THE SPECTRAL THEORY OF POSETS AND ITS APPLICATIONS TO C*-ALGEBRAS

BY

A. H. DOOLEY(1)

ABSTRACT. This paper uses methods from the spectral theory of partially ordered sets to clarify and extend some recent results concerning approximately finite-dimensional C^* -algebras. An extremely explicit description is obtained of the Jacobson topology on the primitive ideal space, and it is shown that this topology has a basis of quasi-compact open sets. In addition, the main results of [4] are proved using only elementary means.

Introduction. Bratteli [3] introduced the idea of an approximately finite-dimensional C^* -algebra (or AF C^* -algebra)—one which is the limit of an inductive system of finite-dimensional C^* -algebras. In particular, [3] gives an analysis of the primitive ideals of an AF C^* -algebra, relating them to certain subsets of the diagram of A—a subset of $N \times N$ equipped with a binary relation, \downarrow . In [4], this formalism is used to give some topological results on the space Prim A of primitive ideals of A, equipped with the Jacobson topology. Bratteli notices that the diagram may be considered a partially ordered set, but makes no real use of this fact; his topological results are mostly proved by recourse to the ideal theory of C^* -algebras.

In this paper, I work entirely within the framework of the theory of partially ordered sets, directly deducing topological results about Prim A. Use of a notion of spectrum for a partially ordered set (related to that of [6]) enables one to give an extremely explicit description of the Jacobson topology on Prim A. Given this description, I am able to reduce the proofs of the main results on spectral theory in [4] to exercises in elementary set theory. The paper not only adds new methods, but also new results. For example, I show that Prim A has a basis of quasi-compact open sets. Bratteli [5] has since given a different proof of this result based on functional analytic methods.

This seems to be one of the very few classes of C^* -algebras where, in the

Received by the editors October 3, 1974 and, in revised form, June 17, 1975.

AMS (MOS) subject classifications (1970). Primary 46L05, 46L25; Secondary 06A10.

⁽¹⁾ The author was supported during part of this research by a French Government Scholarship at Université Paris VI.

absence of Hausdorff separation for Prim A, a very explicit description of the Jacobson topology is available. (Another is considered in [1].) The methods of this paper may have applications to algebras which are limits in the category of C^* -algebras of systems more general than inductive systems.

The paper is organized as follows. §1 serves to recall some results of [3] and to introduce the Bratteli poset $\mathcal{D}(A)$ of an AF C^* -algebra A. §2, which contains the bulk of the work, is independent of the other two sections; it deals with the spectral theory of a class of partially ordered sets, a class which includes the Bratteli posets. For each partially ordered set P of this class, I define a topological space Spec P whose topology is explicitly described. A number of results are proved about the topology of Spec P. Finally, in §3, I combine the results of the first two sections by means of a theorem which asserts that Prim A is homeomorphic to Spec $\mathcal{D}(A)$, and deduce the main results of the paper.

I would like to thank Professor Karl H. Hofmann for suggesting the ideas behind this research, and for his many helpful comments during its development.

Conventions. If X is a topological space, I shall mean by a *basis* for the topology of X a set B of open subsets of X such that every open set may be expressed as a union of sets from B.

I shall only ever consider one topology on the C*-algebra A-the norm topology. Thus a closed ideal of A will mean a norm-closed ideal, and so on.

1. Bratteli diagrams and Bratteli posets. I shall begin by recalling some results of [3]. Let A be a C^* -algebra (with identity), which is the inductive limit of the system (A_n, j_n) , the A_n being finite-dimensional C^* -algebras, and $j_n : A_{n-1} \to A_n$ an embedding. Such an algebra is called an AF C^* -algebra. One may identify A with $\bigcup_{n=1}^{\infty} A_n$. Since any finite-dimensional C^* -algebra may be uniquely decomposed as a direct sum of $m \times m$ matrix algebras, one can write $A_n = \bigoplus_{k=1}^k M_{(n,k)}$, where each of the $M_{(n,k)}$ is an $m \times m$ matrix algebra for some m. The embedding j_n decomposes into its components $j_{(n-1,k),(n,k')} : M_{(n-1,k)} \to M_{(n,k')}$. Bratteli denotes by $\mathcal{D}(A)$ the set $\{(n,k)|n \in \mathbb{N}, k=1, \ldots, k_n\}$, and defines a relation " \downarrow " on $\mathcal{D}(A)$ by $(n,k) \downarrow (n+1,k')$ if $j_{(n,k),(n+1,k')}$ is nonzero. I shall call the set $\mathcal{D}(A)$ equipped with the relation \downarrow , the Bratteli diagram of A.

In general, let \mathcal{D} be a nonempty subset of $\mathbb{N} \times \mathbb{N}$ with the property that, for each $n \in \mathbb{N}$, $\{m \mid (n, m) \in \mathcal{D}\}$ is finite, and $(0, m) \in \mathcal{D}$ if and only if m = 0. Suppose \mathbb{N} is equipped with a binary relation \downarrow satisfying conditions (i), (ii) and (iii) on p. 201 of [3]. Then $(\mathcal{D}, \downarrow)$ will be said to be a *Bratteli diagram*. In [3] it is shown that every Bratteli diagram arises as the Bratteli diagram of \mathbb{A} for some AF-algebra \mathbb{A} .

(1.1) Definition. Let $(\mathcal{D}, \downarrow)$ be a Bratteli diagram. Define another rela-

tion, " \geqslant " on \mathcal{D} as follows: for $x, y \in \mathcal{D}$, $x \geqslant y$ if there exists a finite sequence $\{z_i\}_{i=1}^r$ of elements of \mathcal{D} with $z_1 = x$, $z_r = y$, and for each $i = 1, \ldots, r-1$, $z_i \downarrow z_{i+1}$.

It is easily seen that (\mathcal{D}, \geqslant) is a partially ordered set with a maximum element. Let $d: \mathcal{D} \longrightarrow \mathcal{N}$ be the projection of \mathcal{D} onto its first factor. I will call (\mathcal{D}, \geqslant) the *Bratteli poset of* $(\mathcal{D}, \downarrow)$, d its degree function. It is easy to verify the truth of

- (1.2) LEMMA. Let $(\mathcal{D}, \downarrow)$ be a Bratteli diagram, (D, \geqslant) the associated Bratteli poset with degree function d. Then
 - (i) If $x \le y$ then $d(x) \ge d(y)$.
 - (ii) For all $n \in \mathbb{N}$, $\mathcal{D}^n := d^{-1}(n)$ is a finite set.
- (iii) For all $x, y \in \mathcal{D}$, if $x \ge y$ and $x \ne y$, then there exists $z \in \mathcal{D}^{d(x)+1}$ with $x \ge z \ge y$.
 - (iv) D has no minimal elements.

Conversely, if (\mathcal{D}, \geq) is any partially ordered set with a maximum element, equipped with a function $d: \mathcal{D} \longrightarrow \mathbb{N}$ satisfying (i)—(iv) above, there exists a Bratteli diagram whose associated Bratteli poset is isomorphic to (\mathcal{D}, \geq) .

Any partially ordered set (\mathcal{D}, \geq) , equipped with a function $d: \mathcal{D} \longrightarrow \mathcal{N}$ satisfying (1.2)(i)—(iv) will be called a *Bratteli poset*.

I shall require the following

- (1.3) LEMMA. Let A be an AF C*-algebra, $(\mathcal{D}(A), \downarrow)$ its Bratteli diagram and $(\mathcal{D}(A), \geqslant)$ its Bratteli poset. The following conditions are equivalent:
 - (i) A is abelian.
 - (ii) For all $x \in [\mathcal{D}(A)]^n$, $n \ge 1$, there is a unique $y \in \mathcal{D}(A)^{n-1}$ with $y \downarrow x$.
 - (iii) For all $x \in \mathcal{D}(A)$, $\{y \mid y \ge x\}$ is a chain.

PROOF. The equivalence of (i) and (ii) is given in (3.1) of [4]; the equivalence of (ii) and (iii) is simple verification and is left to the reader. \Box

- 2. The spectral theory of certain partially ordered sets.
- (2.1) NOTATION. A poset is a set P together with a partial order, \leq , and a greatest element, 1.

If $x \in P$, I set $\uparrow x = \{y \in P \mid y \ge x\}$, $\downarrow x = \{y \in P \mid y \le x\}$, $\underline{x} = \{y \in P \mid y \text{ is maximal in } \downarrow x \setminus \{x\}\}$, $\overline{x} = \{y \in P \mid y \text{ is minimal in } \uparrow x \setminus \{x\}\}$.

If $x, y \in P$, let $x \land y = \{z \in P \mid z \text{ is maximal in } \downarrow x \cap \downarrow y\}, x \lor y = \{z \in P \mid z \text{ is minimal in } \uparrow x \cap \uparrow y\}$. Some of these sets may be empty.

- (2.2) DEFINITION. A poset P is called co-well ordered if
- (I) Every chain in P has a maximal element. P is (weakly) well ordered if

(II) Every chain in P which is bounded below has a minimal element.

A poset P is called graded if there is a poset morphism $d: P \to N^{op}$, where N^{op} is the set of integers with reverse order, such that if $x \le y$ and d(x) = d(y) then x = y, and d(1) = 0.

Thus, for $x \le y$, $d(x) \ge d(y)$. The sets $P^n = d^{-1}(n)$ are called the *layers* of P of degree n, and d is called the degree function associated with P. A graded poset is *laterally finite* if all layers are finite.

The graded poset P with degree function d is said to be well-graded if for all $x \in P$, $d(x) = \{d(x) + 1\}$.

A poset satisfying (I) will briefly be called a CW poset, one satisfying (I) and (II), a WCW poset.

- (2.3) EXAMPLES. (i) Let X be a set, P the set of all finite subsets under reverse inclusion (i.e. $A \ge B$ if $A \subseteq B$). Set d(F) = card F, for $F \in P$. Then (P, \ge) is a well-graded WCW poset which is laterally finite if and only if X is finite.
- (ii) Let M be a module over a commutative ring R with 1, P the set of finitely-generated submodules under reverse inclusion. If M satisfies the descending chain condition for finitely-generated submodules, then P is a CW poset. If R is a field, then P is a well-graded WCW poset with gradation $d(V) = \dim V$. P is laterally finite if and only if $\dim M < \infty$.
- (iii) A partially ordered set P is a Bratteli poset if and only if it is a well-graded laterally finite poset with no minimal elements.
- (2.4) REMARKS. (i) Let S be a subset of the CW poset P. Then every element of S is majorized by an element which is maximal in S. In particular, for $x \in P$, $\underline{x} = \emptyset$ if and only if $\downarrow x = \emptyset$ if and only if x is minimal in P; and for $x, y \in P$, $x \land y = \emptyset$ if and only if $\downarrow x \cap \downarrow y = \emptyset$.
- (ii) Let S be a subset of the WCW poset P which is bounded below. Then every element of S is minimized by an element minimal in S. Hence, for any $x \in P$, $\overline{x} = \emptyset$ if and only if x = 1; and for all $x, y \in P$, $x \lor y \neq \emptyset$.

[The proofs of (i) and (ii) are straightforward, using Zorn's lemma.]

- (iii) Every graded poset is automatically a WCW poset.
- (2.5) DEFINITION. A filter in a CW poset P is a nonempty subset F satisfying the following:
 - (i) For all $x \in F$, $\uparrow x \subseteq F$.
 - (ii) For all $x, y \in F$, $(x \land y) \cap F \neq \emptyset$.

A filter is called *recursive* if for all $x \in F$, $x = \emptyset$ or $x \cap F \neq \emptyset$.

Let F(P) denote the set of all filters in P, Spec $P \subseteq F(P)$ the set of all recursive filters. A filter which is maximal with respect to inclusion is called an *ultrafilter*.

The proof of the following lemma is an easy exercise in elementary set theory, using (2.4)(i) and Definition (2.5).

LEMMA. Let $F \in F(P)$. Then

- (i) $1 \in F$.
- (ii) If $x \in F$ is such that $x \cap F = \emptyset$, then x is the smallest element of F.
- (iii) If F is an ultrafilter, F is recursive.

Topology on Spec P. I will always assume that P satisfies at least (I). For $a \in P$, define $S(a) \subseteq \text{Spec } P$ by $S(a) = \{F \in \text{Spec } P \mid a \in F\}$.

- (2.7) REMARKS. (i) Let $a, b \in P$. Then $S(a) \cap S(b) = \bigcup_{c \in a \wedge b} S(c)$. [Let $F \in \text{Spec } P$. By 2.5(i) and (ii), $a \in F$ and $b \in F$ if and only if there exists $c \in a \wedge b$ such that $c \in F$.]
- (ii) Let $F, G \in \text{Spec } P$. If $F \not\subseteq G$, then there is an $a \in P$ such that $F \in S(a)$ but $G \notin S(a)$.

Thus, the sets S(a), $a \in P$, form a basis for the open sets of a T_0 -topology on Spec P. This topology will be called the *natural topology* and denoted by o.

(2.8) Let X be a topological space. A subset C of X is called *irreducible* if it is closed and not contained in the union of two proper closed subsets of itself.

LEMMA. Let $C \subseteq \text{Spec } P$ be o-closed, and set $F_C = \bigcup_{F \in C} F$. The following statements are equivalent:

- (i) C is irreducible.
- (ii) Let $a, b \in P$. Then $C \cap S(a) \neq \emptyset \neq C \cap S(b)$ implies that there exists $c \in a \land b$ such that $S(c) \cap C \neq \emptyset$.
- (iii) Let $a, b \in P$. Then if there exist $F, G \in C$ with $a \in F, b \in G$ then there exists $H \in C$ with $a \land b \cap H \neq \emptyset$.
 - (iv) $F_C \in \text{Spec } P$.

If these conditions are satisfied, then for all $a \in P$, $F_C \in S(a)$ if and only if $S(a) \cap C \neq \emptyset$.

PROOF. (i) \Rightarrow (ii) If C does not satisfy (ii), one may choose a, b with $C \cap S(a) \neq \emptyset \neq C \cap S(b)$, but for all $c \in a \land b$, $S(c) \cap C = \emptyset$. By (2.7)(i), the latter statement implies that $[S(a) \cap S(b)] \cap C = \emptyset$. Hence $C \cap [S(a)]^c \neq \emptyset \neq C \cap [S(b)]^c$ and $([S(a)]^c \cap C) \cup ([S(b)]^c \cap C) = C$. Thus C is not irreducible.

- (ii) \Rightarrow (iii) \Rightarrow (iv) is trivial.
- (iv) \Rightarrow (v) Suppose $F_C \in \text{Spec } P$. If C is not irreducible, there exist $a, b \in P$ with $([S(a)]^c \cap C) \cup ([S(b)]^c \cap C) = C$ but $[S(a)]^c \cap C \neq \emptyset \neq [S(b)]^c \cap C$. By the former statement (via 2.7(i)), $S(c) \cap C = \emptyset$ for all $c \in a \land b$; by the latter $a \in F_C$ and $b \in F_C$ which implies $(a \land b) \cap F_C \neq \emptyset$. This is a contradiction.

The last statement of the lemma is clear.

THEOREM. For every CW poset P, the natural topology on Spec P has the property that every irreducible set is a singleton closure.

PROOF. Let C be an irreducible set, and define F_C as in the lemma. The lemma assures us that C is in fact the closure of $\{F_C\}$. \square

Acyclic CW posets.

- (2.9) PROPOSITION. Let P be a CW poset. The following statements are equivalent:
 - (i) For all $x, y \in P$ such that $x \land y \neq \emptyset$ either $x \leq y$ or $y \leq x$.
 - (ii) For all $x \in P$, $\uparrow x$ is totally ordered.
 - (iii) Every filter is totally ordered.
 - (iv) Every recursive filter is totally ordered.

PROOF. (iii) ⇒ (ii) ⇒ (i) ⇒ (iv) is straightforward using (2.5). For (iv) ⇒ (iii), note that every filter is contained in an ultrafilter and apply (2.6)(iii).

The CW poset P is called acyclic if it satisfies the equivalent conditions of the above proposition.

(2.10) Lemma. In an acyclic CW poset P every maximal chain is a recursive filter. If P is further a WCW poset, the converse is also true and Spec P is precisely equal to the set of maximal chains in P.

PROOF. The first statement follows from (2.6)(iii) and (2.9). For the second, suppose P is an acyclic WCW poset, $F \in \text{Spec } P$. Then F is a chain. If F is not maximal, choose $y \in P \setminus F$ such that $F \cup \{y\}$ is a chain. (2.5)(i) shows that y is a lower bound for F, and hence by (II), F has a minimum element $x_0 \ge y$, $x_0 \ne y$. By (2.4)(i) and (2.5), $x_0 \cap F \ne \emptyset$, a contradiction. \square

- (2.11) LEMMA. A CW poset P is acyclic if
- (v) For all $a \in \mathcal{P}$, $[S(a)]^c = \bigcup_{b \in [1,a \cup \uparrow_a]^c} S(b)$.

If P is further a WCW poset, the converse is also true; viz. if P is acyclic, P satisfies (v).

PROOF. (v) \Rightarrow (2.9)(iv) Let $F \in \text{Spec } P$. Then for $x, y \in F$, $S(x) \cap S(y) \neq \emptyset$, so by (v), $\bigcup \{S(b)|b \in [\uparrow y \cup \downarrow y]^c\} \not\supseteq S(x)$. Hence $x \in \uparrow y \cup \downarrow y$. The second statement follows from (2.10). \square

THEOREM. Let P be an acyclic WCW poset. Then the natural topology is a zero-dimensional Hausdorff topology.

Duality theorems for well-graded acyclic posets.

(2.12) Let X be a set. A function $D: X \times X \longrightarrow R$ is called an *ultrametric* if

- (i) For all $x, y \in X$, $D(x, y) \ge 0$; if D(x, y) = 0 then x = y.
- (ii) Let $x, y, z \in X$. Then $D(x, z) \le \max(D(x, y), D(y, z))$. Notice that every ultrametric is a metric.
- (2.13) LEMMA. Let P be an acyclic well-graded poset with degree function d. There exists an ultrametric D on Spec P with range $\{0\} \cup \{2^{-n} \mid n \in \mathbb{N}\}$ such that the topology induced by D is the o-topology; indeed the sets S(a) with d(a) = n are precisely the 2^{-n} balls. Moreover, Spec P equipped with D is a complete metric space.

PROOF. For $F, G \in \operatorname{Spec} P$, let $S_{F,G} = \{n \in \mathbb{N} \mid \forall k \leq n, P^k \cap F = P^k \cap G\}$. Since $1 \in F \cap G$, $S_{F,G} \neq \emptyset$. If $S_{F,G}$ is unbounded then F = G. If $F \neq G$, let $m_{F,G} = \max[S_{F,G}]$. Define D: Spec $P \times \operatorname{Spec} P \to \{0\} \cup \{2^{-n} \mid n \in \mathbb{N}\}$ by

$$D(F, G) = 0, if F = G,$$
$$= 2^{-m_F, G}, if F \neq G.$$

It is easily checked that D is an ultrametric. Using this definition, one sees that for $F \in \operatorname{Spec} P$ such that

(1)
$$F \cap P^n = \{a\}$$
, $B(F, 2^{-n}) := \{G \in \text{Spec } P \mid D(F, G) \le 2^{-n}\} = S(a)$.

Conversely, for any point $a \in \mathcal{P}^n$, S(a) is a 2^{-n} -ball. [Choose a maximal chain F with $a \in F$. Then $S(a) = B(F, 2^{-n})$.]

Finally, let $\{F_n\}$ be a D-Cauchy sequence in Spec P. To define $F \in S$ pec P such that $F_n \to F$, notice that for all $k \in N$, there exists $N \in N$ such that if $m, n \ge N$, $D(F_n, F_m) \le 2^{-k}$. Let N_k be the minimum such N, and define the subset F of P by $F \cap P^k = F_{N_k} \cap P^k$. It follows that, for all $k \in N$, $r \le k$ implies $F \cap P^r = F_{N_k} \cap P^r$. Using this fact, one verifies that $F \in S$ pec P, and further that, for $k \in N$, $D(F_{N_k}, F) \le 2^{-k}$. Hence $F_n \to F$. \square We deduce

Theorem. Let P be an acyclic, laterally countable well-graded poset. Then Spec P, equipped with the above metric is a zero-dimensional Polish space.

(2.14) I will now show that, under certain conditions, the natural topology is a locally compact topology.

Let P be a well-graded poset. $x \in P$ is said to be *finitely based* if, for all $y \in \downarrow x$, \underline{y} is finite. P is said to be (spectrally) finitely based if every recursive filter contains a finitely based element.

Notice that for any well-graded poset P, 1 is finitely based if and only if P has finite layers.

The proof of the following lemma is left to the reader.

LEMMA. Let P be an acyclic well-graded poset. $a \in P$ is finitely based if and only if S(a) is a compact set in the natural topology.

THEOREM. Let P be an acyclic well-graded poset. Then Spec P is a locally compact space if and only if P is spectrally finitely based. Spec P is compact if and only if P has finite layers.

(2.15) In this paragraph, we prove a converse to Theorem (2.13).

THEOREM. Let X be a zero-dimensional Polish space. Then there exists a countable acyclic well-graded poset P with no minimal elements, such that Spec P is homeomorphic to X. If X is locally compact (compact), P is finitely based (has finite layers).

- PROOF. Let X be a zero-dimensional Polish space. I shall assume the reader is familiar with the construction of a sifting, as given in $[2, IX, \S 6.5]$. I call a sifting (C_n, p_n, φ_n) open if for any $c \in C_n$, $\varphi_n(c)$ is open. A slight modification of the construction of $[2, IX, \S 6.5, Lemma 3]$ proves that X has a strict open sifting (C_n, p_n, φ_n) . It is then clear that the function $f \colon L(C) \to X$ constructed in $[2, \S 6.5]$, is open and hence is a homeomorphism. Let $C = \bigcup_{n=0}^{\infty} C_n$. Defining, for $c \in C_n$ and $c' \in C_m$, $c \geqslant c'$ if $n \geqslant m$ and $P_{nm}(c) = c'$ makes C into a poset; if we set d(c) = n for $c \in C_n$, C becomes a countable well-graded poset with no minimal elements. It is not too hard to see that Spec C is homeomorphic to L(C). This proves the theorem. \square
- (2.16) Let Y be the topological space of the irrational numbers, and let K be the Cantor space constructed on the interval [0, 1]. By the information in $[7, \S 33, I]$, K is the compactification of Y. Using this fact, together with Theorems 1 and 2 of $[7, \S 32, II]$ and (2.15), one deduces

PROPOSITION. (i) Let P be an acyclic well-graded poset. Then Spec P is homeomorphic to a closed subspace of Y. If P is in addition laterally finite, then Spec P is homeomorphic to a closed subspace of K.

(ii) Let X be any Polish space. Then there exists a laterally countable well-graded poset P, with no minimal elements such that X is a quotient space of Spec P. If X is, in addition, compact, we may suppose that P is laterally finite.

Acyclic covers.

- (2.17) Let P be a CW poset. Denote by \widetilde{P} the set of all totally ordered subsets T of P such that
 - (i) T has a minimum element x_T .
- (ii) T is maximal amongst the totally ordered subsets with minimum element x_T .

Define $p \colon \widetilde{P} \longrightarrow P$ by $p(T) = x_T = \min T$. For $T_1, T_2 \in \widetilde{P}$, let $T_1 \ge T_2$ if $T_1 \subseteq T_2$. One then has

PROPOSITION. Let P be a CW poset. \widetilde{P} , equipped with \geq is an acyclic CW poset and p is a surjective poset map. If P is WCW so is \widetilde{P} ; if P is graded (well-graded), so is \widetilde{P} . Further, if P is graded with finite layers, so is \widetilde{P} .

The proof of this proposition is elementary, given the following lemma.

LEMMA. Let P be a CW poset and let $T \in \widetilde{P}$. Then $\underline{T} = \{T \cup \{y\} | y \in p(T)\}$.

PROOF. First notice that any set of the form $T \cup \{y\}$, $y \in \underline{p(T)}$ is in \widetilde{P} . Thus, we must check that any element of $\downarrow T \setminus \{T\}$ is majorized by an element of \widetilde{P} of this form. Let $S \in \downarrow T \setminus \{T\}$. Then $p(T) \in S$, and $S \cap \downarrow p(T) \setminus \{p(T)\}$ is a nonempty chain. Hence, by (I) it has a maximum, y say. By the maximality of S, $y \in p(T)$, and so $T \cup \{y\} \subseteq S$, as required. \square

Auxiliary topology on Spec \widetilde{P} .

(2.18) Since \widetilde{P} is a CW poset, one may of course define the *o*-topology on Spec \widetilde{P} . In this paragraph, I will define a second, coarser topology on Spec \widetilde{P} .

For $a \in \widetilde{P}$, let $W(a) \subseteq \operatorname{Spec} \widetilde{P}$ be defined by $W(a) = \bigcup_{P(T) \leq a} S(T)$. It is easily seen that $W(a) = \{F \in \operatorname{Spec} \widetilde{P} \mid \text{ for some } T \in F, T \cap \downarrow a \neq \emptyset\}$. Using this fact, it is easy to prove that for $a, b \in P$, $W(a) \cap W(b) = \bigcup_{c \in a} \bigwedge_b W(c)$. Thus $\{W(a) \mid a \in P\}$ is a basis for a topology τ on $\operatorname{Spec} \widetilde{P}$. τ is clearly coarser than o.

PROPOSITION. Let P be a CW poset. The following statements are equivalent:

- (i) P is acyclic.
- (ii) $p: \widetilde{P} \to P$ is bijective.
- (iii) For any $T \in \widetilde{P}$, S(T) = W(p(T)).

PROOF. (i) \Rightarrow (ii) \Rightarrow (iii) is trivial. Suppose P is not acyclic. By (2.9)(ii), we may find $a \in P$ and two chains T_1 , T_2 , maximal in $\uparrow a$ with $p(T_1) = p(T_2) = a$, $T_1 \neq T_2$. Choose ultrafilters F_i in P with $T_i \in F_i$. One then has $F_1 \in W(p(T_2))$ but $F_1 \notin S(T_2)$. \square

(2.19) Lemma. On any topological space X, there is an equivalence relation R_X , given by xR_Xy if and only if $\{\overline{x}\} = \{\overline{y}\}$. X/R_X is a T_0 space, in fact it is the left reflection of X into the category of T_0 spaces. The front adjunction of this reflection is the quotient map $q_X: X \longrightarrow X/R_X$.

Since this lemma is well known and easily proved, I shall omit its proof. Let P be a CW poset and let R be the equivalence relation of the lemma

applied to the topological space (Spec \widetilde{P} , τ). Set Spec₀ $\widetilde{P} = (\text{Spec } \widetilde{P}, \tau)/R$. Define m: Spec $\widetilde{P} \longrightarrow 2^P$ by $m(F) = \bigcup_{T \subseteq F} [\uparrow p(T)] = \uparrow \bigcup_{T \subseteq F} P(T) = \uparrow \bigcup_{T \subseteq F} T$.

- (2.20) LEMMA. Let $F, G \in \text{Spec } \widetilde{P}$. The following statements are equivalent.
- (i) For all $a \in P$, $F \in W(a)$ if and only if $G \in W(a)$.
- (i) For all $a \in P$, $\bigcup_{T \in F} T \cap \downarrow a \neq \emptyset$ if and only if $\bigcup_{T \in G} T \cap \downarrow a \neq \emptyset$.
- (ii) For all $T_F \in F$ and for all $T_G \in G$, there exist $T'_F \in F$ and $T'_G \in G$ such that $p(T'_G) \leq p(T_F)$, and $p(T'_F) \leq p(T_G)$.
 - (iii) The τ -closure of $\{F\}$ is equal to the τ -closure of $\{G\}$.

The proof, an easy exercise in elementary set theory, is omitted.

PROPOSITION. With the notation of (2.19), for $F, G \in \text{Spec } P, m(F) \in \text{Spec } P, \text{ and if } FRG \text{ then } m(F) = m(G).$

PROOF. It is clear from the definition of m that m(F) satisfies (2.5)(i) and (ii). To show that m(F) is recursive, let $x \in m(F)$, $\underline{x} \neq \emptyset$. Choose $T \in F$ such that $x \geq p(T)$. If $x \neq p(T)$, then $\underline{x} \cap \uparrow p(T) \neq \emptyset$ and we have finished. If x = p(T), Lemma (2.17) implies that $\underline{x} \cap m(F) \neq \emptyset$. The second statement follows from the lemma.

Let m_0 : Spec₀ $\widetilde{P} \longrightarrow$ Spec \widetilde{P} be the mapping naturally induced by m.

(2.21) A subset B of a filter $F \in F(P)$ is called a *basis* for F if B is totally ordered, and for any $x \in F$ there exists $b \in B$ with $b \le x$.

THEOREM. Let P be a CW poset. Then m_0 : Spec₀ $\widetilde{P} \longrightarrow$ Spec P is a homeomorphism onto the dense set of all $F \in$ Spec P which have a basis. If P is countable, then m_0 is a homeomorphism onto Spec P.

PROOF. Using the definition of m, together with Lemma (2.20)(ii), it is easy to see that m_0 is injective. Since $m = m_0 \circ q_{(\operatorname{Spec}\widetilde{P},\tau)}$ where $q_{(\operatorname{Spec}\widetilde{P},\tau)}$ is the surjection of (2.19), it is clear that im $m = \operatorname{im} m_0$. Now suppose $\widetilde{F} \in \operatorname{Spec} \widetilde{P}$. Then $\{p(T) \mid T \in \widetilde{F}\}$ forms a basis for $m(\widetilde{F})$. Hence im $m \subseteq \{F \in \operatorname{Spec} P \mid F \text{ has a basis}\}$. For the opposite containment, I will use a lemma.

LEMMA. Let P be a CW poset, $F \in \text{Spec } P$, and G a maximal totally ordered subset of F. For $x \in G$, let $T_x = (\uparrow x) \cap G$. Then $T_x \in \widetilde{P}$ and $\widetilde{F} = \{T_x \mid x \in G\} \in \text{Spec } \widetilde{P}$.

PROOF. Let $x \in G$. Since G is maximal in F and $\uparrow x \subseteq F$, $\uparrow x \cap G$ is maximal in $\uparrow x$; thus $T_x \in \widetilde{P}$. To see that $\widetilde{F} \in F(\widetilde{P})$ is easy, so it remains to see that \widetilde{F} is recursive. By Lemma (2.17), it suffices to show that, for $x \in G$, $\underline{x} = \emptyset$ or $\underline{x} \cap G \neq \emptyset$. But this is obviously the case, since F is recursive and G is maximal. \square

Suppose now that F has a basis. By Zorn's lemma, F has a maximal basis

G. Defining \widetilde{F} as in the lemma, one sees that $m(\widetilde{F}) = F$, and so $F \in \text{im } m$.

Next, let $a \in P$, $F \in S(a) \neq \emptyset$. Let C be a chain maximal in F and containing a. The lemma shows that $\widetilde{F} = \{ \uparrow x \cap C | x \in C \} \in \text{Spec } \widetilde{P}$, and clearly $m(\widetilde{F}) \in S(a)$. Thus the image is dense. To show that m_0 is a homeomorphism, it will suffice to show that for $a \in P$, $m[\mathcal{W}(a)] = S(a) \cap \text{im } m_0$. In fact, from the definitions of $\mathcal{W}(a)$ and m, it is clear that for all $a \in P$, and for all $\widetilde{F} \in \text{Spec } \widetilde{P}$, $F \in \mathcal{W}(a)$ if and only if $m(\widetilde{F}) \in S(a)$.

To complete the proof of the theorem, let $F = \{x_i | i \in \mathbb{N}\}$ be a countable filter. Define a basis $\{y_i\}$ for F as follows: $y_0 = x_0$. Suppose y_i defined. Then since F is a filter, $(y_i \land x_{i+1}) \cap F \neq \emptyset$. Let y_{i+1} be an arbitrary element of this set. \square

(2.22) LEMMA a. Let \widetilde{P} be a CW poset, $a \in \widetilde{P}$, and choose $T_a \in \widetilde{P}$ with $p(T_a) = a$. If $q: \operatorname{Spec} \widetilde{\widetilde{P}} \to \operatorname{Spec}_0 \widetilde{\widetilde{P}}$ is the map of (2.19), then q[W(a)] = q[S(Ta)].

PROOF. One knows that $W(a) \supseteq S(T_a)$. Thus let $F \in W(a)$, and choose $T_0 \in F$ such that $p(T_0) \le a$. Then the set $[\bigcup_{S \in \downarrow} T_0 \cap F p(S)] \cup T_a$ is a chain contained in m(F). Choose a chain C containing it and maximal in m(F). By Lemma (2.21), $G = \{\uparrow x \cap C \mid x \in C\} \in \operatorname{Spec} \widetilde{P}$. Clearly $G \in S(T_a)$, and $m(G) = \bigcup_{x \in C} \uparrow x = m(F)$. By Theorem (2.21), q(G) = q(F). This proves the lemma. \square

LEMMA b. Let P be a laterally countable well-graded poset and suppose $a \in P$ is finitely based. Then S(a) is quasi-compact.

PROOF. Let T_a be an element of \widetilde{P} such that $p(T_a) = a$. Combining information from (2.21) and (2.22), one has $m(S(T_a)) = S(a)$. By Lemmas (2.14) and (2.17), $S(T_a)$ is compact. Thus S(a), being a continuous image of a compact set, is quasi-compact. \square

- (2.23) A topological space is called spectral if
 - (i) X is T_0 .
- (ii) Every irreducible set in X is a singleton closure.
- (iii) X has a basis of quasi-compact open sets.
- (2.8) and (2.22) now prove:

THEOREM. Let P be a well-graded countable poset which is spectrally finitely based. Then Spec P is a spectral space. If P is laterally finite, Spec P is a quasi-compact spectral space.

3. The structure spaces of AF-algebras. Throughout this section, A will denote an AF C^* -algebra with identity, $\mathcal{D}(A) = (\mathcal{D}(A), \geq)$ its Bratteli poset.

- (3.1) LEMMA. Let $\Lambda \subseteq \mathcal{D}(A)$. Consider the following conditions on Λ .
- (i) For all $x \in \Lambda$, $\downarrow x \subseteq \Lambda$.
- (ii) For all $x \in \mathcal{D}(A)$, if $\downarrow x \setminus \{x\} \subseteq A$ then $x \in A$.
- (iii) If $x, y \in \Lambda^c$ then there exists $z \in \Lambda^c$ such that $z \le x$ and $z \le y$.

If Λ satisfies (i) and (ii), let $\Lambda^n = \Lambda \cap [\mathcal{D}(\Lambda)]^n$, put $I = \bigcup_{n=1}^{\infty} \bigoplus_{x \in \Lambda} nM_{(x)}$, and let $I_{\Lambda} = \overline{I}$. Then I_{Λ} is a norm-closed ideal of Λ . $\Lambda \longrightarrow I_{\Lambda}$ is a bijection of the set of all subsets of $\mathcal{D}(\Lambda)$ satisfying (i) and (ii) above onto the set of norm-closed ideals of Λ . Let $\Lambda \subseteq \mathcal{D}(\Lambda)$ satisfying (i) and (ii). Then I_{Λ} is a primitive ideal of Λ if and only if Λ satisfies (iii).

PROOF. This follows from Theorems 3.3 and 3.8 of [3]. \Box

(3.2) LEMMA. Let $\Lambda \subseteq \mathcal{D}(A)$. Then Λ satisfies (3.1)(i), (ii) and (iii) if and only if Λ^c is a recursive filter of $\mathcal{D}(A)$.

Combining (3.1) with this lemma, we see that $\beta \colon F \mapsto I_{Fc} \colon$ Spec $\mathcal{D} \to$ Prim A is a bijection.

(3.3) Lemma. A basis for the open sets of the Jacobson topology on Prim A is given by $\mathcal{O}_x = \{ \varphi \in \text{Prim } A \mid \varphi \not\supseteq M_{(x)} \}, x \in \mathcal{D}(A)$.

PROOF. It suffices to show that any closed set in Prim A is an intersection of sets of the form $\mathcal{O}_x^c = \{\varphi \in \operatorname{Prim} A \mid \varphi \supseteq M_{(x)}\}$. Recall that the closed sets of Prim A are $C_I = \{\varphi \in \operatorname{Prim} A \mid \varphi \supseteq I\}$ where I runs through all closed ideals of A. Since, for $\varphi \in \operatorname{Prim} A$, $\varphi \supseteq M_{(x)}$ if and only if $\varphi \supseteq$ the ideal generated by $M_{(x)}$, each of the \mathcal{O}_x^c is clearly closed. Let \overline{I} be a closed ideal of A, where $I = \bigcup_{n=1}^{\infty} \bigoplus_{x \in \Lambda_I^n} M_{(x)}$. The closed set $C_{\overline{I}}$ is easily seen to equal $\bigcap_{n=1}^{\infty} \bigcap_{x \in \Lambda_I^n} M_{(x)}$. \square

THEOREM. Let A be an AF C*-algebra with identity, $\mathcal{D}(A)$ its Bratteli poset. Then the map β : Spec $\mathcal{D}(A) \longrightarrow \text{Prim } A$ is a homeomorphism.

PROOF. One has $\beta[S(x)] = 0_x$. The theorem follows. \square

COROLLARY a. Let A be an abelian AF C*-algebra with identity. Then Prim A is a compact zero-dimensional Polish space. Every compact zero-dimensional Polish space arises as Prim A for some AF C*-algebra A.

(2.16), combined with Gelfand-Naimark duality, now shows that any abelian AF C^* -algebra with identity is a C^* -quotient algebra of the AF C^* -algebra C(K), and that any separable abelian C^* -algebra with identity is a subalgebra of C(K).

COROLLARY b. Let A be an AF C*-algebra with identity. Then Prim A is a quasi-compact spectral space.

Corollary a is proved as Proposition 3.1 of [4]. Corollary b is an improvement on the results of [4], since it contains the assertion that Prim A has a basis of quasi-compact open sets. That irreducible sets in Prim A are one point closures is proved as Lemma 4.2 of [4], but the proof is considerably less elementary than the proof of Theorem (2.8). Corollary b has since been proved in [5], by functional analytic methods. [5] also contains a partial converse to Corollary b; if X is a spectral space with the additional property that the intersection of two quasi-compact open sets is quasi-compact, then X arises as Prim A for some AF C^* -algebra A.

In conclusion, I remark that, although I have assumed throughout that A has identity, all the results of this paper may easily be generalized to the case where A is without identity. One may associate with A (again via a diagram), a well-graded countable poset, $(\mathcal{D}(A), \geq)$ which does not necessarily have finite layers, but which does have the property that it is spectrally finitely based. One again has Prim A homeomorphic to Spec $\mathcal{D}(A)$, and consequently, Corollary b generalizes to this case.

BIBLIOGRAPHY

- 1. H. Behncke and H. Leptin, C*-algebras with finite duals, J. Functional Analysis 14 (1973), 253-268. MR 49 #7790.
- 2. N. Bourbaki, Elements of mathematics. General topology. Part 2, Hermann, Paris; Addison-Wesley, Reading, Mass., 1966. MR 34 #5044b; erratum, 40, p. 1704.
- 3. O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
- 4. ———, Structure spaces of approximately finite-dimensional C*-algebras, J. Functional Analysis 16 (1974), 192-204.
- 5. ———, Structure spaces of approximately finite-dimensional C*-algebras. II (preprint, 10 pp.)
- 6. K. H. Hofmann, and K. Keimel, A general character theory for partially ordered sets and lattices, Mem. Amer. Math. Soc. No. 122 (1972). MR 49 #4885.
 - 7. C. Kuratowski, Topologie. Vol. 1, 3rd ed., PWN, Warsaw, 1952. MR 14, 1000.

DEPARTMENT OF MATHEMATICS, INSTITUTE OF ADVANCED STUDIES, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, A.C.T. 2600, AUSTRALIA