus 1$. On the summand $\mathfrak{N}_*^{Z_2}(BO_0(C^{\infty})) \cong \mathfrak{N}_*^{Z_2}P$ assigns to the involution (M^n, t) the induced Z_4 action (M, ϕ_t) with $Z_2 \subset Z_4$ acting trivially (D(v) = M and S(v) is empty).

First considering (M^n, t) in $\mathfrak{N}^{\mathbb{Z}_2}_*(BO_0(C^\infty))$. $P(M^n, t) = (M, \phi_t)$ has all simplices fixed by Z_2 and hence $\mu \circ \tau_* \circ P(M^n, t)$ lies in the summand $H^{\mathbb{Z}_4}_*(F_t, \phi; Z_2)$ of $H^{\mathbb{Z}_4}_*(BO, \phi; Z_2)$. The classifying map $\tau_M \colon (M, \phi_t) \to (BO, \phi)$ maps into the fixed set of Z_2 , and may be obtained by composing the classifying map for the Z_2 tangent bundle $\tau_M \colon (M^n, t) \to (BO, \phi')$ with the inclusion i of (BO, ϕ') as $BO(R^\infty \oplus R^\infty_-) \times BO_0(C^\infty)$ in F, and then with the inclusion f of f in f. It is then immediate that the diagram



commutes. Since $\mu \circ \tau_*$ is monic for Z_2 by [2, Proposition 3.1] and i_*, j_* are monic, it follows that $\mu \circ \tau_* \circ P$ is monic on $\mathfrak{R}^{\mathbb{Z}_2}_*(BO_0(\mathbb{C}^\infty))$.

For any class in the remaining summands, $\mathfrak{N}_{*-k}^{\mathbb{Z}_2}(BO_k(C^{\infty}))$, $k \neq 0$, 1, the action $P(\alpha)$ has no top dimensional simplices fixed under the action of \mathbb{Z}_2 . Thus $\mu \circ \tau_* \circ P$ sends $A = \bigoplus_{k \neq 0,1} \mathfrak{N}_{*-k}^{\mathbb{Z}_2}(BO_k(C^{\infty}))$ into the summand

 $H_*^{Z_4}(BO, F, \phi; Z_2)$ of $H_*^{Z_4}(BO, \phi; Z_2)$, which in turn maps isomorphically by ∂ to

$$\bigoplus_{k\neq 0} H_{*-k}^{\mathbb{Z}_2}(BO\times BO_k(C^{\infty})\times EZ_4/Z_2, \phi'\times u'; Z_2).$$

Now considering $v: F^{n-k} \longrightarrow BO_k(C^{\infty})$, the fixed set of Z_2 in $D(v)/(x^{\infty}-x|x\in S(v))$ consists of F^{n-k} and $S(v)/Z_2=RP(v)$. The image of this class under $\partial \circ \mu \circ \tau_* \circ P$ is the sum of the classes:

(a') the image of the fundamental class of RP(v) in

$$H_{n-1}^{\mathbb{Z}_2}(BO \times BO_k(C^{\infty}) \times (E\mathbb{Z}_4/\mathbb{Z}_2); \phi' \times \mu'; \mathbb{Z}_2)$$

obtained by

$$\tau \circ \pi \times \nu \circ \pi \times c : RP(\nu) \longrightarrow BO \times BO_k \times (EZ_4)/Z_2$$

classifying the pull back of the tangent bundle, the pull back of ν , and the double cover of $RP(\nu)$ by $S(\nu)$.

(b') The image of the fundamental class of $RP(\lambda)$ in

$$H_{n-1}^{\mathbb{Z}_2}(BO \times BO_1(C^{\infty}) \times (EZ_4/Z_2); \phi' \times \mu'; Z_2)$$

obtained by $\tau \circ \pi \times \nu \circ \pi \times c$: $RP(\lambda) \longrightarrow BO \times BO_1 \times (EZ_4/Z_2)$ where π is projection on the fixed component $RP(\nu)$ with normal bundle λ .

To see this, $\tau\colon M^n \to BO$ sends a fixed component F^{n-k} with normal bundle ν^k into $BO \times BO_k(C^\infty)$ classifying $\tau \oplus \nu$. On a tubular neighborhood $D(\nu)$, τ is homotopic to $\tau/F \circ \pi$, i.e. τ is the pull back of $\tau \oplus \nu$ and similarly on the boundary $S(\nu)$. Sending M-F into EZ_4 to classify $M-F \to (M-F)/Z_4$ and dividing out Z_2 gives $RP(\nu) \to BO \times BO_k(C^\infty) \times EZ_4/Z_2$ classifying $\tau \circ \pi$, $\nu \circ \pi$, and the cover by $S(\nu)$.

Over $BO \times BO_k(C^\infty) \times EZ_4/Z_2$ one has a stable bundle γ with involution, a k plane bundle ρ with Z_4 action covering the involution on the base and a double cover or line bundle λ with similar Z_4 action. Then $\rho \otimes \lambda$ is a k plane bundle with involution and

$$\alpha: BO \times BO_k(C^{\infty}) \times EZ_4/Z_2 \longrightarrow BO \times BO_k(C^{\infty}) \times EZ_4/Z_2$$

where $\pi_1 \circ \alpha$ classifies $\gamma \oplus (\rho \otimes \lambda)$, $\pi_2 \circ \alpha = \pi_2$, $\pi_3 \circ \alpha = \pi_3$ is an equivariant homotopy equivalence, with inverse obtained by subtracting $\rho \otimes \lambda$.

Applying α_* sends the class (a') into the class (a) the image of the fundamental class of $RP(\nu)$ in $H_{n-1}^{Z_2}(BO \times BO_k(C^{\infty}) \times (EZ_4/Z_2), \phi' \times \mu'; Z_2)$ obtained by $\tau \times \nu \circ \pi \times c$: $RP(\nu) \longrightarrow BO \times BO_k \times (EZ_4/Z_2)$ classifying the tangent bundle of $RP(\nu)$, the pull back of ν and the double cover of $RP(\nu)$ by $S(\nu)$.

On the fixed component $RP(\nu)$, the normal bundle λ is a line bundle, so π : $RP(\lambda) \longrightarrow RP(\nu)$ is a diffeomorphism. The map into $BO_1(C^{\infty}) = EZ_4/Z_2$ classifying

 $\nu \circ \pi$ is the same as the map c classifying the double cover. Tensoring this bundle with itself gives a trivial bundle with trivial action (if e is a unit vector over x, $e \otimes e$ is independent of the choice of e and is sent by the Z_4 action into the point $e' \otimes e'$ if e goes to e'). Identifying $RP(\lambda)$ with $RP(\nu)$ via π , $\tau \circ \pi = \tau \cong \tau \oplus (\lambda \otimes \lambda)$, so applying α_* sends the class (b') into the class

(b) the image of the fundamental class of $RP(\nu)$ in

$$H_{n-1}^{Z_2}(BO \times BO_1(C^{\infty}) \times (EZ_4/Z_2); \phi' \times \mu'; Z_2)$$

obtained by $\tau \times \hat{\nu} \times c$: $RP(\nu) \longrightarrow BO \times BO_1 \times (EZ_4/Z_2)$ classifying τ , the normal bundle of $RP(\nu)$ in $D(\nu)/Z_2$ on $S(\nu)$, and the double cover by $S(\nu)$. Note: The last two maps are the same.

Note: The class given by (b) may be obtained from that in (a) by applying the map

$$BO \times BO_k \times (EZ_4/Z_2) \xrightarrow{\pi} BO \times (EZ_4/Z_2)$$

$$\xrightarrow{\iota \times \Delta} BO \times (EZ_4/Z_2) \times (EZ_4/Z_2).$$

Further, the class (a) may be obtained from the composite of

$$Q: \mathfrak{N}^{\mathbb{Z}_2}_{*-k}(BO_k(C^{\infty})) \longrightarrow \mathfrak{N}^{\mathbb{Z}_2}_{*-1}(BO_k(C^{\infty}) \times (EZ_4/\mathbb{Z}_2))$$

assigning to $\nu: F^{n-k} \longrightarrow BO_k$ the map $\nu \circ \pi \times c: RP(\nu) \longrightarrow BO_k \times (EZ_4/Z_2)$ and the monomorphism

$$\mu \circ \tau_* : \mathfrak{N}^{\mathbb{Z}_2}_{*-1}(BO_k \times (EZ_4)/Z_2) \longrightarrow H^{\mathbb{Z}_2}_{*-1}(BO \times BO_k \times EZ_4/Z_2, \phi' \times \mu'; Z_2).$$

Thus, one concludes that $\mu \circ \tau_*$ is monic for $\mathfrak{R}^{Z_4}_*$ if and only if

$$Q: \mathfrak{N}_{\star - 1}^{\mathbb{Z}_2}(BO_{\iota}(C^{\infty})) \longrightarrow \mathfrak{N}_{\star - 1}^{\mathbb{Z}_2}(BO_{\iota}(C^{\infty}) \times (EZ_{\Lambda}/\mathbb{Z}_2))$$

is monic for each k > 1.

For k odd, Q is monic. To see this, note that Z_2 acts freely on $BO_k(C^{\infty})$ for a fixed point is a k dimensional subspace of C^{∞} invariant under i, i.e. a complex subspace. Thus $\Re^Z_{*=2_k}(BO_k(C^{\infty})) \cong \Re_{*=k}(BO_k/Z_2)$. Further $(BO_k \times (EZ_4/Z_2))/Z_2$ maps into BO_k/Z_2 and $EZ_4/Z_4 = BZ_4$. Given $M^n \stackrel{\nu'}{\longrightarrow} BO_k/Z_2$, one has a double cover $\widetilde{M} \stackrel{\nu}{\longrightarrow} BO_k$ and over \widetilde{M} the projective space bundle $RP(\nu)$. Dividing out Z_2 on $RP(\nu)$ gives a bundle $E \stackrel{\pi}{\longrightarrow} M$ with fiber RP(k-1) and the corresponding class in

$$\mathfrak{N}_{*-1}(BO_k/Z_2 \times BZ_4)$$
 is given by $\nu' \circ \pi \times f: E \longrightarrow BO_k/Z_2 \times BZ_4$

where f classifies the cover $S(\nu) \longrightarrow E$.

Now the RP(k-1) bundle $E \xrightarrow{\pi} M$ is not totally nonhomologous to zero,

but the map into BZ_4 induces the nontrivial four fold cover of RP(k-1), and since k is odd, this implies that for $\alpha \in H^{k-1}(BZ_4, Z_2)$ the nonzero class, α pulls back to the nonzero class in $H^{k-1}(RP(k-1); Z_2)$.

Let $f_i: M_i^{n_i} \to BO_k/Z_2$ be bordism elements giving a base for mod 2 homology, with dual base $\beta^i \in H^{n_i}(BO_k/Z_2; Z_2)$. Then

$$Q': \mathfrak{N}_*(BO_k/Z_2) \longrightarrow \mathfrak{N}_{*+k-1}(BO_k/Z_2 \times BZ_4)$$

sends $[M_i^{n_i}, f_i]$ into linearly independent classes detected by the $\beta^i \otimes \alpha$. Since Q' is an \mathfrak{N}_* module homomorphism, Q' is monic. Since Q' factors through Q, Q is monic.

However, for k even, Q is not monic. The easiest example is to consider RP(4) with the trivial involution T_0 and with $T_1([x_0, x_1, \ldots, x_4]) = [-x_0, -x_1, \ldots, x_4]$, with a point map into $BO_2(C^\infty)$, i.e. with a trivial bundle. These are not bordant in $\mathfrak{N}_4^{Z_2}(BO_2(C^\infty))$. In $\mathfrak{N}_5^{Z_2}(BO_2(C^\infty) \times (EZ_4/Z_2))$ they are represented by maps into point $\times EZ_4/Z_2$, hence come from $\mathfrak{N}_5^{Z_2}(pt \times (EZ_4/Z_2)) \cong \mathfrak{N}_5(BZ_4)$; i.e. one need only consider the bordism classes of the free Z_4 actions $T_0 \times i$ and $T_1 \times i$ on $RP(4) \times S^1$.

First dividing out Z_2 gives $RP(4) \times S^1$ with actions $T_0 \times (-1)$ and $T_1 \times (-1)$ and dividing Z_2 again gives the real projective space bundles RP(5) and $RP(2\lambda \oplus 3)$ over RP(1), λ the nontrivial line bundle. Since 2λ is trivial, both actions are given by $RP(4) \times S^1 \xrightarrow{\pi} S^1 \hookrightarrow BZ_4$ where the map into BZ_4 classifies the standard cover $z \longrightarrow z^4 \colon S^1 \longrightarrow S^1$. This gives

PROPOSITION 4.1. $\mu \circ \tau_*$ is not monic. It does, however, determine the fixed component and fixed data of odd codimension larger than one.

COROLLARY (Bix). $\chi: \mathfrak{N}^G_* \longrightarrow \operatorname{Hom}(H^*(BO; Z_2), H^*(BG; Z_2))$ is not monic if $G = Z_4$.

To see that $\mu \circ \tau_*$ detects classes not detected by χ one must explicitly compute some examples. One follows Bix's technique.

It will be convenient to have a method for describing $\operatorname{Hom}(H^*(BO; Z_2), A)$. Let $f \colon RP(\infty) \to BO$ classify the nontrivial line bundle and $b_i \in H_i(BO; Z_2)$ the image of the nonzero class in $H_i(RP(\infty); Z_2)$. Using the ring structure obtained from the Whitney sum, $H_*(BO; Z_2)$ is the Z_2 polynomial ring with unit $1 = b_0$ on the b_i . A homomorphism $\lambda \colon H^*(BO; Z_2) \to A$ may then be identified as the class in $H_*(BO; Z_2) \otimes A$ given by $\sum b_{i_1} \cdots b_{i_r} \otimes \lambda(s_{(i_1, \dots, i_r)})$ where s_{ω} form the base in $H^*(BO; Z_2)$ dual to the b_{ω} in $H_*(BO; Z_2)$.

Let u, d be the nonzero classes in $H^1(BZ_4; Z_2)$ and $H^2(BZ_4; Z_2)$ so that $H^*(BZ_4; Z_2) = Z_2[u, d]/u^2 = 0$.

Let M = RP(2n + 2) with the trivial Z_4 action "id" fixing every point.

Then $EG \times_G M = BG \times RP(2n+2)$, and $H^*(EG \times_G M; Z_2)$ is $H^*(BG; Z_2)[a]/a^{2n+3} = 0$, where a is the nonzero class in $H^1(RP(2n+2); Z_2)$. α^* is then the homomorphism sending w to $(1+a)^{2n+3}$ which may be written as $(\Sigma_i b_i a^i)^{2n+3}$. Applying integration along the fibers takes the coefficient of a^{2n+2} , so

$$\chi((RP(2n+2), \mathrm{id})) = \sum b_{\omega} \otimes s_{\omega} [RP(2n+2)] \in H_{*}(BO; Z_{2}) \otimes H^{0}(BG; Z_{2}).$$

Letting M = RP(2n+2) with the involution $t([x_0, x_1, \ldots, x_{2n+2}]) = [-x_0, -x_1, x_2, \ldots, x_{2n+2}]$, $EG \times_G M$ may be identified with the projective space bundle of the vector bundle $2\lambda \oplus (2n+1)$ over BZ_4 , where λ is the nontrivial line bundle over BZ_4 , $w_1(\lambda) = u$. Letting μ be the bundle of vectors in lines in fibers of $2\lambda \oplus (2n+1)$, and $a = w_1(\mu)$, $H^*(EG \times_G M; Z_2)$ is the free module over $H^*(BG; Z_2)$ on $1, a, \ldots, a^{2n+2}$ with relation $a^{2n+3} = \sum w_i(2\lambda \oplus (2n+1))a^{2n+3-i}$, but $w(2\lambda \oplus (2n+1)) = (1+u)^2 = 1$, so $a^{2n+3} = 0$. The bundle $EG \times_G \tau(M)$ is the tangent bundle θ to the fibers of $RP(2\lambda \oplus (2n+1))$ and $\theta \oplus 1$ is $\mu \otimes \pi^*(2\lambda \oplus (2n+1))$ so

$$w(\theta) = (1 + a + u)^{2} (1 + a)^{2n+1} = (1 + a^{2} + u^{2})(1 + a)^{2n+1}$$
$$= (1 + a^{2})(1 + a)^{2n+1} = (1 + a)^{2n+3}.$$

Thus α^* can be written as $(\sum_i b_i a^i)^{2n+3}$. Applying integration along the fibers takes the coefficient of a^{2n+2} and thus $\chi((RP(2n+2), t)) = \chi((RP(2n+2), id))$.

Noting that the fixed set of t is $RP(1) \cup RP(2n)$ with RP(2n) not bounding as a manifold, while id fixes RP(2n + 2), these are not bordant involutions. Thus one has

Proposition 4.2.

$$\chi \circ P \colon \mathfrak{N}_*^{Z_2} = \mathfrak{N}_*^{Z_2}(BO_0(C^\infty)) \longrightarrow \operatorname{Hom}(H^*(BO; Z_2), H^*(BZ_4; Z_2))$$
 is not monic.

Since P is monic, one sees that $\mu \circ \tau_*$ distinguishes classes in im $P \subset \mathfrak{N}_*^{\mathbb{Z}_4}$ which are not distinguished by χ .

COROLLARY. ker ψ properly contains ker $\mu \circ \tau_*$ for $G = Z_4$.

REFERENCES

- 1. M. C. Bix, Z_4 -equivariant characteristic numbers and cobordism (preprint).
- 2. R. E. Stong, Equivariant bordism and Smith theory, Trans. Amer. Math. Soc. 159 (1971), 417-426. MR 44 #4779a.
- 3. ______, Equivariant bordism and Smith theory. II, Trans. Amer. Math. Soc. 162 (1971), 317-326. MR 44 #4779b.
- 4. T. tom Dieck, Characteristic numbers of G manifolds. I, Invent. Math. 13 (1971), 213-224. MR 46 #8236.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTES-VILLE, VIRGINIA 22903