CRITICAL GROUPS HAVING CENTRAL MONOLITHS OF A NILPOTENT BY ABELIAN PRODUCT VARIETY OF GROUPS

ΒY

JAMES J. WOEPPEL

ABSTRACT. Let $\mathfrak R$ be a variety of groups which has nilpotency class two and finite odd exponent. Let $\mathfrak R$ be an abelian variety of groups with finite exponent relatively prime to the exponent of $\mathfrak R$. The existence in the product variety $\mathfrak R\mathfrak R$ of nonnilpotent critical groups having central monoliths is established. The structure of these critical groups is studied. This structure is shown to depend on an invariant, k. The join-irreducible subvariety of $\mathfrak R\mathfrak R$ generated by the nonnilpotent critical groups of $\mathfrak R\mathfrak R$ having central monoliths is determined, in particular, for k odd.

1. Introduction. (Throughout any terminology or notation not explained is described in Hanna Neumann's book [4].) Any nilpotent variety of nilpotency class two and finite exponent is of the form $\mathfrak{B}_n \wedge \mathfrak{A}_n \mathfrak{A}_{n'} \wedge \mathfrak{R}_2$ (where n' divides n); let $\mathfrak{R}_{(n,n')}$ denote this variety. The variety $\mathfrak{R}_{(q,q)} \mathfrak{A}_m$ is a subvariety of the product variety $\mathfrak{R}_{(n,n')} \mathfrak{A}_m$, if q divides n'. Thus we may assume that n equals n' and that n is a power of a prime. In [7], the product variety $\mathfrak{R}_{(q,q)} \mathfrak{A}_m$ was shown to be join-irreducible for q a nontrivial power of an odd prime not dividing m. The critical groups generating these product varieties were also characterized in that paper. For distinct primes p and r, satisfying r dividing p-1, p. G. Burns [2] has obtained a complete description of the lattice of subvarieties of $\mathfrak{R}_{(n,n')} \mathfrak{A}_r$.

Let k be the smallest positive integer such that m divides $p^k - 1$ where p is an odd prime not dividing the positive integer m, and let q equal p^e . The join-irreducible subvariety of $\mathfrak{N}_{(q,q)}\mathfrak{A}_m$ generated by the nonnilpotent critical groups in this variety having central monoliths is determined in the case that m does not divide $p^{k/2} + 1$.

The critical groups of the variety $\mathfrak{N}_{(q,q)}\mathfrak{A}_m$ having central monoliths are contained in the subvariety $\mathfrak{N}_{(q,q)}\mathfrak{A}_m \wedge \mathfrak{C}$, where \mathfrak{C} denotes the variety of groups satisfying the law,

Received by the editors August 15, 1975.

AMS (MOS) subject classifications (1970). Primary 20E10; Secondary 20F25.

Key words and phrases. Varieties of groups, join-irreducible varieties, Cross varieties, critical group, central monolith, nilpotent by abelian.

$$[[x,y],[u,t]]^{z}[[u,t],[x,y]] = 1.$$

Thus the third subgroup in the derived series of a group in © is central. The following result is obtained in §4:

THEOREM I. The variety $\mathfrak{N}_{(q,q)}\mathfrak{A}_m \wedge \mathfrak{C}$ is join-irreducible, if k is odd or if k is even with m not dividing $p^{k/2}+1$, where k is the smallest positive integer such that m divides p^k-1 .

The results of §4 are not sufficient to resolve the case for k even and m dividing $p^{k/2} + 1$.

To establish Theorem I it is necessary to study in §2 the structure of the nonnilpotent critical groups in $\mathfrak{R}_{(q,q)}\mathfrak{A}_m$ having central monoliths. A description of this structure is given in Theorems II and III.

Theorem II. If C is a nonnilpotent critical group in $\mathfrak{R}_{(q,q)}\mathfrak{A}_m$ having a central monolith, then

- (i) the p'-complement of the Fitting subgroup, Fit C, is cyclic, and
- (ii) the exponent of the commutator subgroup, (Fit C)', of the Fitting subgroup equals the exponent of the Fitting subgroup.

The results of R. G. Burns [1] show that if C is a critical group in $\mathfrak{N}_{(q,q)}\mathfrak{A}_m$ with the exponent of $C/\mathrm{Fit}\ C$ equaling m, then the Fitting subgroup is generated by k or 2k elements, where k is the invariant defined above. The following theorem is also established in §2:

THEOREM III. Let C be a nonnilpotent critical group in $\mathfrak{N}_{(q,q)}\mathfrak{A}_m$ having a central monolith. If Fit C is generated by k elements and C/Fit C has exponent m, then k is even and m divides $p^{k/2} + 1$.

It should be noted that if the word "critical" is replaced by "monolithic", the theorem remains true.

A nonnilpotent critical group in the variety $\mathfrak{N}_{(q,q)}\mathfrak{A}_m$ having a central monolith is constructed in §3. The method of construction depends on the invariant k.

2. Structure of critical groups having central monoliths. Let C be a nonnilpotent critical group in $\mathfrak{N}_{(q,q)}\mathfrak{A}_m$. Since C is a monolithic group, the Fitting subgroup, Fit C, is a p-group where $q=p^e$. Thus C is the semidirect product of Fit C and the p'-complement D of Fit C in C; that is, $C=(\text{Fit }C)\cdot D$. Set F=Fit C and $\Phi=\Phi(\text{Fit }C)$, the Frattini subgroup of Fit C.

By Maschke's theorem [3], the Frattini quotient group F/Φ viewed as a GF(p)D-module may be decomposed into the direct product of irreducible GF(p)D-modules, and by Burns' results there are at most two such irreducible GF(p)D-modules in this decomposition. Thus either F/Φ is a minimal normal subgroup of C/Φ or

$$(2.1) F/\Phi = N_1/\Phi \times N_2/\Phi$$

where N_1/Φ and N_2/Φ are minimal normal subgroups of C/Φ . Since C is a

critical group, D is represented faithfully by conjugation on F/Φ , and thus D is embeddable in the direct product of two m-cycles, $C_m \times C_m$; see Burns [1].

PROOF OF THEOREM II. For this proof set $m' = \exp(D)$, $t = \exp(F)$, and $t' = \exp(F')$. If F/Φ is a minimal normal subgroup in C/Φ , then D is cyclic because it is faithfully and irreducibly represented on F/Φ . On the other hand, if F/Φ has (2.1) as its decomposition into irreducible GF(p)D-modules, then the centralizer of N_1/Φ , $C_D(N_1/\Phi)$, in D is trivial, because the monolith, $[N_1, N_2]^{1/p}$, of C is centralized by D. Thus again D is faithfully and irreducibly represented on N_1/Φ , and so D is cyclic; hence part (i) has been established.

Part (ii) is proved by contradiction. Assume that t' < t. There are elements z_1 and z_2 in F such that F is the normal closure of the subgroup generated by z_1 and z_2 in C (in some cases, one element would suffice). The subgroup F is a regular p-group since p is an odd prime. Thus either the order of z_1 or the order of z_2 is t. However, the powers $z_1^{t/p}$ and $z_2^{t/p}$ are central in F as the following calculation shows: $[z_1^{t/p}, x] = [z_i, x]^{t/p} = 1$ for any x in F. Since C is monolithic, $z_1^{t/p}$ and $z_2^{t/p}$ must be in the monolith. Hence $z_1^{t/p}$ and $z_2^{t/p}$ are centralized by D. Thus, $(z_1 z_1^{-\alpha})^{t/p}$ and $(z_2 z_2^{-\alpha})^{t/p}$ are trivial for α in D. However, if α is a generator of D, F is the normal closure of the subgroup generated by $(z_1 z_1^{-\alpha})$ and $(z_2 z_2^{-\alpha})$ in C; that is, F is generated by elements of order t/p or less. This is a contradiction since F is a regular p-group. \square

Theorem III shows that the structure of the nonnilpotent critical groups in $\mathfrak{N}_{(q,q)}\mathfrak{A}_m$ having central monoliths depends on the invariant k. If the exponent of the p'-complement, D, of F in C is m, then the dimension of the irreducible GF(p)D-modules in the decomposition of F/Φ is k; this follows from M. F. Newman's results in [5].

PROOF OF THEOREM III. Let the critical group $C = F \cdot D$ as above with t the exponent of F. The p'-group D has exponent m by hypothesis and is cyclic by Theorem II, part (i); let α generate D. Also, F/Φ is an irreducible GF(p)D-module by hypothesis.

Suppose there is a y in F but not in $\Phi(F)$ such that some nontrivial pth power, g, of y is in the central monolith. This implies that $(yy^{-\alpha})^g$ is trivial, but the normal closure of the subgroup generated by $yy^{-\alpha}$ in C is F; contradiction. Therefore F/F^p is a nonabelian monolithic p-group; let F^* denote the quotient group F/F^p . (Note that, F is regular since p > 2.)

Clearly $\Phi(F^*) = (F^*)'$. The center, $Z(F^*)$, of F^* also equals $(F^*)'$ since $Z(F^*)$ is a proper characteristic subgroup of F^* . The order of $(F^*)'$ is p since it is the central monolith of $C/(F)^p$. Thus F^* is an extra-special p-group [3, p. 183].

By [3, Theorem 6.5, p. 213], the order, m, of α divides $(p^{2r} - 1)$ with $0 < 2r \le k$, which contradicts the choice of k unless 2r = k. Therefore k is even and m divides $(p^{k/2} + 1)$. \square

In the above proof it is sufficient to assume that C is monolithic; the remaining hypothesis implies that D is cyclic. The author has been able to establish the converse of Theorem III; however, the proof of this is too lengthy to include here.

3. The existence of critical groups having central monoliths. Let F_k be a relatively free group of rank k of the variety $\mathfrak{N}_{(q,q)}$. In [7], the existence of an automorphism β and a generating set $\{y_1, \ldots, y_k\}$ of F_k such that $y_1 \beta = y_2$, $\ldots, y_{k-1} \beta = y_k$ was established. Now let F_{2k} be a relatively free group of $\mathfrak{N}_{(q,q)}$ freely generated by $\{y_{11}, \ldots, y_{1k}, y_{21}, \ldots, y_{2k}\}$. There are automorphisms β_1 and β_2 of F_{2k} each of order m such that β_i fixes each y_{jn} with $j \neq i$ and acts on $\{y_{i1}, \ldots, y_{ik}\}$ as β acts on $\{y_1, \ldots, y_k\}$ [7]. Let B be the abelian subgroup of the automorphism group of F_{2k} generated by $\{\beta_1, \beta_2\}$, and let V be the splitting extension of F_{2k} by B. The group V generates the variety $\mathfrak{N}_{(q,q)} \mathfrak{A}_m$ [7].

$$T = gp\langle [y_{ij}, y_{in}], ([y_{1j}, y_{2j}][y_{2j}^{\beta_2^{-1}}, y_{1j}^{\beta_1}])^{\beta} | i = 1, 2; 1 \leq j, n \leq k; \beta \in B \rangle$$

defines a normal subgroup of V contained in $(F_{2k})'$. (It turns out that V/T is a critical group generating the variety $\mathfrak{R}_{(q,q)}\mathfrak{A}_m[7]$.) Let A denote the subgroup of V/T generated by $\alpha = \beta_1 \beta_2^{-1} T$; \mathfrak{D} denote F_{2k}/T ; and R denote the semidirect product of \mathfrak{D} by A. The commutator subgroup \mathfrak{D}' of \mathfrak{D} is homocyclic and is centralized by A. If m = 2, then \mathfrak{D}' is cyclic and R is monolithic.

Now, assuming $m \neq 2$, let N be the complement of

$$gp\langle [y_{11},y_{21}^{\beta_2^{-1}}][y_{21},y_{11}^{\beta_1}]T\rangle$$

in \mathfrak{L}' which is normal in R given by D. R. Taunt's results [6]. The quotient group $C^* = R/N$ is monolithic with monolith $(\mathfrak{L}'/N)^{q/p}$, since \mathfrak{L}/N is a regular p-group. For m = 2, set $C^* = R$. If k is odd, or if k is even with m not dividing $p^{k/2} + 1$, C^* is a nonnilpotent critical group of $\mathfrak{R}_{(q,q)}\mathfrak{A}_m$ having a central monolith. If k is even with m dividing $p^{k/2} + 1$, then the subgroup of C^* generated by α and $y_{11}y_{21}N$ is the desired critical group having a central monolith; denote this group by C^{**} . That is, $C^{**} = gp(\alpha, y_{11}y_{21}N)$.

We now define inductively the word ω which is used in showing that the groups C^* and C^{**} are critical groups. First let

$$\mu_2(x_1, x_2) = [x_1, x_2, (x_2^{-1} x_1)],$$

and for n in $\{3, \ldots, m\}$, put

$$\mu_n(x_1,\ldots,x_n) = [\mu_{n-1},x_n,(x_n^{-1}x_1),\ldots,(x_n^{-1}x_{n-1})].$$

Finally, set

$$\omega = ([\mu_m(x_1, \ldots, x_m), \mu_m(z_1, \ldots, z_m)])^{q/p}.$$

The following substitution shows that ω is not a law of C^* or C^{**} : $x_j \mapsto \alpha^{(j-1)}, z_j \mapsto \alpha^{(j-1)}, j = 2, \ldots, m$, and $x_1 \mapsto y_{11}y_{21}N, z_1 \mapsto (y_{11}y_{21}N)^{\alpha}$.

THEOREM 3.1. The groups C^* and C^{**} are critical.

PROOF. Since the groups C^* and C^{**} are monolithic and since ω is not a law for C^* or C^{**} , to establish that C^* and C^{**} are critical groups, we need only show by a result of Kovács and Newman (see 53.41 in [4]) that ω is a law in their proper subgroups. Only the proof for C^* is given; the proof for C^{**} is similar. Let 2^* denote the Fitting subgroup of C^* ; that is, $2^* = 2/N$.

Suppose H is a subgroup of C^* which does not have ω as a law. Since ω is not a law in H, there is a substitution for the $x_1, \ldots, x_m, z_1, \ldots, z_m$ in ω with values in H such that ω is not the identity. Under this substitution $\mu_m(x_1,\ldots,x_m)$ and $\mu_m(z_1,\ldots,z_m)$ have values in 2^* outside of the Frattini subgroup, $\Phi(2^*)$. It is also clear that each of the values substituted for x_1,\ldots,x_m (or for z_1,\ldots,z_m) lie in distinct cosets of 2^* in C^* . Hence the order of H is divisible by m. Set $2_H = \text{Fit } H$. The p-group $P = 2_H(2^*)^p/(2^*)^p$ is an extra-special p-group. Since k is odd or k is even with m not dividing $p^{k/2} + 1$, P/P' cannot be an irreducible GF(p)A-module [3, p. 213]. Thus $2_H\Phi(2^*)/\Phi(2^*)$ is not an irreducible GF(p)A-module; hence $2_H = 2^*$. Therefore H is not a proper subgroup of C^* . \square

- 4. **Proof of Theorem I.** For notational convenience set $\mathfrak{U} = \mathfrak{R}_{(q,q)} \mathfrak{A}_m \wedge \mathfrak{C}$ and from §3, $R = gp \langle \beta_1 \beta_2^{-1} T, F_{2k} \rangle / T$. The proof of Theorem I is accomplished by establishing the following three propositions:
 - (i) The group R generates the variety U.
- (ii) There is a proper subvariety of U which contains any critical group C of U in which either (a) the exponent of the commutator subgroup of Fit C is less than q, or (b) the order of C/Fit C is less than m.
- (iii) For k odd or k even with m not dividing $p^{k/2} + 1$, a nonnilpotent critical group C having a central monolith generates the variety $\mathfrak U$ if the exponent of Fit C is q and C/Fit C has order m.

Proposition (i) is established by showing that any critical group C of $\mathbb U$ is a factor of a direct power of R. If C is nilpotent this result is obvious. For any nontrivial divisor m^* of m and corresponding smallest positive integer k^* such that m^* divides $p^{k^*}-1$, there is, by Clifford's theorem [3], a subgroup of R which has a corresponding structure like R for m^* and k^* . Hence we may assume that C/F has order m, where as before $F = \operatorname{Fit} C$. It was shown in [7] that any critical group C in $\mathfrak{N}_{(q,q)}\mathfrak{A}_m$ is a factor of V, the splitting extension of F_{2k} by B. There are three cases: $\dim(F/\Phi) = k$, $\dim(F/\Phi) = 2k$ with m not dividing $p^{k/2} + 1$, and $\dim(F/\Phi) = 2k$ with m dividing $p^{k/2} + 1$, where $\Phi = \Phi(F)$.

Let F/Φ have dimension k. In this case, it can be shown that C is a factor of V^* , the splitting extension of F_k by the m-cycle β of §3; in the same way that C was shown to be a factor of V in [7]. The group V^* is isomorphic to the subgroup V^* of V generated by $y_{11}y_{21}$ and $\beta_1\beta_2^{-1}$. Hence C is a homomorphic image of V^* , and clearly the intersection of V^* and V^* is contained in the kernel of this homomorphism of V^* onto V^* . Thus V^* is a factor of V^* .

Now suppose $\dim(F/\Phi)$ is 2k and m does not divide $p^{k/2} + 1$. Recall the minimal normal subgroups N_1/Φ and N_2/Φ of C/Φ in the decomposition (2.1)

of F/Φ and the p'-subgroup D of C in §2. The quotient group

$$(gp\langle N_i, D\rangle)F^p/F^p$$

is monolithic, and so by Theorem III (see the note at the end of the proof of Theorem III), it must be metabelian. Thus N_1 and N_2 can be chosen so that $(N_1)'$ and $(N_2)'$ are trivial. The critical group C is a homomorphic image of the subgroup \mathcal{V} of V generated by F_{2k} and $\beta_1 \beta_2^{-1}$. The kernel of this homomorphism contains T, since $(N_1)'$ and $(N_2)'$ are trivial and since the monolith of C is central. Therefore C is a factor of R.

In the third case where $\dim(F/\Phi)$ is 2k but k is even with m dividing $p^{k/2}+1$, N_1 and N_2 need not be abelian. The critical group C is again a homomorphic image of $\mathbb N$. The group $\mathbb N$ can be embedded in the direct product $V^* \times \mathbb N/T_1 \times V^*$, where T_1 is the normal closure of the subgroup of V generated by commutators of the form $[y_{1j}, y_{1j'}]$ and $[y_{2j}, y_{2j'}]$ for $1 \le j, j' \le k$ in V. It is easy to verify that V^* is isomorphic to the subgroup of $\mathbb N/T_1$ generated by $\beta_1 \beta_2^{-1}$ and $y_{11}y_{21}T_1$; hence C is a factor of the direct power $\mathbb N/T_1 \times \mathbb N/T_1 \times \mathbb N/T_1$. Since the monolith of C is central, C is a factor of the direct power C is a factor of C in C in C in C is a factor of C in C in C in C

The proper subvariety of proposition (ii) is the subvariety of $\mathfrak U$ determined by ω . To establish (ii) all that needs to be shown is that if C is a critical group of $\mathfrak U$ which does not have ω as a law, then the exponent of (Fit C)' is q and C/Fit C has order m. That the exponent of the commutator subgroup is q is obvious. The argument that C/Fit C has order m is essentially the argument in the proof of Theorem 3.1, that the order of H is divisible by m. Therefore proposition (ii) is established.

Let C be a critical group of $\mathfrak U$ satisfying the hypothesis of proposition (iii). The critical group C is a homomorphic image of R by the proof of (i). If $\mathfrak X$ is the kernel of this homomorphism, then $\mathfrak X$ is contained in the commutator subgroup of F_{2k}/T since $C/\mathrm{Fit}\ C$ has order m. The kernel $\mathfrak X$ cannot contain the socle, S, of R because the exponent of (Fit C)' is q by Theorem II(ii). Thus, R must lie in the variety generated by C, if the socle S of R is minimal characteristic. By proposition (i), this implies that C generates the variety $\mathfrak U$. Therefore the final step in the proof is to show that the socle, S, of R is minimal characteristic in R.

To establish that S is minimal characteristic, it is necessary to study the action of conjugation by β_2 on the group R. First, the subgroup \mathbb{Y} of V generated by $\beta_1\beta_2^{-1}$ and F_{2k} is clearly normalized by β_2 , and the subgroup T of F_{2k} is also normalized by β_2 . Thus conjugation by β_2 induces an automorphism on R. Now consider the action of conjugation by β_2 on the element $[y_{11}, y_{21}]^{q/p} T$ in the socle of R. Clearly the elements $([y_{11}, y_{21}]^{q/p} T)^{\beta}$ for $\beta \in gp(\beta_1\beta_2^{-1}, \beta_2)$ generate the socle, S, of R. Therefore S is minimal characteristic in R. \square

REFERENCES

- 1. R. G. Burns, Verbal wreath products and certain product varieties of groups, J. Austral. Math. Soc. 7 (1967), 356-374. MR 36 #249.
- 2. ——, Some applications of wreath products of groups, Ph.D. Thesis, Austral. National Univ., Canberra, Australia, 1966.
 - 3. Daniel Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 38 #229.
- 4. Hanna Neumann, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, New York, 1967. MR 35 #6734.
- 5. M. F. Newman, On a class of metabelian groups, Proc. London Math. Soc. (3) 10 (1960), 354-364. MR 22 #8074.
 - 6. D. R. Taunt, On A-groups, Proc. Cambridge Philos. Soc. 45 (1949), 24-42. MR 10, 351.
- 7. James J. Woeppel, Join-irreducible Cross product varieties of groups, Trans. Amer. Math. Soc. 200 (1974), 141-148.

DIVISION OF NATURAL SCIENCES, INDIANA UNIVERSITY SOUTHEAST, NEW ALBANY, INDIANA 47150