ON BOUNDED FUNCTIONS SATISFYING AVERAGING CONDITIONS. II

BY

ROTRAUT GOUBAU CAHILL

ABSTRACT. Let S(f) denote the subspace of $L^{\infty}(\mathbb{R}^n)$ consisting of those real valued functions f for which

$$\lim_{r\to 0} \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy = f(x)$$

for all x in R^n and let L(f) be the subspace of S(f) consisting of the approximately continuous functions. A number of results concerning the existence of functions in S(f) and L(f) with special properties are obtained. The extreme points of the unit balls of both spaces are characterized and it is shown that L(f) is not a dual space. As a preliminary step, it is shown that if E is a G_{δ} set of measure 0 in R^n , then the complement of E can be decomposed into a collection of closed sets in a particularly useful way.

Introduction. Let $L_R^{\infty}(\mathbb{R}^n)$ denote the space of all real valued $L^{\infty}(\mathbb{R}^n)$ functions. If f is in $L_R^{\infty}(\mathbb{R}^n)$ and if E is a measurable subset of \mathbb{R}^n , let J(f, E) denote $\int_E f$. For each f in $L_R^{\infty}(\mathbb{R}^n)$ define:

$$L(f) = \left\{ x \in \mathbb{R}^n \left| \lim_{r \to 0} \left(J(|f - f(x)|, B(x, r)) / |B(x, r)| \right) = 0 \right\} \right.$$

where $B(x, r) = \{y \in \mathbb{R}^n | |y - x| < r\}$, i.e. L(f) is the Lebesgue set of f.

$$S(f) = \left\{ x \in \mathbb{R}^n \middle| \lim_{r \to 0} \left(J(f, B(x, r)) / |B(x, r)| \right) = f(x) \right\}.$$

Let S(n, T) be the subspace of $L_R^{\infty}(\mathbb{R}^n)$ consisting of those functions f for which $S(f) = \mathbb{R}^n$, and let L(n, T) be the subspace of $L_R^{\infty}(\mathbb{R}^n)$ consisting of those functions for which $L(f) = \mathbb{R}^n$.

A function f in $L_R^{\infty}(R^n)$ is defined to be approximately continuous at x if x is a point of density of $\{y \mid |f(y) - f(x)| < \epsilon\}$ for every $\epsilon > 0$. It is easy to see that L(n, T) consists precisely of those functions in $L_R^{\infty}(R^n)$ which are approximately continuous at each point of R^n . An example of a function which is in S(n, T) but not in L(n, T) is the function

Received by the editors March 12, 1974.

AMS (MOS) subject classifications (1970). Primary 41A30, 46A20, 46A90.

Key words and phrases. Approximately continuous, extreme points, G_{δ} sets of measure 0 in \mathbb{R}^n .

$$f(x) = \begin{cases} \sin(1/|x|^n), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

The same example shows that S(n, T) is not an algebra, whereas it is readily shown that L(n, T) is an algebra.

In this paper a number of results will be obtained about the existence of functions in S(n, T) and L(n, T) which have special properties. The extreme points of the unit balls of these spaces will also be characterized. In the case of L(n, T) it will be shown that there are only two such extreme points.

The proofs depend primarily on the fact that if E is a G_{δ} subset of measure 0 contained in R^n , then E', the complement of E, can be decomposed in a special way into a collection of closed sets $\{\Phi_{\lambda}\}_{\lambda \geq 1}$ so that the function μ defined in R^n by

$$\mu(x) = \begin{cases} 0, & x \in E, \\ 1/\inf_{\lambda} \{\lambda | x \in \Phi_{\lambda}\}, & x \notin E, \end{cases}$$

is approximately continuous and has a number of other useful properties. It will first be shown how to obtain such a decomposition of E'. The procedure used generalizes a method developed by Zygmunt Zahorski for obtaining a decomposition of the complement of a G_{δ} set of measure 0 contained in the open interval (0, 1) [2].

The work presented here was done as part of a Ph.D. thesis under the guidance of Professor Lee Rubel of the University of Illinois.

Inverse Zahorski functions.

LEMMA 1. Let M_1 and M_2 be two bounded measurable subsets of R^n with measures u_1 and u_2 respectively. Suppose that M_2 is a closed subset of M_1 consisting only of points of density of M_1 . Then for every positive number p, there is a closed set M_p with $M_2 \subset M_p \subset M_1$ satisfying:

- (1) Every point of M_2 is a point of density of M_p and every point of M_p is a point of density of M_1 .
 - (2) $|M_p| \ge u_2 + (1 2^{-1-p})(u_1 u_2)$.
- (3) Let $x \in M_2$, and let ϵ be an arbitrary number in (0, 1). If r is any positive number for which $(|M_1 \cap B(x, r)|/|B(x, r)|) \ge 1 \epsilon$, then

$$(|M_p \cap B(x,r)|/|B(x,r)|) \ge 1 - \epsilon - 2^{-m-p+c}n$$

for every positive integer m for which $r \leq 1/m$, where c_n is a constant which depends only on the dimension n.

PROOF. H. Whitney has shown that since M_2 is closed, M_2 is a countable union of closed cubes Q_k with disjoint interiors, where these cubes may be chosen so that the following conditions hold:

- (1) diam $Q_k \leq \operatorname{dist}(Q_k, M_2) \leq 4$ diam Q_k .
- (2) If Q_k^* is the cube with the same center as Q_k and expanded by a factor $1 + \epsilon$ (0 < ϵ < $\frac{1}{4}$, ϵ fixed), then Q_k^* is contained in the union of all the cubes which touch Q_k .
- (3) For each cube Q_k there are at most $N = (12)^n$ cubes which touch Q_k [1, pp. 167-169].

A cube Q_k will be said to be of class m, m a positive integer, if either $(1/(m+1)) < \text{diam } Q_k \le (1/m)$ or $m < \text{diam } Q_k \le m+1$. If Q_k is of class m and if $|Q_k \cap M_1| > 0$, let F_k be a closed subset of $Q_k \cap M_1$ consisting only of points of density of M_1 , with $|F_k| \ge |Q_k \cap M_1| (1-2^{-m-p})$. Set $M_p = M_2 \cup_k F_k$.

It will be shown that M_p satisfies all the required conditions. First, M_p is closed, for if $\{q_m\}_{m>1}$ is a convergent sequence in M_p , say $q_m \longrightarrow q$, and if $q \notin M_2$, then q is in some cube Q_s and some neighborhood of q is contained in Q_s^* . Since Q_s^* is contained in the union of at most N cubes Q_k , this neighborhood is contained in the union of at most N cubes. Thus for m sufficiently large, say $m \ge M$, $\{q_m\}_{m \ge M}$ is contained in at most N of the sets F_k . Since this union is closed, q is in some F_k and hence M_p is closed.

By construction, each point of M_p is a point of density of M_1 . It will now be shown that each point of M_2 is a point of density of M_p . The proof will be such that (3) will be proved simultaneously.

Let x be in M_2 . Let ϵ be an arbitrary number in (0, 1) and let m be an arbitrary positive integer. Since, by assumption, x is a point of density of M_1 , there is a $0 < \delta \le 1/m$ such that for $r \le \delta$, $(|B(x, r) \cap M_1|/|B(x, r)|) > 1 - \epsilon$. Set

$$d(x, r) = (|M_1 \cap B(x, r)|/|B(x, r)|) - (|M_p \cap B(x, r)|/|B(x, r)|).$$

It will be shown that $d(x, r) \leq 2^{-m-p+c_n}$. From this it follows that $(|M_p \cap B(x, r)|/|B(x, r)|) > 1 - \epsilon - 2^{-p+c_n-m}$, which verifies (1) since ϵ and m were arbitrary.

The proof that $d(x, r) \le 2^{-m-p+c_n}$ will depend only on the fact that m is a positive integer for which r < 1/m. Thus (3) will also be proved.

Let K be the set of all integers for which Q_k has nonempty intersection with the boundary of B(x, r) and set

$$A = \bigcup_{k \in K} Q_k; \quad A_1 = A \cap B(x, r); \quad A_2 = A \cap B(x, r)';$$

$$\xi = |M_n \cap A|/|M_1 \cap A| \text{ if } |M_1 \cap A| > 0, \qquad \xi = 1 \text{ if } |M_1 \cap A| = 0;$$

$$\xi_1 = |M_p \cap A_1|/|M_1 \cap A_1| \text{ if } |M_1 \cap A_1| > 0, \quad \xi_1 = 1 \text{ if } |M_1 \cap A_1| = 0;$$

 $\xi_2 = |M_p \cap A_2|/|M_1 \cap A_2| \text{ if } |M_1 \cap A_2| > 0, \quad \xi_2 = 1 \text{ if } |M_1 \cap A_2| = 0.$ We have

$$d(x, r) = (1/|B(x, r)|) \left\{ \sum_{Q_k \subset B(x, r)} |(Q_k \cap M_1) - F_k| + |(M_1 - M_p) \cap A_1| \right\}.$$

Since diam $Q_k < \operatorname{dist}(Q_k, M_2) \le r < 1/m$ for each cube Q_k which intersects B(x, r), $|(Q_k \cap M_1) - F_k| < 2^{-m-p} |Q_k \cap M_1|$, and thus

$$d(x, r) \leq (1/|B(x, r)|) \left\{ 2^{-m-p} \sum_{Q_k \subseteq B(x, r)} |Q_k \cap M_1| + |(M_1 - M_p) \cap A_1| \right\}.$$

Thus if $|M_1 \cap A_1| = 0$, $d(x, r) \le 2^{-m-p}$. Suppose $|M_1 \cap A_1| > 0$. Observe that

$$d(x, r) \leq (1/|B(x, r)|) \left\{ 2^{-m-p} \sum_{Q_k \subset B(x, r)} |Q_k \cap M_1| + (1 - \xi_1)|M_1 \cap A_1| \right\}.$$

The object of the calculations which follow is to show that $1 - \xi_1 \le 2^{-m-p} \{1 + (|A_2|/|M_1 \cap A_1|)\}$.

By solving the equation $\xi | M_1 \cap A| = \xi_1 | M_1 \cap A_1| + \xi_2 | M_1 \cap A_2|$ for ξ_1 and observing that $| M_1 \cap A_2| = | M_1 \cap A_1| + | M_1 \cap A_2|$, we obtain

$$\xi_1 = \xi - (\xi_2 | M_1 \cap A_2 | - \xi | M_1 \cap A_2 |) / | M_1 \cap A_1 |.$$

Since $|F_k| \ge |Q_k \cap M_1| (1 - 2^{-m-p})$ for each Q_k which intersects B(x, r), $|M_p \cap A| \ge (1 - 2^{-m-p}) |M_1 \cap A|$ and $\xi > 1 - 2^{-m-p}$. Thus

$$\xi_1 > 1 - 2^{-m-p} - \{(\xi_2 - (1 - 2^{-m-p})) / |M_1 \cap A_1|\} |M_1 \cap A_2|.$$

Since $0 < \xi_2 \le 1$ and $|M_1 \cap A_2| \le |A_2|$,

$$\xi_1 > 1 - 2^{-m-p} - 2^{-m-p} |A_2| / |M_1 \cap A_1|,$$

and

$$1 - \xi_1 \le 2^{-m-p} \{ 1 + (|A_2|/|M_1 \cap A_1|) \}.$$

It follows that

$$\begin{aligned} d(x, r) &\leq 2^{-m-p} \{1 + \{|M_1 \cap A_1|(1 + (|A_2|/|M_1 \cap A_1|))\}/|B(x, r)|\} \\ &\leq 2^{-m-p} \{2 + (|A_2|/|B(x, r)|)\}. \end{aligned}$$

Since diam $Q_k \le r$ for each Q_k which intersects B(x, r), $A_2 \subseteq B(x, 2r) - B(x, r)$. Thus,

$$(|A_2|/|B(x, r)|) \le (1/|B(x, r)|)(|B(x, 2r)| - |B(x, r)|).$$

The number $d_n = (1/|B(x, r)|)(|B(x, 2r)| - |B(x, r)|)$ depends only on n and $d(x, r) \le 2^{-m-p}(2 + d_n) \le 2^{-m-p+c_n}$, where $2^{c_n} = 2 + d_n$. Therefore, (1) and (3) both hold.

Finally,

$$\begin{split} |M_p| &= |M_2| + \sum_k |F_k| \geqslant u_2 + \sum_k |Q_k \cap M_1| (1 - 2^{-m-p}) \\ &> u_2 + (1 - 2^{-1-p}) \sum_k |Q_k \cap M_1| = u_2 + (1 - 2^{-1-p}) (u_1 - u_2), \\ \text{so that (2) also holds. Q.E.D.} \end{split}$$

COROLLARY 1. For each G_{δ} set E, of measure 0 in R^n , there is an increasing sequence of compact sets $\{F_k\}_{k>1}$ with $|\Phi_k| > k$ such that $E' = \bigcup_k \Phi_k$ and $|B(x,r) \cap \Phi_{k+1}|/|B(x,r)| > 1 - 2^{-m-k+c_n}$ whenever $x \in \Phi_k$ and $r \leq 1/m$, m a positive integer.

PROOF. Since E is a G_{δ} of measure 0, there exists an increasing sequence of closed sets $\{F_k\}_{k>1}$ with $E' = \bigcup_{k>1} F_k$. Let $\{a_k\}_{k>1}$ be a strictly increasing sequence of positive numbers for which $|B(0, a_k)| > (1/(1-2^{-k})) \cdot (k-2^{-k})$ and for which $a_{k+1} - a_k$ is greater than 1 for all k. Let P_1 be any closed subset of $E' \cap B(0, a_1)$ for which $|P_1| > 1$ and set $\Phi_1 = P_1 \cup (F_1 \cap B(0, a_1))$.

Since $\Phi_1 \subset E' \cap B(0, a_2)$ and $|\Phi_1| + (1 - 2^{-2})(|B(0, a_2)| - |\Phi_1|) > 2$, the preceding lemma implies that there is a closed set P_2 of measure greater than 2 with $\Phi_1 \subset P_2 \subset E' \cap B(0, a_2)$ which satisfies conditions (1), (2) and (3) of the lemma, with $M_2 = \Phi_1$, $M_1 = E' \cap B(0, a_2)$ and p = 1.

For each x in Φ_1 and r < 1, $B(x, r) \subset B(0, a_2)$ since $a_2 - a_1 > 1$. Thus $|E' \cap B(0, a_2) \cap B(x, r)| / |B(x, r)| = 1$ and by (3) of Lemma 4.1,

$$|P_2 \cap B(x, r)|/|B(x, r)| \ge 1 - 2^{-m-1+c_n}$$

for every positive integer m such that $r \le 1/m$. Set $\Phi_2 = P_2 \cup (F_2 \cap B(0, a_2))$.

Continue inductively. Having defined Φ_k for $k \leq s$ so that $\Phi_k \subset F_k \cap B(0,a_k)$, $|\Phi_k| > k$ and $|\Phi_k \cap B(x,r)|/|B(x,r)| > 1-2^{-m-(k-1)+c_n}$ for $x \in \Phi_{k-1}$ and $r \leq 1/m$, let P_{s+1} be a closed set of measure greater than s+1 for which $\Phi_s \subset P_{s+1} \subset E' \cap B(0,a_{s+1})$ and for which (1), (2) and (3) of Lemma 4.1 hold with $M_2 = \Phi_s$, p = s and $M_1 = E' \cap B(0,a_{s+1})$. Since $|E' \cap B(0,a_{s+1}) \cap B(x,r)|/|B(x,r)|$ equals 1 for each x in Φ_s and r < 1, (3) of the lemma implies that $|P_{s+1} \cap B(x,r)|/|B(x,r)| > 1-2^{-s-m+c_n}$ for each positive integer m for which r < 1/m. Set $\Phi_{s+1} = P_{s+1} \cup (F_{s+1} \cap B(0,a_{s+1}))$.

The sequence $\{\Phi_k\}_{k>1}$ satisfies the conditions of the theorem. Q.E.D. We observe that by suitable choice of a_1 and P_1 , Φ_1 can be made to contain a specified compact subset of E'.

If E is a G_{δ} set of measure 0 in R^n , an increasing sequence of compact subsets of R^n satisfying the conditions of Corollary 1 will be called a Zahorski sequence for E.

THEOREM 1. Let E be a G_{δ} set of measure 0 in \mathbb{R}^n . There exists a real valued, measurable function u defined on \mathbb{R}^n having the following properties:

- (1) $0 \le u \le 1$.
- (2) u is 0 precisely on E.
- (3) u is continuous at each point of E.
- (4) For every x_0 in \mathbb{R}^n and every $\epsilon > 0$, there is an r > 0 such that $u(x) \le (1/(1-\epsilon))u(x_0)$ whenever x is in $B(x_0, r)$.
 - (5) Every x in R^n is a Lebesgue point of u.

PROOF. Let $\{\Phi_k\}_{k>1}$ be a Zahorski sequence for E. A closed set Φ_r will now be defined for each number r of the form $m/2^s$, where m and s are positive integers and $m>2^s$. These closed sets will satisfy these two conditions:

- (a) $\Phi_{s'} \subset \Phi_s$ if s > s',
- (b) $\Phi_{s'}$ consists only of points of density of Φ_{s} if s > s'.

For each odd integer k>2, k=2m+1, let $\Phi_{k/2}$ be a closed set with $\Phi_m\subset\Phi_{k/2}\subset\Phi_{m+1}$ and $|\Phi_{k/2}|>\frac{1}{2}(|\Phi_{m+1}|+|\Phi_m|)$, for which every point of Φ_m is a point of density of $\Phi_{k/2}$ and every point of $\Phi_{k/2}$ is a point of density of Φ_{m+1} . Such a set exists by Lemma 1. Having defined $\Phi_{r/2}k$ for all $r>2^k$ and all $k\leqslant s$, let $\Phi_{r/2}s+1$, $r>2^{s+1}$, r=2t+1, be a closed set with

$$\Phi_{t/2^{s}} \subset \Phi_{r/2^{s+1}} \subset \Phi_{(t+1)/2^{s}} \quad \text{and} \quad |\Phi_{r/2^{s+1}}| > \frac{1}{2}(|\Phi_{(t+1)/2^{s}}|),$$

for which each point of $\Phi_{r/2s}$ is a point of density of $\Phi_{r/2s+1}$ and each point of $\Phi_{r/2s+1}$ is a point of density of $\Phi_{(t+1)/2s}$.

Now let λ be any real number greater than or equal to 1 and define $\Phi_{\lambda} = \bigcap_{m \geq \lambda 2^k} \Phi_{m/2^k}$. The collection of closed sets $\{\Phi_{\lambda}\}_{\lambda \geq 1}$ also satisfies (a) and (b).

Define the function u on \mathbb{R}^n by

$$u(p) = \begin{cases} 1/\inf\{\lambda | p \in \Phi_{\lambda}\} & \text{if } p \notin E, \\ 0 & \text{if } p \in E. \end{cases}$$

Properties (1) and (2) from the statement of the theorem follow immediately from the definition of u. (3)–(5) will now be verified.

Let p be in E, and let $\epsilon > 0$ be arbitrary. If r is less than dist $(p, \Phi_{1/\epsilon})$, then $B(p, r) \cap \Phi_{1/\epsilon}$ is empty and u(x) is less than ϵ for x in B(p, r). Thus u is continuous on E.

Let x_0 be in E', and let $\epsilon > 0$ be arbitrary. If r is less than $\operatorname{dist}(x_0, \Phi_{(1-\epsilon)/u(x_0)})$, then $u(x) \leq u(x_0)/(1-\epsilon)$ for all x in $B(x_0, r)$. Thus (4) holds. This property ensures that u is measurable.

Since u is continuous on E, (5) holds for every x in E. Let x_0 be in E' and let $\epsilon > 0$ be arbitrary. Since x_0 is in $\Phi_{(1+\epsilon/2)/u(x_0)}$, x_0 is a point of density of $\Phi_{(1+\epsilon)/u(x_0)}$ and thus of $\{y|u(y) \ge u(x_0)/(1+\epsilon)\}$. This, together with (4) and the boundedness of u, yields (5).

Thus u satisfies all the required conditions. Q.E.D.

If E is a G_{δ} set of measure 0 in R^n , a collection of closed sets $\{\Phi_{\lambda}\}_{{\lambda}>1}$, constructed in the manner of the first part of the proof of this last theorem, will be called a Zahorski collection for E. The function

$$u(x) = \begin{cases} 1/\inf_{\lambda} \{\lambda | x \in \Phi_{\lambda}\}, & x \notin E, \\ 0, & x \in E, \end{cases}$$

will be called the corresponding inverse Zahorski function.

Applications to S(n, T) and L(n, T). An immediate consequence of Theorem 1 is

THEOREM 2. If E is a G_{δ} set of measure 0 in \mathbb{R}^n , then there is a function in L(n, T) of norm 1 which vanishes precisely on E.

PROOF. Let u be an inverse Zahorski function for E. u has norm 1 and vanishes precisely on E. Since, in addition, every point of R^n is a Lebesgue point of u, u satisfies the conditions of the theorem. Q.E.D.

If E is a G_{δ} of measure 0 contained in R^n and if F is a compact subset of E', then it is possible to find a Zahorski collection $\{\Phi_{\lambda}\}_{{\lambda}>1}$ for E for which F is a subset of Φ_1 . The corresponding inverse Zahorski function has norm 1, is 0 on E and identically 1 on F. Since every point of R^n is a Lebesgue point of E is in E in E (E). We therefore also have

THEOREM 3. If E is a G_{δ} of measure 0 in \mathbb{R}^n and if F is a compact subset of \mathbb{R}^n , disjoint from E, then there is a function of norm 1 in L(n, T) which is 0 at each point of E and 1 at each point of F.

COROLLARY 2. If $\{w_k\}_{k\geq 1}$ is an arbitrary sequence of distinct points in R^n and if $\{a_k\}_{k\geq 1}$ is an absolutely summable sequence of real numbers, then there is a function g in L(n, T) for which $g(w_k) = a_k$ for all k.

PROOF. For each i, let S_i be a G_δ of measure 0 containing $\{w_k\}_{k>1} - \{w_i\}$ and not containing w_i . Let u_i be an inverse Zahorski function for S_i for which $u_i(w_i) = 1$.

Since $\sum_{k=1}^{\infty} |a_k| < \infty$ and $||u_i||_{\infty} = 1$ for all i, every point of R^n is a Lebesgue point of the function $g = \sum_{k=1}^{\infty} a_k u_k$. Thus g is in L(n, T). Since $u_i(w_k) = \delta_{ik}$, $g(w_k) = a_k$ for every k. Q.E.D.

COROLLARY 3. If $\{w_k\}_{k \ge 1}$ is a convergent sequence of distinct points of

 R^n with limit $w \neq w_k$ any k and if $\{a_k\}_{k \geq 1}$ is an arbitrary sequence of 0's and 1's, then there is a function g in L(n, T), with $\|g\|_{\infty} = 1$, for which $g(w_k) = a_k$ for all k.

The proof is similar to that of Corollary 2.

LEMMA 2. Let f be in $L_R^{\infty}(\mathbb{R}^n)$ and let E be a G_{δ} of measure 0 containing $\{x | x \notin L(f)\}$. If u is an inverse Zahorski function for E, then uf is in L(n, T).

PROOF. It is sufficient to show that $L(uf) = R^n$. If x is in E, u(x) = 0 and

$$\lim_{r\to 0} J(|uf-u(x)f(x)|, B(x, r))/|B(x, r)| = \lim_{r\to 0} J(|u|, B(x, r))/|B(x, r)| = 0.$$

If $x \notin E$, then x is a Lebesgue point of both u and f and so also for the product. Q.E.D.

Thus every function in $L_R^{\infty}(\mathbb{R}^n)$ can be multiplied by a suitable inverse Zahorski function so that the product is in L(n, T).

THEOREM 4. If f is in $L_R^{\infty}(\mathbb{R}^n)$ and if F is a compact subset of the Lebesgue points of f, then there is a function in L(n, T) whose restriction to F is f.

PROOF. Let E be a G_{δ} of measure 0 disjoint from F, which contains $\{x \in R^n | x \notin L(f)\}$. Let $\{\Phi_{\lambda}\}_{{\lambda} > 1}$ be a Zahorski collection for E with $F \subset \Phi_1$ and let u be the corresponding inverse Zahorski function. uf is the required function. Q.E.D.

Consequently L(n, T) is locally dense in measure in $L_R^{\infty}(\mathbb{R}^n)$, i.e. if F is a compact subset of \mathbb{R}^n , then there is a sequence of functions in L(n, T) which converges in measure to f on F.

Lemma 2 may be applied to characterize the extreme points of the unit ball of S(n, T).

THEOREM 5. F is an extreme point of the unit ball of S(n, T) if and only if |F| = 1 a.e.

PROOF. If |F| = 1 a.e., then F is an extreme point of the unit ball of $L_R^{\infty}(R^n)$ and hence also of S(n, T). Conversely, suppose F fails to have modulus 1 at each point of some subset of R^n of positive measure. Let E be a G_{δ} of measure 0 in R^n containing $\{x \in R^n | x \notin L(1 - |F|)\}$. Let u be an inverse Zahorski function for E. By Lemma 5.1, u(1 - |F|) is in L(n, T) and so in S(n, T). Since $u(1 - |F|) \le 1 - |F|$, $||u(1 - |F|) - F||_{\infty} \le 1$ and $||u(1 - |F|) + F||_{\infty} \le 1$ so that F is not extreme. Q.E.D.

It is easy to see that the same result holds for the unit ball of L(n, T), i.e. F is an extreme point of the unit ball of L(n, T) if and only if |F| = 1 a.e. If

|F| = 1 a.e., then F is an extreme point of S(n, T) and so also of L(n, T). If F is in L(n, T), then it follows from the inequality

$$J(||F| - |F(x)||, B(x, r)) \le J(|F - F(x)|, B(x, r))$$

that 1 - |F| is also in L(n, T). Thus if |F| is less than 1 on a set of positive measure, then G = 1 - |F| is a function in L(n, T) which satisfies $||F - G||_{\infty} \le 1$ and $||F + G||_{\infty} \le 1$ so that F is not extreme.

THEOREM 6. L(n, T) is not the dual of a Banach space.

PROOF. It is sufficient to show that the only extreme points of the unit ball of L(n, T) are the constant functions 1 and -1. That this is so is a consequence of the following lemma:

LEMMA 3. If f is a function in L(n, T) which assumes the value 0 or 1 a.e., then f is constant.

PROOF. Let
$$g(x) = f(x)(1 - f(x))$$
. Since

$$g(x) = \lim_{r \to 0} J(g, B(x, r))/|B(x, r)| = 0$$

for each x in \mathbb{R}^n , f actually assumes the values 0 or 1 everywhere.

Let $K = \{x \in \mathbb{R}^n | f \text{ is discontinuous at } x\}$. It is sufficient to show that K is empty.

Suppose K is not empty.

CLAIM. If $x_0 \in K$, then every neighborhood of x_0 contains some x in K for which $f(x) \neq f(x_0)$.

PROOF OF CLAIM. Let x_0 be in K and suppose, without loss of generality, that $f(x_0) = 1$. Let $B(x_0, r)$ be an arbitrary ball in R^n with center at x_0 and having radius r. Let s be any number in (0, r/2). Since f is discontinuous at x_0 , there is some a in $B(x_0, s)$ for which f(a) = 0. If a is in K, we are done. If a is not in K, f is continuous at a and so vanishes in a neighborhood of a. Set $t_a = \sup_t \{t > 0 | f$ is identically 0 in B(a, t). $B(a, t_a)$ is a subset of $B(x_0, r)$ and is not tangent to $B(x_0, r)$ at any point. (Otherwise we would have x_0 in $B(a, t_a)$ but $f(x_0) = 1$.) Let x be an arbitrary point on the boundary of $B(a, t_a)$. We have

$$f(x) = \lim_{r \to 0} J(f, B(x, r)) / |B(x, r)|$$

$$= \lim_{r \to 0} J(f, B(x, r) \cap B(a, t_a)') / |B(x, r)|$$

$$\leq \lim_{r \to 0} |B(x, r) \cap B(a, t_a)'| / |B(x, r)| < 1.$$

Thus f(x) = 0 and f vanishes on the boundary of $B(a, t_a)$. By choice of t_a and

compactness of the boundary, f must have at least one discontinuity x' on the boundary of $B(a, t_a)$. Since x' is in $K \cap B(x_0, r)$ and $f(x') \neq f(x_0)$, the proof of the claim is complete.

Now let x_1 be in K with $f(x_1) = 1$ and let $0 < r_1 < \frac{1}{2}$ be such that for $0 < r < r_1$, $J(f, B(x_1, r)) / |B(x_1, r)| > 1 - \frac{1}{2}$.

Let x_2 be any point in $K \cap B(x_1, r_1)$ for which $f(x_2) = 0$, and let $0 < r_2 < \frac{1}{2}^2$ be such that for $0 < r < r_2$, $J(f, B(x_2, r))/|B(x_2, r)| < \frac{1}{2}^2$ and $\overline{B}(x_2, r_2) \subset B(x_1, r_1)$.

Continue defining x_k and r_k inductively as follows: If k is odd, let x_k be any point in $K \cap B(x_{k-1}, r_{k-1})$ for which $f(x_k) = 1$ and let $0 < r_k < \frac{1}{2}^k$ be such that for $0 < r < r_k$, $\overline{B}(x_k, r) \subset B(x_{k-1}, r_{k-1})$ and $J(f, B(x_k, r))/|B(x_k, r)| > 1 - \frac{1}{2}^k$. If k is even choose x_k and r_k in a similar way except that $f(x_k) = 0$ and $J(f, B(x_k, r))/|B(x_k, r)| < \frac{1}{2}^k$ for $0 < r < r_k$. Let x be in the intersection of the $\overline{B}(x_k, r_k)$. Then

$$\overline{\lim_{k \to \infty}} |J(f - f(x), B(x_k, r_k))| / |B(x_k, r_k)|$$

$$\leq \{ |B(x, 2r_k)| / |B(x_k, r_k)| \}$$

$$\times \lim_{k \to \infty} |J(|f - f(x)|, B(x, 2r_k)) / |B(x, 2r_k)| = 0.$$

But this implies that f(x) must be both 0 and 1 which is impossible. Q.E.D. The example

$$f(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0, \end{cases}$$

shows that there are nonconstant extreme points of the unit ball of S(n, T).

REFERENCES

- 1. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280.
- 2. Z. Zahorski, Über die Menge der Punkte in welchen die Ableitung unendlich ist, Tôhoku Math. J. 48 (1941), 321-330. MR 10, 359.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, WASHINGTON COUNTY CENTER, WEST BEND, WISCONSIN 53095