NECESSARY AND SUFFICIENT CONDITIONS FOR THE DERIVATION OF INTEGRALS OF L_{Ψ} -FUNCTIONS

BY

C. A. HAYES

ABSTRACT. It has been shown recently that a necessary and sufficient condition for a derivation basis to derive the μ -integrals of all functions in $L^{(q)}(\mu)$, where $1 < q < + \infty$, and μ is a σ -finite measure, is that the basis possess Vitali-like covering properties, with covering families having arbitrarily small $L^{(p)}(\mu)$ -overlap, where $p^{-1} + q^{-1} = 1$. The corresponding theorem for the case p = 1, $q = + \infty$ was established by R. de Possel in 1936.

The present paper extends these results to more general dual Orlicz spaces. Under suitable restrictions on the dual Orlicz functions Φ and Ψ , it is shown that a necessary and sufficient condition for a basis to derive the μ -integrals of all functions in $L_{\Psi}(\mu)$ is that the basis possess Vitali-like covering families whose $L_{\Phi}(\mu)$ -overlap is arbitrarily small. Certain other conditions relating $L_{\Phi}(\mu)$ -strength and derivability are also discussed.

1. General definitions and terminology. Our universe is a set of points S. We shall agree that if $A \subseteq S$ and $B \subseteq S$, then $A - B = \{x: (x \in A) \land (x \notin B)\}$; thus $A - B = A - A \cap B$. If $A \subseteq S$, we shall denote the complement of A in S by \widetilde{A} . M denotes a fixed Boolean σ -algebra of subsets of S, with S as its unit; μ denotes a fixed σ -finite measure defined on M, and μ^* is the completion of μ defined on the class M^* of subsets of S. We let N and N^* denote, respectively, the families of μ - and μ^* -nullsets. We let $\overline{\mu}$ denote the outer measure derived from μ . If $X \subseteq S$, then \overline{X} denotes a measure cover of X; it is well known that $\overline{\mu}(X \cap M) = \mu(\overline{X} \cap M)$ holds for each set $M \in M$ and each μ -cover \overline{X} of X. For any set $X \subseteq S$, we let χ_X denote the characteristic function of X.

A derivation basis $\mathfrak B$ is defined as follows. We assume that to each point x of a fixed subset E of X, called the *domain* of $\mathfrak B$, there correspond Moore-Smith sequences of M-sets of positive μ -measure, called *constituents*, which are said to *converge* to x, and are denoted generically by $\{M_{\iota}(x)\}$. We further assume (Fréchet's convergence axiom) that each cofinal subsequence of an x-converging sequence also converges to x. The elements of $\mathfrak B$ are thus converging sequences together with corresponding convergence points. We denote by

386 C. A. HAYES

 $\mathcal D$ the family of all $\mathfrak B$ -constituents; i.e., the family of all sets belonging to one or more of the sequences $\{M_{\iota}(x)\}$ for some $x\in E$. This family $\mathcal D$ is called the *spread* of $\mathfrak B$.

If λ is a real-valued function defined on $\mathcal D$ and $x \in E$, then we define $D^*\lambda(x)$ and $D_*\lambda(x)$ by

$$D^*\lambda(x) = \sup \left[\limsup \frac{\lambda(M_{\iota}(x))}{\mu(M_{\iota}(x))}\right]$$
 and $D_*\lambda(x) = \inf \left[\liminf \frac{\lambda(M_{\iota}(x))}{\mu(M_{\iota}(x))}\right]$

where the expressions in brackets mean, respectively, the limit superior and inferior of any fixed x-converging sequence $\{M_{\ell}(x)\}$, and then the supremum and infimum of these values are taken among all such sequences. $D^*\lambda(x)$ and $D_*\lambda(x)$ are called, respectively, the *upper* and *lower* \mathcal{B} -derivatives of λ at x. If $D^*\lambda(x) = D_*\lambda(x)$ (whether finite or infinite), then their common value is denoted by $D\lambda(x)$, and is called the \mathcal{B} -derivative of λ at x.

We say that λ is a μ -finite μ -integral iff there exists a μ -measurable function f such that $-\infty < \lambda(M) = \int_M f \, d\mu < +\infty$ whenever $M \in M$ and $\mu(M)$ is finite. We say that λ is \Re -derivable iff $D\lambda(x)$ exists and coincides with f(x) for μ^* -almost $x \in E$.

By a *subbasis* of \mathcal{B} we mean any basis \mathcal{B}^* whose associated sequences belong to \mathcal{B} and which associates with these sequences the same convergence points as does \mathcal{B} . Clearly, the spread \mathcal{D}^* of \mathcal{B}^* is a subset of \mathcal{D} . The domain of \mathcal{B}^* is the set of its associated points, which is a subset of E.

If $X \subseteq E$ and \mathcal{B}^* is any subbasis of \mathcal{B} such that the domain of \mathcal{B}^* includes $X \pmod{N^*}$, then the spread V of \mathcal{B}^* is called a \mathcal{B} -fine covering of X. Sometimes a \mathcal{B} -fine covering of X is defined as any family $V \subseteq \mathcal{D}$ that contains, for μ^* -almost all $x \in X$, the sets of at least one sequence $\{M_{\ell}(x)\}$. Although these definitions differ slightly, in their applications they have the same effect, so we may use them interchangeably.

If H is any finite or countably infinite subfamily of M, then for any $x \in S$, we define $n_H(x)$ as the number of members of H to which x belongs. We denote the union of the family H by $\bigcup H$; it is clear that $n_H(x) = 0$ iff $x \in (S - (\bigcup H))$. We define $e_H(x) = n_H(x) - 1$ if $x \in \bigcup H$, $e_H(x) = 0$ for all other $x \in S$. Clearly $e_H(x) > 0$ iff x belongs to at least two members of H. We note that n_H and e_H are μ -measurable functions.

Henceforth, ϕ and ψ will denote real-valued functions on $[0, +\infty)$ subject to the conditions

- (a) $\phi(0) = 0$; ϕ is nondecreasing on $[0, +\infty)$;
- (b) $\psi(0) = 0$; $\psi(u) = \sup\{x : \phi(x) < u\}$ for each $u, 0 < u < +\infty$.

We call ψ the function inverse to ϕ . If ϕ is strictly increasing, then ψ is

the conventional inverse. It follows that $\dot{\phi}$ is left-continuous on $[0, +\infty)$ and nondecreasing. We find it convenient to extend the comains of definitions of ϕ and ψ to include $+\infty$, by agreeing that $\phi(+\infty) = \lim_{u \to +\infty} \phi(u)$ and $\psi(+\infty) = \lim_{u \to +\infty} \psi(u)$.

Next, we define $\Phi(u) = \int_0^u \phi(t) dt$, $\Psi(u) = \int_0^u \psi(t) dt$ for each $u \in [0, +\infty]$. Clearly, Φ and Ψ are nondecreasing and continuous on $[0, +\infty)$. It follows easily that if f is a μ -measurable function, then $\phi(|f|)$, $\psi(|f|)$, $\Phi(|f|)$, and $\Psi(|f|)$ are also μ -measurable. Moreover, Young's inequality (cf. [7, pp. 76–78]),

$$uv \leq \Phi(u) + \Psi(v),$$

holds for all $u, v \ge 0$, with equality iff $v = \phi(u)$ or $u = \psi(v)$.

We define $L_{\Phi}^*(\mu)$ as the class of all μ -measurable functions f for which $\Phi(|f|)$ is μ -summable over S. For any μ -measurable function f we also define

$$\|f\|_{\Phi} = \sup \left\{ \int_{\mathcal{S}} |fg| \, d\mu \colon \int_{\mathcal{S}} \Psi(|g|) \, d\mu \leqslant 1 \right\},$$

and we define $L_{\Phi}(\mu)$ as the class of all functions f with $\|f\|_{\Phi} < +\infty$. Analogously, we define the classes $L_{\Psi}^*(\mu)$ and $L_{\Psi}(\mu)$. $L_{\Phi}(\mu)$ and $L_{\Psi}(\mu)$ are normed linear spaces with respect to the norms $\| \|_{\Phi}$ and $\| \|_{\Psi}$, and are called (*dual*) Orlicz spaces. Young's inequality yields

$$\|f\|_{\Phi} \leqslant \int_{\mathcal{S}} \Phi(|f|) \, d\mu + 1 \quad \text{and} \quad \|g\|_{\Psi} \leqslant \int_{\mathcal{S}} \Psi(|g|) \, d\mu + 1,$$

whence $L_{\Phi}^*(\mu) \subseteq L_{\Phi}(\mu)$ and $L_{\Psi}^*(\mu) \subseteq L_{\Psi}(\mu)$. Moreover, if $f \in L_{\Phi}(\mu)$ or $f \in L_{\Psi}(\mu)$, then $|f| < +\infty$ holds μ -almost everywhere in S; if $||f||_{\Phi} = 0$ or $||f||_{\Psi} = 0$, then f = 0 holds μ -almost everywhere in S. These properties are used in the work to follow. Proofs may be found in [7, pp. 78-82].

If $\mathfrak B$ is a basis with domain $E\subseteq S$, then we say that $\mathfrak B$ is L_{Φ} -strong iff for each set $X\subseteq E$ of finite $\overline{\mu}$ -measure, each $\mathfrak B$ -fine covering V of X, and each $\epsilon>0$, there exists a countable family $H\subseteq V$ such that, setting $H=\bigcup H$, we have

- (S1) $\mu(\overline{X} H) = 0$ (H is an 0-covering of X, or H covers μ^* -almost all of X),
 - (S2) $\mu(H-\overline{X}) < \epsilon$ (the μ -overflow of H with respect to \overline{X} is less than ϵ),
 - (S3) $\|e_{\mathcal{H}}\|_{\Phi} < \epsilon$ (the L_{Φ} -overlap of \mathcal{H} is less than ϵ).

It can be shown by an exhaustion process that an equivalent formulation of this definition results if (S1) is replaced by

(S1)'
$$\mu(\overline{X} - H) < \epsilon$$
 (H is an ϵ -covering of \overline{X}).

- 2. Derivability implies $L_{\Phi}(\mu)$ -strength. Throughout this section, in addition to the general restrictions imposed on ϕ and ψ in §1, we shall assume:
 - (I) ϕ is continuous on $(0, +\infty)$ with $\lim_{u\to +\infty} \phi(u) = +\infty$. This implies

that $\phi(u)$ and $\psi(u)$ are finite for each u, $0 \le u < +\infty$ and $\lim_{u \to +\infty} \psi(u) = +\infty$; also, by the definition adopted in §1, $\phi(+\infty) = \psi(+\infty) = +\infty$. Consequently, $f \in L_{\Phi}^*(\mu) \subseteq L_{\Phi}(\mu)$ and $\phi(f) \in L_{\Psi}^*(\mu) \subseteq L_{\Psi}(\mu)$ whenever f is a bounded μ -measurable function vanishing outside a set of finite μ -measure.

(II) There exists a positive number M such that, for each $u \ge 0$, $\Phi(2u) \le M\Phi(u)$. This implies $\phi(u) > 0$ for each u > 0; in particular, $\phi(1) > 0$. Moreover, it can be shown that (a) $L_{\Phi}^{*}(\mu) = L_{\Phi}(\mu)$; (b) given $\epsilon > 0$ there exists $\eta > 0$ such that $||f||_{\Phi} < \epsilon$ whenever $\int_{S} \Phi(|f|) d\mu < \eta$ (cf. [7, pp. 81, 83]).

We further assume that:

(III) $\mathfrak B$ is a derivation basis with domain $E\subseteq S$ that derives the μ -integrals of all functions in $L_{\Psi}(\mu)$ that vanish outside a set of finite μ -measure. This tacitly requires that if $g\in L_{\Psi}(\mu)$ (= $L_{\Psi}^*(\mu)$) and g vanishes outside a set of finite μ -measure, then $\int_S |g| \ d\mu < +\infty$; i.e., g has a μ -finite μ -integral.

2.1. LEMMA. If
$$||f||_{\Phi} < 1$$
, then $\phi(|f|) \in L_{\Psi}$.

PROOF. We first consider a function f, bounded, nonnegative, and vanishing outside a set of finite μ -measure. From (I), we have $f \in L_{\Phi}(\mu)$ and $\phi(f) \in L_{\Psi}(\mu)$. From Young's inequality in the special case u = f, $v = \phi(f)$ we obtain

$$\int_{\mathcal{S}} \Psi(\phi(f)) d\mu \leqslant \int_{\mathcal{S}} \Psi(\phi(f)) d\mu + \int_{\mathcal{S}} \Phi(f) d\mu = \int_{\mathcal{S}} f \phi(f) d\mu,$$

whence we see (recall §1) that

$$\|\phi(f)\|_{\Psi} \leq \int_{S} \Psi(\phi(f)) \, d\mu + 1 \leq \int_{S} f \phi(f) \, d\mu + 1 \leq \|f\|_{\Phi} \, \cdot \, \|\phi(f)\|_{\Psi} \, + 1.$$

By hypothesis, $||f||_{\Phi} = k < 1$, so that the preceding inequality yields $||\phi(f)||_{\Psi} \le 1/(1-k) < +\infty$.

In the general case, we may represent |f| as a limit of a nondecreasing sequence $\{f_n\}$ of nonnegative functions, each of which vanishes outside a set of finite μ -measure. Because $f_n \uparrow |f|$ on S, we see that $\|f_n\|_{\Phi} \leqslant \|f\|_{\Phi} = k \leqslant 1$ and so, by what was just proved, $\|\phi(f_n)\|_{\Psi} \leqslant 1/(1-k)$ for $n=1,2,\ldots$. Using the facts that $\phi(0)=0$, ϕ is continuous on $(0,+\infty)$, and $f_n \uparrow f$ as $n \to +\infty$, we infer that $\phi(f_n) \uparrow \phi(f)$ on S. Judiciously using the monotone convergence theorem in conjunction with the definition of $\|\cdot\|_{\Psi}$, it is essentially routine now to infer that $\|\phi(|f|)\|_{\Psi} = \lim_{n \to +\infty} \|\phi(f_n)\|_{\Psi} \leqslant 1/(1-k)$; hence $\phi(|f|) \in L_{\Psi}(\mu)$.

2.2. Lemma. If A is an M-set of finite μ -measure, then B derives the μ -integrals of χ_A and χ_{\sim} .

PROOF. It is clearly sufficient to show that $\mathfrak B$ derives the μ -integral of χ_A . From (I) we see that $\phi(\chi_A) \in L_{\Psi}(\mu)$; thus $\mathfrak B$ derives the μ -integral of

 $\phi(\chi_A)$. However, $\phi(\chi_A) = \phi(1)\chi_A$ and $\phi(1) > 0$; hence $\mathfrak B$ derives the μ -integral of χ_A .

2.3. LEMMA. If H is any finite or countably infinite subfamily of M, then

$$\int_{\mathcal{S}} \Phi(n_H) d\mu \leq M \int_{\mathcal{S}} \Phi(e_H) d\mu + \Phi(1)\mu(\bigcup H).$$

PROOF. Let $A = \{x: n_H(x) \ge 2\}$, $B = \{x: n_H(x) = 1\}$ and note that for $x \in A$, $2 \le n_H(x) = e_H(x) + 1 \le 2e_H(x)$. Also, $B \subseteq \bigcup H$, so that using (II) we obtain

$$\int_{\mathcal{S}} \Phi(n_{\mathsf{H}}) \, d\mu = \int_{\mathcal{A}} \Phi(n_{\mathsf{H}}) \, d\mu + \int_{\mathcal{B}} \Phi(n_{\mathsf{H}}) \, d\mu \leq M \int_{\mathcal{S}} \Phi(e_{\mathsf{H}}) \, d\mu + \Phi(1) \mu(\bigcup \mathcal{H}).$$

2.4. LEMMA. Let H denote any finite or countably infinite subfamily of M for which $\int_S \Phi(n_H) d\mu$ is finite. If W is any M-set and $G = H \cup \{W\}$, then

$$0 \leqslant \int_{\mathcal{S}} \Phi(e_{G}) \ d\mu \leqslant \int_{\mathcal{S}} \Phi(e_{H}) \ d\mu + \int_{\mathcal{W}} \phi(n_{H}) \ d\mu.$$

PROOF. Let $H = \bigcup H$. We note that $e_G(x) = e_H(x)$ if $x \in (H - W)$; $e_G(x) = 0$ if $x \in (W - H)$; and $e_G(x) = n_H(x)$ if $x \in W \cap H$. Then, because all the following integrals are finite by virtue of our hypotheses, we have

$$0 \leq \int_{S} \Phi(e_{G}) d\mu = \int_{H-W} \Phi(e_{G}) d\mu + \int_{W\cap H} \Phi(e_{G}) d\mu$$

$$= \int_{H-W} \Phi(e_{H}) d\mu + \int_{W\cap H} \Phi(n_{H}) d\mu$$

$$= \int_{H} \Phi(e_{H}) d\mu - \int_{W\cap H} \Phi(e_{H}) d\mu + \int_{W\cap H} \Phi(n_{H}) d\mu$$

$$= \int_{S} \Phi(e_{H}) d\mu + \int_{W\cap H} (\Phi(n_{H}) - \Phi(e_{H})) d\mu.$$

Now $\int_{S} \Phi(n_{H}) d\mu$ is finite, so that n_{H} and e_{H} are finite μ -almost everywhere in S. Hence, for μ -almost all $x \in W \cap H$, $n_{H}(x)$ and $e_{H}(x)$ are positive integers differing by 1. Applying the mean-value theorem to Φ yields $0 \le \Phi(n_{H}(x)) - \Phi(e_{H}(x)) = \phi(\xi)$, where $e_{H}(x) < \xi < n_{H}(x)$. Thus $\phi(\xi) \le \phi(n_{H}(x))$, and therefore

$$(2) 0 \leq \Phi(n_H) - \Phi(e_H) \leq \phi(n_H)$$

holds μ -almost everywhere in $W \cap H$. The desired result is obtained by substituting (2) into the final term of (1) and then observing that $\int_{W \cap H} \phi(n_H) d\mu = \int_{W} \phi(n_H) d\mu$.

2.5. LEMMA. Suppose that $X \subseteq E$, \overline{X} is any μ -cover of X, $0 < \overline{\mu}(X) = \mu(\overline{X}) < +\infty$, and V is any \mathfrak{B} -fine covering of X. Suppose also that $0 < \alpha < 1$ and H is a finite or countably infinite subfamily of M subject to the conditions:

(i)
$$\int_{S} \Phi(e_{H}) d\mu \leq \alpha \mu(\overline{X} \cap H)$$
, where $H = \bigcup H$;

(ii)
$$(1 - \alpha) \sum_{V \in \mathcal{H}} \mu(V) \leq \mu(\overline{X} \cap H);$$

- (iii) $\mu(\overline{X} H) > 0$;
- (iv) $\phi(n_H) \in L_{\Psi}$.

Then there exists a set W such that

(v)
$$W \in V$$
 and $\frac{1}{\phi(1)} \int_W \phi(n_H) d\mu + \mu(W - \overline{X}) \leqslant \frac{\alpha}{2(1 + \phi(1))} \mu(W)$.

Moreover, if W is any set satisfying (v) and if we set $G = H \cup \{W\}$, $G = \bigcup G$, then

(vi)
$$\int_{S} \Phi(e_{G}) d\mu \leq \alpha \mu(\overline{X} \cap G)$$
 and
(vii) $(1 - \alpha) \sum_{V \in G} \mu(V) \leq \mu(\overline{X} \cap G)$.

PROOF. From (ii) and the fact that $\mu(\overline{X}) < +\infty$, we see that $\mu(H)$ is finite; (iv) and Lemma 2.2 ensure that $\mathfrak B$ derives the μ -integrals of both $\phi(n_H)$ and $\chi_{\widetilde{\Sigma}}$. Thus, if we define

$$\lambda(M) = \frac{1}{\phi(1)} \int_{M} \phi(n_{H}) d\mu + \mu(M - \overline{X})$$

for each set $M \in M$, then \mathfrak{B} derives λ . Consequently, because of (iii) and the fact that V is a \mathfrak{B} -fine covering of X, there must exist a point $z \in (X - H)$ with $D\lambda(z) = 0$ and a set W associated with z satisfying (v).

Now suppose that W is an arbitrary set satisfying (v). Then

(1)
$$\mu(W - (\overline{X} - H)) = \mu(W \cap (\widetilde{X} \cup H)) \leq \mu(W - \overline{X}) + \mu(W \cap H);$$

also $\phi(1)\chi_{W \cap H} = \phi(\chi_{W \cap H}) \leq \phi(n_H \cdot \chi_W)$, and therefore

$$\phi(1)\mu(W\cap H)\leqslant \int_W \phi(n_H)\ d\mu.$$

Substituting this last inequality into (1) yields

(2)
$$\mu(W - (\overline{X} - H)) \leq \mu(W - \overline{X}) + \frac{1}{\phi(1)} \int_{W} \phi(n_{H}) d\mu$$
$$\leq \frac{\alpha}{2(1 + \phi(1))} \mu(W) \leq \frac{\alpha}{2} \mu(W),$$

which easily yields in turn

(3)
$$(1 - \alpha/2)\mu(W) \le \mu(W \cap (\overline{X} - H))$$
 and $\mu(W) \le 2\mu(W \cap (\overline{X} - H))$.
From (3) and (v) we see that

$$(4) \qquad \int_{W} \phi(n_{H}) d\mu \leq \frac{\alpha \cdot \phi(1)}{2(\phi(1)+1)} \mu(W) \leq \alpha \mu(W \cap (\overline{X}-H)).$$

We have seen that $\mu(H)$ is finite; and $\int_S \Phi(e_H) d\mu$ is finite by (i); therefore $\int_S \Phi(n_H) d\mu$ is finite by Lemma 2.3. From (i), (4), and Lemma 2.4 we obtain

$$\int_{S} \Phi(e_{G}) d\mu \leq \int_{S} \Phi(e_{H}) d\mu + \int_{W} \phi(n_{H}) d\mu$$

$$\leq \alpha [\mu(\overline{X} \cap H) + \mu(W \cap (\overline{X} - H))] = \alpha \mu(\overline{X} \cap G),$$

which establishes (vi). Finally, from (ii) and (3) we have

$$(1-\alpha)\sum_{V\in G}\mu(V) = (1-\alpha)\sum_{V\in H}\mu(V) + (1-\alpha)\mu(W)$$

$$\leq \mu(\overline{X}\cap H) + \left(1-\frac{\alpha}{2}\right)\mu(W)$$

$$\leq \mu(\overline{X}\cap H) + \mu(W\cap(\overline{X}-H)) = \mu(\overline{X}\cap G),$$

which confirms (vii).

2.6. Theorem. \Re is L_{Φ} -strong.

PROOF. We choose an arbitrary set $X \subseteq E$ with $0 < \overline{\mu}(X) < +\infty$, select any μ -cover \overline{X} of X, let V denote an arbitrary \mathfrak{B} -fine covering of X, and suppose given $\epsilon > 0$. We may and do assume $\epsilon < 1$.

Next, we determine $\eta > 0$ so that, in accordance with (II) (b), $||f||_{\Phi} < \epsilon/2 < 1/2$ whenever $\int_{S} \Phi(|f|) d\mu < \eta$. We may and do suppose that $\eta < \epsilon$. Finally we choose α so that $0 < \alpha < 1$, $\alpha \mu(\overline{X}) < \eta$ and $[\alpha/(1-\alpha)]\mu(\overline{X}) < \eta$.

We define $\lambda(M) = \mu(M - \overline{X})$ for each set $M \in M$. From Lemma 2.2 we know that \mathfrak{B} derives λ . Thus, because $\mu(\overline{X}) > 0$ and V is a \mathfrak{B} -fine covering of X, there must exist a point $z \in X$ with $D\lambda(z) = 0$ and a set W associated with z for which

(1)
$$W \in V$$
 and $\mu(W - \overline{X}) \leq \alpha \mu(W)/2$.

We let F_1 denote the family of all sets W for which (1) holds. Then $F_1 \neq \emptyset$; also, it follows from (1) that $\mu(W) < 2\mu(\overline{X})$ whenever $W \in F_1$. Hence, if we set $\zeta_1 = \sup_{W \in F_1} \mu(W)$, then $0 < \zeta_1 < +\infty$. We choose a member V_1 of F_1 with $\mu(V_1) > \frac{1}{2}\zeta_1$ and set $H_1 = \{V_1\}$, $H_1 = \bigcup H_1 = V_1$. From (1) and the nature of H_1 , it follows readily that H_1 satisfies (i), (ii) and (iv) of Lemma 2.5.

We proceed inductively. We suppose $k \ge 1$ and that the family $H_k = \{V_1, V_2, \ldots, V_k\}$ satisfies conditions (i), (ii), and (iv) of Lemma 2.5 with $H_k = \bigcup H_k$. If $\mu(\overline{X} - H_k) = 0$, then we define $H_{k+1} = H_k$, $H_{k+1} = H_k$, so that H_{k+1} also satisfies (i), (ii), and (iv) of Lemma 2.5.

If $\mu(\overline{X} - H_k) > 0$, we use Lemma 2.5 to see that the family F_{k+1} , consisting of those sets W satisfying the relation

(2)
$$W \in V$$
 and $\frac{1}{\phi(1)} \int_{W} \phi(n_{H_k}) d\mu + \mu(W - \overline{X}) \le \frac{\alpha}{2(1 + \phi(1))} \mu(W)$,

is nonempty. Using (2) and following the line of proof of Lemma 2.5 down

(4)

to (3) of that lemma, we find that $\mu(W) \leq 2\mu(W \cap \overline{X}) < +\infty$ whenever $W \in F_{k+1}$. Thus, setting $\zeta_{k+1} = \sup_{W \in F_{k+1}} \mu(W)$, we see that $0 < \zeta_{k+1} < +\infty$. We select a member V_{k+1} of F_{k+1} such that $\mu(V_{k+1}) > \frac{1}{2}\zeta_{k+1}$, and we define $H_{k+1} = H_k \cup \{V_{k+1}\}, H_{k+1} = \bigcup H_{k+1}$. It follows that if we put $H_{k+1} = G$, then H_{k+1} satisfies (vi) and (vii) of Lemma 2.5. Also, because $\phi(n_{H_{k+1}})$ is bounded, $\mu(H_{k+1}) \leq \mu(H_k) + \mu(V_{k+1}) < +\infty$, and $n_{H_{k+1}}$ vanishes outside of H_{k+1} , we see that $\phi(n_{H_{k+1}}) \in L_{\Psi}(\mu)$. Thus H_{k+1} satisfies (i), (ii), and (iv) of Lemma 2.5; and this is true regardless of whether $\mu(\overline{X} - H_k) = 0$ or $\mu(\overline{X} - H_k) > 0$.

We thus obtain inductively a nested sequence $\{H_k\}$ of finite subfamilies of V each satisfying (i), (ii), and (iv) of Lemma 2.5. We let $H = \bigcup_{k=1}^{\infty} H_k$, $H = \bigcup_{k=1}^{\infty} H_k$ applying the monotone convergence theorem to (i) and (ii) yields

$$\int_{S} \Phi(e_{H}) d\mu \leq \alpha \mu(\overline{X} \cap H) \leq \alpha \mu(\overline{X}) < \eta \quad \text{and}$$

$$(3) \quad (1 - \alpha)\mu(H) \leq (1 - \alpha) \sum_{V \in \mathcal{U}} \mu(V) \leq \mu(\overline{X} \cap H) \leq \mu(\overline{X}) < + \infty.$$

Recalling our conditions on α and η , (3) implies

$$\|e_H\|_{\Phi} \le 2\|e_H\|_{\Phi} = \|2e_H\|_{\Phi} < \epsilon < 1 \quad \text{and}$$

$$\mu(H - \overline{X}) \le \alpha\mu(H) \le \frac{\alpha}{1 - \alpha} \mu(\overline{X}) < \eta < \epsilon.$$

Thus H satisfies conditions (S2) and (S3) of L_{Φ} -strength (cf. §1). It remains to be shown that H covers μ^* -almost all of X. Suppose, on the contrary, $\mu(\overline{X}-H)=\overline{\mu}(X-H)>0$. Then $\mu(\overline{X}-H_k)\geqslant \mu(\overline{X}-H)>0$ for $k=1,2,\ldots$, which means that the inductive process does not stop producing new sets, and so H is a countably infinite family of sets $\{V_1,V_2,\ldots,V_k,\ldots\}$ chosen from

We wish to show that H also satisfies (iv) of that lemma. To this end, we set $A = \{x: n_H(x) = 1\}$, $B = \{x: n_H(x) \ge 2\}$ and note that $n_H = \chi_A + n_H \chi_B \le \chi_A + 2e_H$, so that $\phi(n_H) \le \phi(\chi_A + 2e_H) = \phi(\chi_A) + \phi(2e_H)$. Now χ_A is bounded, $A \subseteq H$, and $\mu(A) \le \mu(H) < +\infty$, and therefore $\chi_A \in L_{\Psi}$. Also, from (4) and Lemma 2.1, we conclude that $\phi(2e_H) \in L_{\Psi}$. Accordingly $\phi(\chi_A) + \phi(2e_H) \in L_{\Psi}$ and therefore $\phi(n_H) \in L_{\Psi}$.

We are now free to apply Lemma 2.5 to produce a set $W \in V$ such that

(5)
$$\frac{1}{\phi(1)} \int \phi(n_H) d\mu + \mu(W - \overline{X}) \leqslant \frac{\alpha}{2(1 + \phi(1))} \mu(W).$$

V, satisfying (3); i.e., (i) and (ii), as well as (iii), of Lemma 2.5.

From (5) and the fact that $n_{H_k} \uparrow n_H$ as $k \to +\infty$, it follows that the relation $\frac{1}{\phi(1)} \int \phi(n_{H_k}) d\mu + \mu(W - \overline{X}) \leq \frac{\alpha}{2(1 + \phi(1))} \mu(W)$

holds for $k=1,2,\ldots$, and therefore $W\in \mathcal{F}_{k+1}$ for each such k. Hence $0<\mu(W)\leqslant \zeta_{k+1}<2\mu(V_{k+1})$ for $k=1,2,\ldots$. However, from (3) we infer that $\mu(V_k)\to 0$ as $k\to +\infty$. This contradiction forces us to conclude that $\mu(\overline{X}-H)=0$ and completes the proof of the theorem.

Theorem 2.6 can be applied in many situations; in particular, if $\phi(u) = u^{p-1}$ for all $u \ge 0$, where p > 1, we find that $\Phi(u) = u^p$ and $\Psi(u) = u^q$ (to within multiplicative constants) for all $u \ge 0$, and q satisfies the relation $p^{-1} + q^{-1} = 1$. We can assert that if \mathcal{B} derives the μ -integrals of all functions in $L^{(q)}(\mu)$, then \mathcal{B} is $L^{(p)}(\mu)$ -strong. (Cf. [1], [2], [4] and [5, pp. 35-40] for results on this and related problems.)

Unfortunately, the theorem is inapplicable in the classic case $\Psi(u) = u(\log^+ u)^{n-1}$ that arises in connection with the interval basis in Euclidean *n*-space, $n \ge 2$. Here, it turns out that $\Phi(u)$ is an exponential function for u sufficiently large, and so fails to satisfy (II). Attempts by the writer to circumvent this difficulty have been unsuccessful. A. Cordoba [1] has some results in this connection.

- 3. Some additional conditions related to L_{Φ} -strength and derivability. As in §2, \mathfrak{B} denotes a derivation basis with domain $E \subset S$.
- 3.1. DEFINITION. If $X \subseteq S$ then a point $x \in S$ is said to be *totally interior to X* (with respect to \mathfrak{B}) iff for each x-converging sequence $\{M_{\iota}(x)\}$ there exists some index ι_0 such that $M_{\iota}(x) \subseteq X$ whenever $\iota \succ \iota_0$. We let I(X) denote the set of points that are totally interior to X. If G is such a subset of S that $E \cap G \subseteq I(G) \pmod{\mathbb{N}^*}$, then G is called a *D-open* set (named after A. Denjoy). We let G denote the family of all such sets.
- 3.2. DEFINITION. We say that condition (G_{σ}) holds iff S is the union of a nondecreasing sequence $\{G_n^0\}$ of G-sets such that $G_n^0 \in M$ and $\mu(G_n^0) < +\infty$ for $n = 1, 2, \ldots$

In what follows we shall quote, without proof, several theorems taken from [3]. These were proved under a definition of (G_{σ}) slightly more restrictive than the one given in 3.2; however, those theorems are valid under the slightly weaker form of (G_{σ}) above.

3.3. Theorem. If (G_{σ}) holds and \mathcal{B} is $L_{\Phi}(\mu)$ -strong, then \mathcal{B} derives the μ -integrals of all functions in $L_{\Psi}(\mu)$, whose μ -integrals are μ -finite.

From Theorems 2.6 and 3.3, we obtain

3.4. Corollary. If ϕ and Φ satisfy the conditions of §2 and (G_{σ}) holds, then $L_{\Phi}(\mu)$ -strength of $\mathcal B$ is equivalent to the $\mathcal B$ -derivability of all functions in $L_{\Psi}(\mu)$ whose μ -integrals are μ -finite.

- 3.5. DEFINITION. If H is any countable subfamily of M and $0 < \alpha < +\infty$, then we define $H(\alpha)$ as the family of those members V of H for which $\int_V \phi(e_H) \ d\mu \le \alpha \mu(V)$; also, we define $H'(\alpha) = H H(\alpha)$.
- 3.6. DEFINITION. Condition (C1). To each $\epsilon > 0$, each $\alpha > 0$, each set $X \subseteq E$ of finite $\overline{\mu}$ -measure, each $z > \mu(\overline{X})$ and each \mathfrak{B} -fine covering V of X, there exists a finite family $H \subseteq V$ for which, setting $H = \bigcup H$, we have

$$\mu(\overline{X} - H) < \epsilon; \qquad \sum_{V \in H} \mu(V) < z; \qquad \mu(\bigcup H'(\alpha)) < \epsilon.$$

3.7. DEFINITION. Condition (C2). To each $\epsilon > 0$, each set $X \subseteq E$ of finite $\overline{\mu}$ -measure, and each \Re -fine covering V of X, there exists a finite family $H \subseteq V$ for which, putting $H = \bigcup H$, we have

$$\mu(\overline{X} - H) < \epsilon; \quad \mu(H - \overline{X}) < \epsilon; \quad \int_{S} e_{H} \phi(e_{H}) d\mu < \epsilon.$$

- 3.8. THEOREM. If ϕ and Φ satisfy the conditions of §2 and (G_{σ}) holds, then $(C1) \to (C2) \to \mathcal{B}$ is $L_{\Phi}(\mu)$ -strong.
- 3.9. DEFINITION. Let \mathcal{U} be a nonempty subfamily of M whose members are of positive μ -measure, and suppose that δ is a positive real-valued function on \mathcal{U} . Let E denote the set of points x in S for which there exists at least one ordinary sequence $\{V_n\}$ with $x \in V_n$, $V_n \in \mathcal{U}$, $n = 1, 2, \ldots$, and $\lim_{n \to +\infty} \delta(V_n) = 0$. We define a basis \mathcal{B} by associating with each $x \in E$ the totality of sequences just described. The domain of \mathcal{B} is clearly E and its spread is a subset of \mathcal{U} . We call such a basis \mathcal{B} a $[\mathcal{U}, \delta]$ -basis [5, p. 8].
- 3.10. THEOREM. If \mathfrak{B} is a $[U, \delta]$ -basis, (G_{σ}) holds, ϕ satisfies the conditions of §2, and both Φ and Ψ satisfy condition (II) of §2, then (C1) \longleftrightarrow (C2) \longleftrightarrow \mathfrak{B} is $L_{\Phi}(\mu)$ -strong.

As a result of Corollary 3.4, we obtain the following:

3.11. COROLLARY. Under the assumptions of Theorem 3.10, (C1) \longleftrightarrow (C2) \longleftrightarrow B is $L_{\Phi}(\mu)$ -strong \longleftrightarrow B derives the μ -integrals of all functions in $L_{\Psi}(\mu)$ whose μ -integrals are μ -finite.

We note that Corollary 3.4 establishes the equivalence of $L^{(p)}(\mu)$ -strength of \mathfrak{B} and the \mathfrak{B} -derivability of the μ -integrals of all $L^{(q)}(\mu)$ -functions, where $p^{-1}+q^{-1}=1$. Also, because in this case $\Phi(u)=u^p$, $\Psi(u)=u^q$ (to within constant multipliers) and both Φ and Ψ satisfy (II) of §1, it follows from Corollary 3.11 that if \mathfrak{B} is a $[\mathfrak{U},\delta]$ -basis as well, then all four conditions named in that corollary are equivalent.

REFERENCES

- 1. A. Cordoba, On the Vitali covering properties of a differentiation basis, Studia Math. (to appear).
- 2. M. de Guzmán, On the derivation and covering properties of a differentiation basis, Studia Math. 44 (1972), 359-364. MR 48 # 8710.
- 3. C. A. Hayes, Jr., Derivation in Orlicz spaces, J. Reine Angew. Math. 253 (1972), 162-174. MR 46 # 557.
 - 4. ———, Derivation of the integrals of $L^{(q)}$ -functions, Pacific J. Math. (to appear).
- 5. C. Hayes and C. Y. Pauc, *Derivation and martingales*, Ergebnisse Math. Grenzgebiete, Bd. 49, Springer-Verlag, Berlin, 1970.
- 6. R. de Posses, Sur la derivation abstraite des fonctions d'ensemble, J. Math. Pures Appl. 15 (1936), 391-409.
- 7. A. C. Zaanen, Linear analysis, North-Holland, Amsterdam; Interscience, New York; Noordhoff, Groningen, 1953. MR 15, 878.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA 95616