THE PRIMITIVE LIFTING PROBLEM IN THE EQUIVALENCE PROBLEM FOR TRANSITIVE PSEUDOGROUP STRUCTURES: A COUNTEREXAMPLE

BY

PIERRE MOLINO

ABSTRACT. A transitive Lie pseudogroup Γ_M on M is a primitive extension of Γ_N if Γ_N is the quotient of Γ_M by an invariant fibration $\pi\colon M \longrightarrow N$ and if the pseudogroup induced by Γ_M on the fiber of π is primitive. In the present paper an example of this situation is given with the following property (counterexample to the primitive lifting property): the equivalence theorem is true for almost- Γ_N -structures but false for almost- Γ_M -structures.

1. We shall consider the following situation: Let $\pi\colon M \to N$ be a fibration of smooth manifolds, Γ_M a transitive Lie pseudogroup on M respecting the fibration π . It is not always true that a quotient pseudogroup on N can be defined, but by projecting the equations of Γ_M (that is to say the associated structures) we obtain the equations of a transitive Lie pseudogroup Γ_N on N. Γ_N will be referred to as the pseudogroup defined by passing to the quotient. In the study of the equivalence problem for almost- Γ_M -structures (see [1], [3], [4]), it is a standard method to use such quotients. If the equivalence theorem is true for almost- Γ_N -structures, any almost- Γ_M -structure defines a quotient almost- Γ_N -structure, and the given equivalence problem reduces to a "lifting problem" from an equivalence for the quotient structure to an equivalence for the given structure.

Let K be a fiber of π , Γ_K the family of restrictions to K of those transformations in Γ_M which map K into K. We assume here that Γ_K is a flat irreducible transitive Lie pseudogroup on K. Then Γ_K is either an affine pseudogroup (Γ_M is an "affine extension" of Γ_N) or a primitive pseudogroup (Γ_M is a "primitive extension" of Γ_N).

The purpose of this paper is to give an example where Γ_M is a primitive extension of Γ_N and the equivalence theorem is true for Γ_N but false for Γ_M . In the terminology of A. Pollack (see [4]), the "primitive lifting theorem for $\Gamma_M \longrightarrow \Gamma_N$ " is not true.

Received by the editors July 25, 1975.

AMS (MOS) subject classifications (1970). Primary 58A15; Secondary 53C10, 57D55. Key words and phrases. Equivalence problem, almost- Γ -structures, primitive Lie pseudogroups, Lewy counterexample, equivalence theorem, flat pseudogroups, primitive lifting theorem.

In the paper just mentioned, A. Pollack asserts that, for Γ_M and Γ_N flat, "the primitive lifting theorem can be established with little difficulty", while "the affine lifting theorem requires deep results from partial differential equation theory" (essentially Ehrenpreis-Malgrange's theorem on partial differential equations with constant coefficients).

As a matter of fact, if Γ_K is a primitive simple pseudogroup, the lifting theorem can be easily proved by using the results of V. Guillemin (see [2]).

If Γ_K is primitive but not simple, the lifting theorem is true in the flat case (Γ_M and Γ_N flat) but the demonstration requires, as in the affine case, Ehrenpreis-Malgrange's results. The method has been indicated in [1].

- 2. Construction of the counterexample. The counterexample is constructed by a refinement of the Lewy-Guillemin-Sternberg counterexample to the equivalence problem for G-structures [3].
- (a) First, recall the data of this counterexample: We consider on \mathbb{R}^3 a transitive algebra of vector fields isomorphic to $g = SO(3, \mathbb{R})$. $\{X_1, X_2, X_3\}$ is the standard basis of this algebra, that is to say, X_1, X_2, X_3 are globally defined vector fields on \mathbb{R}^3 satisfying the following relations:

$$[X_1,\,X_2]\,=X_3,\quad [X_1,\,X_3]\,=X_1,\quad [X_2,\,X_3]\,=-X_2.$$

Let $\{Y_1, Y_2\}$ be the standard basis of vector fields on \mathbb{R}^2 . \hat{E} is the \hat{G} -structure on $\mathbb{R}^2 \times \mathbb{R}^3$ defined by the moving frame $\{Y_1, Y_2, X_1, X_2, X_3\}$, where \hat{G} is the group of matrices of the form

$$\begin{bmatrix} 1 & 0 & a & b & c \\ 0 & 1 & d & e & f \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

E is the G-structure on $\mathbb{R}^2 \times \mathbb{R}^3$ defined by the same moving frame, where G is the group of matrices of the form

$$\begin{bmatrix} 1 & 0 & a & b & c \\ 0 & 1-b & a & d \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

We denote by $\hat{\gamma}$ (resp. γ) the pseudogroup of automorphisms of \hat{E} (resp. E) and by \hat{l} (resp. l) the associated Lie algebra sheaf, in the terminology of [5].

 \hat{l} is a Lie algebra sheaf of vector fields of the following type:

(1)
$$X = \xi + \phi_1(x_1, x_2, x_3)Y_1 + \phi_2(x_1, x_2, x_3)Y_2$$

where ξ is in the algebra of (local) right-invariant vectorfields on $\mathbb{R}^3 \subset SO(3, \mathbb{R})$.

X is in l if and only if φ_1 , φ_2 satisfy a system (Σ_l) of linear partial differential equations.

(b) Let us consider now, for $p \ge 2$, the product $\mathbb{C}^p \times \mathbb{R}^3$ endowed with the \widetilde{H} -structure \widetilde{E} obtained from the moving frame $\{\partial/\partial z_1, \ldots, \partial/\partial z_p, X_1, X_2, X_3\}$ by linear transformations in the group \widetilde{H} of matrices of the following type:

$$\begin{bmatrix} \alpha_j^i & \overset{\times \times \times}{\cdots} \\ & \overset{\times \times \times}{\cdots} \\ 0 \dots 0 & 1 & 0 & 0 \\ 0 \dots 0 & 0 & 0 & 1 \end{bmatrix}, \text{ with } [\alpha_j^i] \in GL(p, \mathbb{C}).$$

Let $\widetilde{\Gamma}$ be the pseudogroup of automorphisms of this structure, \widetilde{L} the associated *LAS*. We consider the projection $\widetilde{\pi} \colon \widetilde{E} \to \mathbb{R}^2 \times \mathbb{R}^3$ defined by:

$$\widetilde{\pi}(\widetilde{z}(z,x)) = (\det(\alpha_j^i), x) \text{ where } \widetilde{z} = \left\{ \sum_i \alpha_j^i \frac{\partial}{\partial z_j}, \widetilde{X}_1(x), \widetilde{X}_2(x), \widetilde{X}_3(x) \right\}.$$

If $\widetilde{Y}_1 = \sum_{k=1}^p z_k \partial/\partial z_k$ and $\widetilde{Y}_2 = \sum_{k=1}^p i z_k \partial/\partial z_k$, let \hat{L} be the *LAS* of vector fields on $\mathbb{C}^p \times \mathbb{R}^3$ of the following type:

(2)
$$\widetilde{X} = \sum_{k=1}^{p} X_k(x, z) \frac{\partial}{\partial z_k} + \varphi_1(x_1, x_2, x_3) \widetilde{Y}_1 + \varphi_2(x_1, x_2, x_3) \widetilde{Y}_2 + \xi$$

where X_k is holomorphic with respect to z, with the sole condition $\Sigma_k \partial X_k / \partial z_k = 0$.

 \hat{L} defines a transitive Lie pseudogroup $\hat{\Gamma}$ on $\mathbb{C}^p \times \mathbb{R}^3$, with $\hat{\Gamma} \subset \widetilde{\Gamma}$. By the projection $\widetilde{\pi}$, $\widehat{\Gamma}$ acting on \widetilde{E} projects onto $\widehat{\gamma}$. It is in this case a true quotient! The vector field (2) projects onto (1).

Let Γ be the preimage of γ by this projection $\hat{\Gamma} \longrightarrow \hat{\gamma}$. The associated *LAS L* is the *LAS* of vector fields of the type (2) with the condition (Σ_l) on φ_1, φ_2 .

The fibration $\pi: \mathbb{C}^p \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ allows us to consider Γ as a primitive extension of $SO(3, \mathbb{R})$. The counterexample follows now from the following proposition:

PROPOSITION. The equivalence theorem is not true for the pseudogroup Γ .

PROOF. Let $\hat{\mathcal{E}}^1$ be the second order structure associated to $\hat{\Gamma}$. We have a natural projection $\hat{\pi}^1$: $\hat{\mathcal{E}}^1 \longrightarrow \hat{E}$. The second order structure \mathcal{E}^1 associated to Γ is the preimage of E by $\hat{\pi}^1$.

If E' is an arbitrary G-subbundle of \hat{E} , let $E^{1'} = [\hat{\pi}^1]^{-1}(E')$. By [3], E' defines an almost- γ -structure on $\mathbb{R}^2 \times \mathbb{R}^3$. Then $E^{1'}$ will define an almost- Γ -structure on $\mathbb{C}^p \times \mathbb{R}^3$. If E' is not a γ -structure, $E^{1'}$ does not define a Γ -structure. Q. E. D.

3. The primitive lifting theorem in the flat case. Recall the principle of the demonstration in the flat case (following the method indicated in [1]): If Γ_K is not simple, we consider the subpseudogroup Γ_K' , the LAS of which is the derived algebra of the LAS of Γ_K . Then we can obtain a Γ_K' -extension Γ_M' of Γ_N , with $\Gamma_M' \subset \Gamma_M$.

In the first order structure associated to Γ_M , we have an invariant foliation such that the first order structure associated to Γ_M' is foliated. If π^1 is the (local) projection onto a (local) quotient, we resolve the equivalence problem for the pseudogroup defined by passing to the quotient. This allows us to obtain for any almost- Γ_M -structure a subordinate almost- Γ_M' -structure. Now, the primitive lifting theorem reduces to the simple case, which is elementary.

But the equivalence problem for the pseudogroup obtained by passing to the quotient by π^1 requires Ehrenpreis-Malgrange's theorem as an essential tool: in fact it is equivalent to the equivalence problem for a flat abelian pseudogroup.

BIBLIOGRAPHY

- 1. C. Buttin and P. Molino, Théorème général d'équivalence pour les pseudogroupes de Lie plats transitifs, J. Differential Geometry 9 (1974), 347-354. MR 50 #5866.
- 2. V. W. Guillemin, A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras, J. Differential Geometry 2 (1968), 313-345. MR 41 #8481.
- 3. V. W. Guillemin and S. Sternberg, The Lewy counterexample and the local equivalence problem for G-structures, J. Differential Geometry 1 (1967), 127-131. MR 36 #5850.
- 4. A. Pollack, The integrability problem for pseudogroup structures, J. Differential Geometry 9 (1974), 355-390.
- 5. I. M. Singer and S. Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse Math. 15 (1965), 1-114. MR 36 #911.

INSTITUT DE MATHÉMATIQUES, UNIVERSITÉ DES SCIENCES ET TECHNIQUES DU LANGUEDOC, 34060 MONTPELLIER, FRANCE