CLUSTER VALUES OF BOUNDED ANALYTIC FUNCTIONS(1)

RY

T. W. GAMELIN

ABSTRACT. Let D be a bounded domain in the complex plane, and let ζ belong to the topological boundary ∂D of D. We prove two theorems concerning the cluster set $\mathrm{Cl}(f,\zeta)$ of a bounded analytic function f on D. The first theorem asserts that values in $\mathrm{Cl}(f,\zeta)\setminus f(\coprod_{\xi})$ are assumed infinitely often in every neighborhood of ζ , with the exception of those lying in a set of zero analytic capacity. The second asserts that all values in $\mathrm{Cl}(f,\zeta)\setminus f(\mathfrak{M}_{\zeta}\cap\sup \lambda)$ are assumed infinitely often in every neighborhood of ζ , with the exception of those lying in a set of zero logarithmic capacity. Here \mathfrak{M}_{ζ} is the fiber of the maximal ideal space $\mathfrak{M}(D)$ of $H^{\infty}(D)$ lying over ζ , \coprod_{ξ} is the Shilov boundary of the fiber algebra, and λ is the harmonic measure on $\mathfrak{M}(D)$.

1. Introduction and statement of results. The cluster set of f at ζ , denoted by $Cl(f, \zeta)$, consists of all complex numbers w for which there is a sequence $z_n \in D$ satisfying $z_n \to \zeta$ and $f(z_n) \to w$. The range of f at ζ , denoted by $R(f, \zeta)$, consists of all complex numbers w for which there is a sequence $z_n \in D$ satisfying $z_n \to \zeta$ and $f(z_n) = w$. If S is a subset of ∂D , then $Cl_S(f, \zeta)$ is defined to be the set of all complex numbers w for which there exist $\zeta_n \in S$ and $w_n \in Cl(f, \zeta_n)$ satisfying $\zeta_n \to \zeta$ and $w_n \to w$. Evidently

$$Cl_s(f, \zeta) \subset Cl(f, \zeta).$$

In the case that S coincides with $(\partial D) \setminus \{\zeta\}$, the set $\operatorname{Cl}_S(f, \zeta)$ coincides with the classical boundary cluster set of f at ζ . The Iversen-Gross Theorem [11, p. 14] asserts that the boundary cluster set of f at ζ includes the topological boundary of $\operatorname{Cl}(f, \zeta)$. Furthermore, points of

$$Cl(f,\zeta) \setminus Cl_{(\partial D)\setminus \{\zeta\}}(f,\zeta)$$

either belong to $R(f, \zeta)$ or are asymptotic values of f at ζ (or both).

A number of cluster value theorems have appeared since the work of Iversen (1915) and Gross (1918). The main theorem of interest to us was proved by M. Tsuji in 1943 [12, Theorem VIII. 41]. It asserts that if E is a subset of ∂D of zero (outer) logarithmic capacity, and $\zeta \in E$, then the set

$$(*) Cl(f,\zeta) \setminus \left[Cl_{(\partial D) \setminus E}(f,\zeta) \cup R(f,\zeta) \right]$$

has zero logarithmic capacity. A related result, due to A. J. Lohwater [9],

Received by the editors September 22, 1975.

AMS (MOS) subject classifications (1970). Primary 30A72; Secondary 30A98, 46J15, 46J20.

⁽¹⁾ This work was supported in part by NSF Grant GP-33693X.

asserts that if D is the open unit disc Δ in the complex plane, if E is a subset of ∂D of zero (outer) length, and if $\zeta \in E$, then the set (*) again has zero logarithmic capacity. The crucial feature of these theorems is that the exceptional set E is required to have zero harmonic measure.

More recently, M. Weiss [13] has studied cluster value theory from the point of view of Banach algebras. He proves that if $\zeta \in \partial \Delta$, $\| \|_{\zeta}$ is the "fiber" over ζ of the Shilov boundary of $H^{\infty}(\Delta)$ and $f \in H^{\infty}(\Delta)$, then

$$Cl(f,\zeta)\setminus [f(\coprod_{\zeta})\cup R(f,\zeta)]$$

has zero logarithmic capacity. From the discussion of $H^{\infty}(\Delta)$ as a Banach algebra given in [8], it is clear that $f(\coprod_{\zeta})$ is included in $\text{Cl}_{(\partial \Delta) \setminus E}(f, \zeta)$ whenever E has zero length, so that the Weiss Theorem includes the Lohwater Theorem.

Our aim is to cast the Tsuji Theorem in a Banach algebra setting, by finding an appropriate extension to arbitrary domains of the Weiss Theorem. One of the extensions (Theorem 1.3), when reinterpreted in the classical setting, will yield a slightly sharpened form (Corollary 1.4) of the Tsuji Theorem, which will be valid for bounded analytic functions.

In order to state the results, we introduce some notation. For a more detailed exposition of this circle of ideas, and for precise references, see [2] and [5].

The domain D can be regarded as an open subset of the maximal ideal space $\mathfrak{M}(D)$ of $H^{\infty}(D)$. We will regard the functions in $H^{\infty}(D)$ as being continuous functions on $\mathfrak{M}(D)$. [For our purposes, we could take $\mathfrak{M}(D)$ to be any compactification of D of which $H^{\infty}(D)$ separates points]. The coordinate function z extends to a map $Z \colon \mathfrak{M}(D) \to \overline{D}$, and Z serves to identify D with an open subset of $\mathfrak{M}(D)$. The fiber $Z^{-1}(\{\zeta\})$ over $\zeta \in \partial D$ is denoted by $\mathfrak{M}_{\zeta}(D) = \mathfrak{M}_{\zeta}$. The Cluster Value Theorem of [3] asserts that $\operatorname{Cl}(f,\zeta) = f(\mathfrak{M}_{\zeta})$ for all $f \in H^{\infty}(D)$ and $\zeta \in \partial D$. The fiber algebra $H^{\infty}(D)|_{\mathfrak{M}_{\zeta}}$ is a closed subalgebra of $C(\mathfrak{M}_{\zeta})$ whose maximal ideal space is \mathfrak{M}_{ζ} , and whose Shilov boundary will be denoted by \mathfrak{M}_{ζ} . If ζ is an essential boundary point of D, then \mathfrak{M}_{ζ} coincides with the intersection of \mathfrak{M}_{ζ} and the Shilov Boundary $\mathfrak{M}(D)$ of $H^{\infty}(D)$. A well-known principle of Banach algebra theory asserts that $f(\mathfrak{M}_{\zeta})$ includes the topological boundary of $f(\mathfrak{M}_{\zeta})$, so that $f(\mathfrak{M}_{\zeta}) \setminus f(\mathfrak{M}_{\zeta})$ is an open subset of C. Our first result is the following.

1.1 THEOREM. If $f \in H^{\infty}(D)$ and $\zeta \in \partial D$, then $f(\mathfrak{M}_{\zeta}) \setminus [f(\coprod_{\zeta}) \cup R(f, \zeta)]$ has zero analytic capacity.

Theorem 1.1 is a straightforward consequence of the fact that the local behavior of $\mathfrak{N}(D)$ depends only on the local configuration of D. The proof is given in §2.

Recall that the Ahlfors function G of D, depending on the point $z_0 \in D$, is

the extremal function for the problem of maximizing $|f'(z_0)|$ among all $f \in H^{\infty}(D)$ satisfying $|f| \le 1$; G is normalized so that $G'(z_0) > 0$, and then G is unique. If ζ is an essential boundary point of D, then |G| = 1 on $|I|_{\zeta}$. Furthermore, either

$$\lim_{D\ni z\to \zeta}|G(z)|=1$$

or

(1.2)
$$Cl(G, \zeta) = \overline{\Delta}$$
 (= closed unit disc).

S. Ya. Havinson [7, Theorem 28] has proved that G assumes all values in Δ , with the possible exception of a subset of Δ of zero analytic capacity. From Theorem 1.1 we conclude the following sharper version of Havinson's Theorem.

1.2 COROLLARY. Let G be the Ahlfors function of D, and let ζ be an essential boundary point of D for which (1.2) is valid. Then values in Δ are assumed infinitely often by G in every neighborhood of ζ , with the exception of those lying in a set of zero analytic capacity.

Corollary 1.2, and also Theorem 1.1, are sharp. To see this, let W be a domain of "type L," obtained from the open unit disc by excising the origin together with a sequence of disjoint closed subdiscs with centers on the positive real axis converging to 0. Let F be the Ahlfors function of W corresponding to a point on the negative real axis, so that F has the symmetry property

(1.3)
$$F(\bar{z}) = \overline{F(z)}, \quad z \in W.$$

A straightforward application of Lindelöf's Theorem shows that F can have at most one asymptotic value at 0, and (1.3) shows that this value must be real: it is $\lim_{x\to 0^-} F(x)$. By the Iverson-Gross Theorem cited earlier the range of F at 0 includes all $w \in \Delta$ with a nonzero imaginary part. On the other hand, it is known that F increases from -1 to +1 along the real interval connecting any two adjacent holes of W. We conclude that

$$R(F,0) = \Delta$$
.

Now let S be any relatively closed subset of Δ of zero analytic capacity, and set $D = W \setminus F^{-1}(S)$. Since $F^{-1}(S)$ has zero analytic capacity, it is totally disconnected, and D is a domain. The natural restriction $H^{\infty}(W) \to H^{\infty}(D)$ is an isometric isomorphism which induces a natural homeomorphism of $\mathfrak{M}(W)$ and $\mathfrak{M}(D)$. The Ahlfors function G of D is the restriction of F to D. It satisfies

$$G(\mathfrak{N}_0) \setminus [G(\coprod_0) \cup R(G,0)] = S.$$

In other words, any relatively closed subset of Δ of zero analytic capacity can occur as the exceptional set of Corollary 1.2.

The author does not know whether Theorem 1 or its corollary can be improved upon in the case that every boundary point of D is essential.

The statement of the second main result requires more definitions and notation.

The measure $d\theta$ on $\partial\Delta$ has a natural lift to a measure on $\mathfrak{N}(\Delta)$, which will be denoted by $d\Theta$. The Shilov boundary of $H^{\infty}(\Delta)$ coincides with the closed support of $d\Theta$.

Let $\pi: \Delta \to D$ denote the universal covering map. Then π extends to a continuous map from $\mathfrak{M}(\Delta)$ to $\mathfrak{M}(D)$, and this extension is also denoted by π . The measure $\lambda = \pi^*(d\Theta/2\pi)$ is called the *harmonic measure* on $\mathfrak{M}(D)$ for the point $z_0 = \pi(0)$. The class of mutual absolute continuity of λ does not depend on the specific choice of π or z_0 , nor does the closed support supp λ of λ . Furthermore, supp λ includes $\mathbb{H}(D)$, so that

$$f(\mathfrak{M}_{\zeta}) \setminus [f(\mathfrak{M}_{\zeta} \cap \operatorname{supp} \lambda) \cup R(f, \zeta)] \subset f(\mathfrak{M}_{\zeta}) \setminus [f(\underline{\mathbb{H}}_{\zeta}) \cup R(f, \zeta)].$$

Our second theorem is the following.

1.3 THEOREM. If
$$f \in H^{\infty}(D)$$
 and $\zeta \in \partial D$, then the set
$$f(\mathfrak{N}_{\zeta}) \setminus [f(\mathfrak{N}_{\zeta} \cap \text{supp } \lambda) \cup R(f, \zeta)]$$

has zero logarithmic capacity.

Theorem 1.3 will be proved in §4.

In the case of the unit disc, λ coincides with $d\Theta/2\pi$, so that $\mathfrak{M}_{\zeta} \cap \text{supp } \lambda$ coincides with \mathbb{II}_{ζ} . Theorem 1.3 is then a direct generalization of the Weiss Theorem.

Theorem 1.3 can be reinterpreted in terms of various concrete cluster sets. As noted earlier, $f(\mathfrak{M}_{\zeta})$ coincides with $Cl(f, \zeta)$. To reinterpret $f(\mathfrak{M}_{\zeta} \cap \text{supp } \lambda)$, we give some definitions which are based on [4, p. 394].

For $0 \le \theta \le 2\pi$, the image under the universal covering map π of the interval $\{re^{i\theta}: 0 \le r < 1\}$ is called a *conformal ray* and denoted by γ_{θ} . Let $f \in H^{\infty}(D)$. If Q is a subset of ∂D , then the *essential cluster set of f along conformal rays terminating in Q*, denoted by $\operatorname{Cl}_{\Gamma}(f, Q)$, consists of those complex numbers w with the following property: For each $\varepsilon > 0$, there is a set of conformal rays of positive measure (with respect to the parameter θ), each of which terminates at a point of Q, and along each of which f has a limit within ε of w. Let Δ_{δ} denote the open disc of radius δ centered at ζ . The set

(1.4)
$$\bigcap_{\delta>0} \operatorname{Cl}_{\Gamma}(f, \Delta_{\delta} \cap \partial D)$$

is then a closed subset of the boundary cluster set of f at ζ . Theorem 2.3 of [4]

shows that the set (1.4) coincides with $f(\mathfrak{M}_{\zeta} \cap \text{supp } \lambda)$, that is, (1.4) is the desired "classical" reinterpretation of $f(\mathfrak{M}_{\zeta} \cap \text{supp } \lambda)$.

Now the projection $Z^*(\lambda)$ of the measure λ onto \overline{D} coincides with the harmonic measure μ on ∂D for $z_0 \in D$ (cf. [4, Lemma 2.1]). Consequently a Borel subset E of ∂D which has zero harmonic measure corresponds to a subset $Z^{-1}(E) \cap \text{supp } \lambda$ which has no relative interior in supp λ . This observation leads immediately to the following version of Tsuji's Theorem, which includes also the Lohwater Theorem.

1.4 COROLLARY. Let $f \in H^{\infty}(D)$, let $\zeta \in \partial D$, and let E be a Borel subset of ∂D of zero harmonic measure. Then

$$Cl(f,\zeta)\setminus [Cl_{(\partial D)\setminus E}(f,\zeta)\cup R(f,\zeta)]$$

has zero logarithmic capacity.

The example constructed earlier can be used to show that Theorem 1.3 is also sharp. Indeed, if the set S of the example is taken to have zero logarithmic capacity, then the harmonic measure λ on $\mathfrak{N}(D)$ coincides with the harmonic measure on $\mathfrak{N}(W)$ via the natural identification $\mathfrak{N}(D) \cong \mathfrak{N}(W)$. Furthermore, the Ahlfors function G of D is unimodular on supp λ , so that

$$G(\mathfrak{N}_0)\setminus [G(\mathfrak{N}_0\cap\operatorname{supp}\lambda)\cup R(G,0)]=S.$$

2. Proof of Theorem 1.1. Since Theorem 1.1 is trivially valid when ζ is an inessential boundary point of D, we assume that ζ is an essential boundary point of D.

The inessential boundary points of D form a set of zero analytic capacity, across which all functions in $H^{\infty}(D)$ extend analytically. By adjoining this set to D, we increase $R(f, \zeta)$ by at most a set of zero analytic capacity. Consequently we can assume that every boundary point of D is essential.

For $\delta > 0$, let Δ_{δ} denote the open disc centered at ζ with radius δ . Then

(2.1)
$$R(f,\zeta) = \bigcap_{\delta>0} f(D \cap \Delta_{\delta}).$$

Now suppose that $f(\mathfrak{M}_{\zeta}) \setminus [f(\coprod_{\zeta}) \cup R(f,\zeta)]$ has positive analytic capacity. From (2.1) it follows that $f(\mathfrak{M}_{\zeta}) \setminus [f(\coprod_{\zeta}) \cup f(D \cap \Delta_{\delta})]$ has positive analytic capacity for some $\delta > 0$. There is then a compact subset E of $f(\mathfrak{M}_{\zeta})$ such that

- (2.2) E has positive analytic capacity,
- (2.3) E is at a positive distance from $f(\coprod_{\zeta})$, and

(2.4)
$$E$$
 does not meet $f(D \cap \Delta_{\delta})$.

The closure of $f(D \cap \Delta_{\delta})$ includes $Cl(f, \zeta) = f(\mathfrak{M}_{\zeta})$. Hence (2.4) shows that E is nowhere dense in $f(\mathfrak{M}_{\zeta})$. Since $f(\mathfrak{M}_{\zeta})$ includes the topological boundary

of $f(\mathfrak{M}_{\zeta})$, the set $f(\mathfrak{M}_{\zeta}) \setminus f(\mathfrak{U}_{\zeta})$ is an open subset of the complex plane C, and hence

(2.5)
$$E$$
 is nowhere dense in C .

On account of (2.2) and (2.3) there is a bounded analytic function g on $C \setminus E$ which satisfies

$$(2.6) |g(z)| < 1, z \in \mathbb{C} \setminus E,$$

(2.7)
$$\lim_{z\to E} \sup_{|g(z)| = 1,$$

$$(2.8) |g(z)| \le 1/4, z \in f(\coprod_{z}).$$

On account of (2.4), the function $g \circ f$ is defined and analytic on $D \cap \Delta_{\delta}$, and satisfies $|g \circ f| < 1$ there.

Now choose a sequence $z_n \in \mathbb{C} \setminus E$ such that $|g(z_n)| \to 1$. Then $\{z_n\}$ accumulates on E, so that eventually $z_n \in f(\mathfrak{N}_{\zeta}) = \mathrm{Cl}(f, \zeta)$. Consequently there are $\zeta_{nm} \in D \cap \Delta_{\delta}$ such that $\zeta_{nm} \to \zeta$ as $m \to \infty$, while $f(\zeta_{nm}) \to z_n$. Hence $(g \circ f)(\zeta_{nm}) \to f(z_n)$ as $m \to \infty$. Letting $n \to \infty$, we conclude that

(2.9)
$$\lim_{D \cap \Delta_{g} \ni z \to \zeta} |(g \circ f)(z)| = 1.$$

By [3, Lemma 1.1], there exist $F \in H^{\infty}(D)$ and $h \in H^{\infty}(D \cap \Delta_{\delta})$ such that h is analytic at ζ , $h(\zeta) = 0$, and $g \circ h = F + h$. From (2.9) we obtain

(2.10)
$$\lim_{D\ni z\to \xi}\sup |F(z)|=1.$$

Let $\varphi \in \coprod_{\zeta}$. Then there is a net $\{z_{\alpha}\}$ in D which converges to φ . In the topology of C, z_{α} converges to ζ , so that $F(z_{\alpha}) - g(f(z_{\alpha})) \to 0$, and $F(\varphi) = g(f(\varphi))$. From (2.8) we obtain $|F(\varphi)| \le \frac{1}{4}$, this for all $\varphi \in \coprod_{\zeta}$. Since \coprod_{ζ} is the Shilov boundary of the fiber algebra, $|F| \le \frac{1}{4}$ on \mathfrak{N}_{ζ} . This contradicts (2.10). The theorem is established.

3. The space of bounded harmonic functions on D. For the purposes of proving Theorem 1.3, it will be convenient to replace $\mathfrak{M}(D)$ by an appropriate compactification $\mathfrak{D}(D)$ of D, and to redefine λ as a measure on $\mathfrak{D}(D)$.

The space of complex-valued bounded harmonic functions on D will be denoted by BH(D). The smallest compactification of D to which all the functions in BH(D) extend continuously will be denoted by $\mathcal{Q}(D)$. Then $\mathcal{Q}(D)$ can be obtained from the Stone-Čech compactification of D by identifying pairs of points identified by BH(D).

In this section we will establish a "localization" result, Theorem 3.6, for $\mathfrak{D}(D)$. Most of the material preliminary to this result is well known. For a detailed treatment of various compactifications of Riemann surfaces, see [1].

The closure of D in $\mathfrak{N}(D)$ is obtained from $\mathfrak{L}(D)$ by identifying pairs of points which are identified by $H^{\infty}(D)$. In the case of the open unit disc Δ ,

 $\mathfrak{D}(\Delta)$ coincides with $\mathfrak{M}(\Delta)$. Indeed Carleson's Corona Theorem asserts that Δ is dense in $\mathfrak{M}(\Delta)$. Since every real-valued function $u \in \mathrm{BH}(\Delta)$ is of the form $u = \log|f|$ for some $f \in H^{\infty}(D)$, the functions in $H^{\infty}(\Delta)$ already separate the points of $\mathfrak{D}(\Delta)$, and hence $\mathfrak{D}(\Delta) = \mathfrak{M}(\Delta)$.

If h is an analytic map from a domain D' to D, then h extends to a continuous map from $\mathfrak{D}(D')$ to $\mathfrak{D}(D)$. In particular, the universal covering map $\pi: \Delta \to D$ extends to a continuous map,

$$\pi: \mathfrak{N}(\Delta) \to \mathfrak{D}(D).$$

For $w \in \Delta$, let m_w be the lift to $\mathfrak{M}(\Delta)$ of the usual Poisson representing measure for w. If $z \in D$ satisfies $\pi(z) = w$, then $\lambda_z = \pi^*(m_w)$ is the harmonic measure on $\mathfrak{D}(D)$ for z. It is easy to check that the measure λ_z does not depend on the choice of $z \in \pi^{-1}(w)$. Furthermore,

$$u(z) = \int u d\lambda_z, \quad z \in D, u \in BH(D).$$

Since the m_w are all mutually absolutely continuous with respect to $d\Theta$, the λ_z are all mutually absolutely continuous. When we are concerned only with the class of mutual absolute continuity of λ_z , we will abbreviate λ_z to λ .

3.1 LEMMA. The correspondence

$$u \to \tilde{u}, \quad \tilde{u}(z) = \int u d\lambda_z,$$

determines an isometric isomorphism of $L^{\infty}(\lambda)$ and BH(D). Consequently

$$L^{\infty}(\lambda) \approx C(\text{supp }\lambda) \approx \text{BH}(D).$$

Furthermore, the closed support supp λ of λ is homeomorphic to the maximal ideal space $\Sigma(\lambda)$ of $L^{\infty}(\lambda)$.

PROOF. Every function in BH(D) is the Poisson integral of a continuous function on supp λ with the same norm. On the other hand, if $u \in L^{\infty}(\lambda)$ is arbitrary, then $\tilde{u} \in BH(D)$, so that u and (the extension of) \tilde{u} have the same Poisson integrals. It suffices then to show that if $u \in L^{\infty}(\lambda)$ satisfies $\tilde{u} = 0$, then u = 0 a.e. $(d\lambda)$.

Suppose $u \in L^{\infty}(\lambda)$ satisfies $\tilde{u} = 0$. Then $u \circ \pi \in L^{\infty}(d\Theta)$ satisfies

$$\int (u \circ \pi) dm_w = \int u d\lambda_{\pi(w)} = 0, \qquad w \in \Delta.$$

By a classical result [8], $u \circ \pi = 0$ a.e. $(d\Theta)$. Hence u = 0 a.e. $(d\lambda)$. Q.E.D.

From Lemma 3.1 it follows that supp λ is the Choquet boundary of BH(D). Furthermore λ is a normal measure on supp λ . In fact, λ is characterized, up to mutual absolute continuity, as the normal measure on the Choquet boundary of BH(D) whose closed support coincides with the Choquet boundary.

Roughly the same state of affairs holds if D is any bounded open set. If D_1, D_2, \ldots are the constituent components of D, then $\mathfrak{D}(D_i)$ can be regarded

as a clopen subset of $\mathfrak{D}(D)$. If λ_j is the harmonic measure on $\mathfrak{D}(D_j)$, then the measure $\lambda = \sum \lambda_j/2^j$ can be referred to as the harmonic measure on $\mathfrak{D}(D)$. Again there are isometric isomorphisms

$$C(\operatorname{supp} \lambda) \cong L^{\infty}(\lambda) \cong \operatorname{BH}(D),$$

and a homeomorphism supp $\lambda \cong \Sigma(d\lambda)$.

Redefine Z to be the extension of the coordinate function z to $\mathfrak{D}(D)$, so that Z maps $\mathfrak{D}(D)$ onto \overline{D} . As noted earlier, $Z^*(\lambda_z)$ coincides with the harmonic measure μ_z on ∂D for $z \in D$. Since the set R of regular boundary points of D has full harmonic measure, the set $Z^{-1}(R) \subset \mathfrak{D}(D)$ has full λ -measure. In particular, we obtain the following.

3.2 LEMMA. Let R be the set of regular boundary points of D. Then $Z^{-1}(R) \cap \text{supp } \lambda$ is dense in supp λ .

Let $\zeta \in \partial D$. The fiber $\mathcal{Q}_{\zeta}(D)$, or \mathcal{Q}_{ζ} , is defined to be the set of all $\varphi \in \mathcal{Q}(D)$ such that $Z(\varphi) = \zeta$:

$$\mathcal{Q}_{\zeta} = Z^{-1}(\{\zeta\}) \subset \mathcal{Q}(D).$$

3.3 Lemma. Let ζ be a regular boundary point of D. Let $u \in BH(D)$, and let p be a strictly positive continuous function on $\mathcal{Q}(D)$ such that $|u| \leq p$ on \mathcal{Q}_{ζ} . Then there is $v \in BH(D)$ such that $|v| \leq p$ on $\mathcal{Q}(D)$, while v = u on \mathcal{Q}_{ζ} .

PROOF. By Lemma 6.1 of [6] (which stems from a classical construction of Keldysh and Bishop), it suffices to show that there is a sequence $\{u_n\}$ in BH(D) and M > 0 such that $|u_n| \le M$ for all n, $u_n = u$ on 2_{ζ} , and $\{u_n\}$ converges uniformly to zero on each subset of D at a positive distance from ζ .

Define $u_n \in BH(D)$ by

$$u_n(z) = \int_{Z^{-1}(\Lambda_z)} u d\lambda_z, \qquad z \in D,$$

where $\delta = 1/n$, and Δ_{δ} is the open disc of radius δ centered at ζ . The estimate $|u_n| \le ||u||$ is immediate.

Since ζ is regular, the harmonic measures μ_z on ∂D for z cluster at the point mass at ζ as $z \in D$ tends to ζ . Since $Z^*(\lambda_z) = \mu_z$, the measures λ_z cluster towards measures on the fiber \mathfrak{D}_{ζ} as $z \in D$ tends to ζ . Consequently

$$u_n(z) - u(z) = \int_{Z^{-1}(\overline{D}\setminus\Delta_{\delta})} ud\lambda_z$$

tends to zero as $z \in D$ approaches ζ . Hence $u_n = u$ on 2_{ζ} .

An elementary estimate on harmonic measure shows that $\mu_z(\Delta_{\delta})$ tends to zero uniformly on each subset of D at a positive distance from ζ . Consequently $\{u_n\}$ tends to zero uniformly on each such set. Q.E.D.

3.4 COROLLARY. If ζ is a regular boundary point of D, then the restriction

space $BH(D)|_{2_{\xi}}$ is a closed subspace of $C(2_{\xi})$ whose Choquet boundary is $2_{\xi} \cap \text{supp } \lambda$.

The next lemma shows that the fiber \mathcal{Q}_{ζ} depends only on the local configuration of D near ζ .

3.5 Lemma. Let $\zeta \in \partial D$, let U be an open neighborhood of ζ , and let $u \in BH(D \cap U)$. Then there exists $v \in BH(D)$ such that v - u extends harmonically to a neighborhood of ζ .

PROOF. Let g be a smooth function supported on a compact subset of U, such that g = 1 near ζ . Declare u to be zero off $D \cap U$, and define

$$v(z) = u(z)g(z) - \frac{1}{2\pi} \iint u(w)(\Delta g)(w)\log \frac{1}{|z - w|} ds dt$$
$$+ \frac{1}{\pi} \iint u(w) \left[\frac{\partial g}{\partial x}(w) \frac{s - x}{|w - z|^2} + \frac{\partial g}{\partial y}(w) \frac{t - y}{|w - z|^2} \right] ds dt,$$

where w = s + it. Then v satisfies the differential equation $\Delta v = g\Delta u$ in the sense of distributions. It is easy to check (cf. [10]) that v has the desired properties. Q.E.D.

3.6 THEOREM. Let U be an open subset of C. Then the inclusion $D \cap U \rightarrow D$ induces a homeomorphism

$$\mathfrak{Q}_{\zeta}(D \cap U) \cong \mathfrak{Q}_{\zeta}(D), \quad all \ \zeta \in \partial D \cap U.$$

Furthermore, the natural map

$$(3.2) \qquad 2(D \cap U) \cap Z^{-1}(U \cap \partial D) \rightarrow 2(D) \cap Z^{-1}(U \cap \partial D)$$

is a homeomorphism. The restriction to $Z^{-1}(U \cap \partial D)$ of the harmonic measure on $\mathfrak{D}(D \cap U)$ corresponds to a measure which is mutually absolutely continuous with the restriction to $Z^{-1}(U \cap \partial D)$ of the harmonic measure on $\mathfrak{D}(D)$.

PROOF. The inclusion $D \cap U \to D$ induces a continuous map $\mathcal{Q}_{\zeta}(D \cap U) \to \mathcal{Q}_{\zeta}(D)$, which identifies points of $\mathcal{Q}_{\zeta}(D \cap U)$ which are identified by BH(D). By Lemma 3.5, no such identification occurs, so the fibers are homeomorphic. The map given by (3.2) is then a homeomorphism.

The homeomorphism of fibers induces an isomorphism

$$\mathrm{BH}(D\,\cap\,U)|_{2_{\mathfrak{f}}(D\,\cap\,U)}\cong\mathrm{BH}(D\,)|_{2_{\mathfrak{f}}(D)}.$$

In particular, the Choquet boundaries of these restriction spaces correspond to each other under the fiber homeomorphism.

It will be convenient henceforth to identify $\mathcal{Q}_{\zeta}(D \cap U)$ and $\mathcal{Q}_{\zeta}(D)$ via (3.1), for $\zeta \in U \cap \partial D$.

Since the Wiener criterion is local, the point $\zeta \in U \cap \partial D$ is a regular boundary point of D if and only if it is a regular boundary point of $D \cap U$.

In this case, Lemma 3.4 (which applies, even if $D \cap U$ is not connected) shows that the supports for the harmonic measures on $2(D \cap U)$ and 2(D) meet the fiber over ζ in the same set. Lemma 3.2 then shows that the supports of the harmonic measures meet $Z^{-1}(D \cap U)$ in the same set. Since both measures are normal measures on extremely disconnected spaces, their restrictions to $Z^{-1}(D \cap U)$ must be mutually absolutely continuous. Q.E.D.

Note again that the hypothesis that D be connected is irrelevant, providing harmonic measure is defined as indicated earlier.

4. Proof of Theorem 1.3. Since \mathcal{Q}_{ζ} is obtained from the subset of \mathfrak{M}_{ζ} adherent to D by identifying those pairs of points which are identified by $H^{\infty}(D)$, and since the harmonic measure on $\mathfrak{M}(D)$ is collapsed to the harmonic measure on $\mathfrak{D}(D)$ under this identification, it suffices to prove that

$$f(2_{\zeta}) \setminus [f(2_{\zeta} \cap \text{supp } \lambda) \cup R(f, \zeta)]$$

has zero logarithmic capacity whenever $f \in H^{\infty}(D)$.

Suppose, on the contrary, that this statement fails for certain f and ζ . Then there exist a disc Δ_{δ} centered at ζ with radius δ and a compact set

$$E \subset f(\mathcal{Q}_{\ell}) \setminus f(\mathcal{Q}_{\ell} \cap \text{supp } \lambda),$$

such that E has positive logarithmic capacity, while

$$(4.1) E \cap f(\Delta_{\delta} \cap D) = \emptyset.$$

Let u be a real-valued harmonic function on $\mathbb{C} \setminus E$ such that

$$u < 0$$
 on $\mathbb{C} \setminus E$, $\limsup_{z \to E} u(z) = 0$.

On account of (4.1) the function $v = u \circ f$ is well defined and harmonic on $D \cap \Delta_{\delta}$.

Choose $w_n \in \mathbb{C} \setminus E$ such that $u(w_n) \to 0$. Now E is a compact subset of the interior $\mathrm{Cl}(f,\zeta)$. Consequently for n large, there is z_n near ζ such that $f(z_n)$ is near w_n . In this manner we obtain a sequence $\{z_n\}$ in D such that $z_n \to \zeta$ and $u(f(z_n)) \to 0$. In other words,

(4.2)
$$\lim_{D \in z \to \zeta} v(z) = 0.$$

Let $\varphi \in \mathcal{Q}_{\zeta} \cap \text{supp } \lambda$. Suppose $\{z_{\alpha}\}$ is a net in $D \cap \Delta_{\delta}$ which converges in the topology of $\mathcal{Q}(D \cap \Delta_{\delta})$ to φ . Setting

$$a = \sup\{u(z): z \in f(\mathcal{Q}_{\zeta} \cap \operatorname{supp} \lambda)\} < 0,$$

we obtain

$$v(\varphi) = \lim u(f(z_{\alpha})) = u(f(\varphi)) \le a.$$

Consequently

$$(4.3) v \leq a < 0 on 2_{\xi} \cap \operatorname{supp} \lambda.$$

Note that $\mathcal{Q}_{\zeta} \cap \text{supp } \lambda$ refers here both to a subset of $\mathcal{Q}_{\zeta}(D)$ and a subset of $\mathcal{Q}_{\zeta}(D \cap \Delta_{\delta})$. This is permitted, on account of the identification furnished by Theorem 3.6.

Suppose ζ is a regular boundary point of D. From (4.3) and Lemma 3.4 we conclude that $v \le a < 0$ on 2_{ζ} . This contradicts (4.2), and the theorem is established for regular boundary points.

Suppose that ζ is an irregular boundary point of D. In this case, $\{\zeta\}$ is a connected component of ∂D ; in fact, Beurling's condition for regular boundary points [12] shows that for arbitrarily small values of δ , the boundary $\partial \Delta_{\delta}$ of Δ_{δ} is contained in D. By shrinking E and choosing a small, appropriate $\delta > 0$, we can make the following further assumptions:

$$(4.4) E \cap f(\partial \Delta_{\delta}) = \emptyset,$$

(4.5)
$$E \cap f(\mathfrak{D}_{\xi} \cap \operatorname{supp} \lambda) = \emptyset \quad \text{for all } \xi \in \Delta_{\delta} \cap \partial D.$$

Now $v = u \circ f$ is harmonic on $\overline{\Delta}_{\delta} \cap D$. As before, (4.5) shows that

$$\sup \{v(\varphi) \colon \varphi \in Z^{-1}(\Delta_{\delta}) \cap \operatorname{supp} \lambda\} < 0,$$

while from (4.4) we obtain

$$\sup\{v(z):z\in\partial\Delta_{\delta}\}<0.$$

Consequently there is a constant b < 0 such that $v \le b$ on the closed support of the harmonic measure for $\mathfrak{D}(D \cap \Delta_{\delta})$. It follows that $v \le b < 0$ on $D \cap \Delta_{\delta}$. This contradicts (4.2), so that the theorem is also established for irregular boundary points. Q.E.D.

REFERENCES

- 1. C. Constantinescu and A. Cornea, *Ideale Ränder Riemannscher Flächen*, Ergebnisse Math. Grenzgebiete, Bd. 32, Springer-Verlag, Berlin, 1963. MR 28 #3151.
 - 2. T. W. Gamelin, Lectures on $H^{\infty}(D)$, Notas de Matemática, La Plata, Argentina, 1972.
- 3. _____, Localization of the corona problem, Pacific J. Math. 34 (1970), 73-81. MR 43 #2482.
- 4. _____, Iversen's theorem and fiber algebras, Pacific J. Math. 46 (1973), 389-414. MR 49 #7783.
- 5. _____, The algebra of bounded analytic functions, Bull. Amer. Math. Soc. 79 (1973), 1095-1108. MR 48 #4742.
- 6. T. W. Gamelin and J. Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. 92 (1970), 455-474. MR 46 #2434.
- 7. S. Ya. Havinson, Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, Mat. Sb. 54 (96) (1961), 3-50; English transl., Amer. Math. Soc. Transl. (2) 43 (1964), 215-266. MR 25 #182.
- 8. Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Ser. in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 24 #A2844.

- 9. A. J. Lohwater, On the theorems of Gross and Iversen, J. Analyse Math. 7 (1959/60), 209-221. MR 23 #A1043.
 - 10. R. Ludwig, Approximation of harmonic functions, Ph.D. Thesis, UCLA, 1969.
- 11. K. Noshiro, Cluster sets, Ergebnisse Math. Grenzgebiete, N. F., Heft 28, Springer-Verlag, Berlin, 1960. MR 24 #A3295.
 - 12. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959. MR 22#5712.
- 13. M. L. Weiss, Cluster sets of bounded analytic functions from a Banach algebraic viewpoint, Ann. Acad. Sci. Fenn. Ser. A I No. 367 (1965), 14 pp. MR 35 #379.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024