A SINGULAR SEMILINEAR EQUATION IN $L^1(R)$

RY

MICHAEL G. CRANDALL AND LAWRENCE C. EVANS(1)

ABSTRACT. Let β be a positive and nondecreasing function on R. The boundary-value problem $\beta(u) - u'' = f$, $u'(\pm \infty) = 0$ is considered for $f \in L^1(R)$. It is shown that this problem can have a solution only if β is integrable near $-\infty$, and that if this is the case, then the problem has a solution exactly when $\int_{-\infty}^{\infty} f(x) dx > 0$.

In [5, Lemma 5.6] T. Kurtz proves that the problem $e^u - u'' = f$ has a solution $u \in C^2(\mathbb{R})$ satisfying $u'(\pm \infty) \equiv \lim_{x \to \pm \infty} u'(x) = 0$, whenever f is nonnegative, continuous, compactly supported, and not identically equal to zero. Herein we study more general problems of the form

$$\beta(u) - u'' \ni f, \qquad u'(\pm \infty) = 0,$$

where β is a maximal monotone graph in \mathbf{R} (see, for example, Brezis [2, §I.8]). In particular, β can be any continuous, nondecreasing function on \mathbf{R} . If $0 \in \text{int } \beta(\mathbf{R})$, this problem is well understood; see Benilan, Brezis and Crandall [1] and Proposition 1 below. When $\beta(\mathbf{R}) \subseteq (0, \infty)$, as for the case $\beta(u) = e^u$, Kurtz's result is the only one known to the authors; and his methods depend very strongly on the explicit form of $\beta(u) = e^u$. We characterize those maximal monotone graphs β with $\beta(\mathbf{R}) \subseteq (0, \infty)$ for which (P_f) has a solution for some $f \in L^1(\mathbf{R})$, and then show that for such β (P_f) has a solution if and only if $\int_{-\infty}^{\infty} f(x) dx > 0$. Thus our conclusions are sharp as regards possible β and f in (P_f) .

Let us be more precise. If β is any maximal monotone graph and $f \in L^1_{loc}(\mathbf{R})$, by a solution of (\mathbf{P}_f) we understand a function u such that u and u' are locally absolutely continuous on \mathbf{R} , $f(x) + u''(x) \in \beta(u(x))$ a.e., and $u'(\pm \infty) = 0$. We denote by $D(\beta)$ the domain of β and by β^0 the minimal section of β ; the function β^0 assigns to $r \in D(\beta)$ the element in $\beta(r)$ of least modulus (so $\beta = \beta^0$ if β is single-valued).

Received by the editors August 14, 1975.

AMS (MOS) subject classifications (1970). Primary 34B15.

Key words and phrases. Nonlinear boundary value problem, accretive operator.

⁽¹⁾ Sponsored by the United States Army under Contract No. under Contract No. DA-31-124 ARO-D-462.

The main result is

THEOREM 1. Suppose β is a maximal monotone graph in \mathbf{R} with $\beta(\mathbf{R}) \subseteq (0, \infty)$. Then the following are equivalent:

- (i) If $f \in L^1(\mathbf{R})$, (P_f) has a solution exactly when $\int_{-\infty}^{\infty} f(x) dx > 0$.
- (ii) There exists some $f \in L^1(\mathbf{R})$ for which (\mathbf{P}_f) has a solution.
- (iii) There is an $a \in \mathbb{R}$ for which $(-\infty, a) \subseteq D(\beta)$ and $\int_{-\infty}^{a} \beta^{0}(x) dx < \infty$.

This result is of interest because if (i), (ii), or (iii) holds, then the (possibly multivalued) mapping $f + u'' \mapsto -u''$, u the solution to (P_f), defines an accretive operator in $L^1(\mathbf{R})$: see Lemma 4(c). This operator generates a semigroup of contractions on a subset of $L^1(\mathbf{R})$ associated with the nonlinear partial differential equation $u_t - (\phi(u))_{xx} = 0$, for $\phi = \beta^{-1}$. (See, for example, [4, §3].)

To obtain Kurtz's result from Theorem 1 we need only note that $\int_{-\infty}^{0} e^{x} dx < \infty$, and so (iii) is valid for $\beta(x) = e^{x}$. And conversely if, for example, $\beta(x) \ge -1/x$ for large negative x, the equivalence of (ii) and (iii) implies that (P_f) does not have a solution for any $f \in L^1(\mathbf{R})$.

PROOF OF THEOREM 1. We prove Theorem 1 by establishing (i) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (i), in that order; the implications are arranged in increasing levels of difficulty. We begin with some simple remarks.

Let β satisfy the assumption of Theorem 1. Define

$$L^{1}(\mathbf{R})_{+} = \Big\{ f \in L^{1}(\mathbf{R}) | \int_{-\infty}^{\infty} f(x) dx > 0 \Big\}.$$

We note first of all that $f \in L^1(\mathbb{R})_+$ is a necessary condition for the solvability of (P_f) . If u solves (P_f) , then $f + u'' \in \beta(u)$ implies f + u'' > 0 a.e. and so

$$0 < \int_{-\infty}^{\infty} f(x) + u''(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) + u''(x) dx = \int_{-\infty}^{\infty} f(x) dx,$$

since $\lim_{R\to\infty} u'(\pm R) = 0$. Moreover this same calculation and Fatou's Lemma imply $f + u'' \in L^1(\mathbf{R})$ and $||f + u''||_1 \le ||f||_1 (|| ||_p \text{ denoting the norm in } L^p(\mathbf{R}), 1 \le p \le \infty$). Thus if u is a solution of (P_f) , $u'' \in L^1(\mathbf{R})$ and $||u''||_1 \le 2||f||_1$.

DEFINITION. \mathcal{L} is the linear subspace of functions u defined on \mathbf{R} such that u and u' are locally absolutely continuous, $u'' \in L^1(\mathbf{R})$, and $u'(\pm \infty) = 0$.

We have proved that if u solves (P_f) for some $f \in L^1(\mathbf{R})$, then $f \in L^1(\mathbf{R})_+$, $u \in \mathcal{L}$, and $||u''||_1 \leq 2||f||_1$, $||f + u''||_1 \leq ||f||_1$. Also $u \in \mathcal{L}$ clearly implies $||u''||_{\infty} \leq ||u''||_1$.

PROOF OF (i) \Rightarrow (iii). If $f \in L^1(\mathbb{R})_+$ and u solves (\mathbb{P}_f) , then $u' \in L^{\infty}(\mathbb{R})$ by the preceding; and so there is a positive constant c such that $u(x) \geqslant cx$ for $x \leqslant -1$. Furthermore,

$$f(x) + u''(x) \geqslant \beta^{0}(u(x)) \geqslant \beta^{0}(cx) > 0$$

a.e. for x < -1, since β^0 is positive and nondecreasing. Therefore

$$||f||_1 \ge ||f + u''||_1 \ge \int_{-\infty}^{-1} \beta^0(cx) dx = \frac{1}{c} \int_{-\infty}^{-c} \beta^0(y) dy;$$

and (iii) follows.

PROOF OF (iii) \Rightarrow (ii). This is a bit more subtle. Suppose $\int_{-\infty}^{a} \beta^{0}(x) dx < \infty$. We claim there is a continuously differentiable function $g: (-\infty, a] \to \mathbb{R}$ satisfying

(1)
$$g \ge 1$$
, g nonincreasing, $\lim_{x \to -\infty} g(x) = \infty$, $\int_{-\infty}^{a} \beta^{0}(x)g(x)dx < \infty$.

Let us for the moment assume that such a g exists. Define $v: (-\infty, -1] \to \mathbb{R}$ by

$$\begin{cases} v'(x) = 1/g(v(x)), & x < -1, \\ v(-1) = a - 1. \end{cases}$$

Since g is positive, nonincreasing, and continuously differentiable, v is increasing, convex, and twice continuously differentiable. In addition, it is clear that $v(x) \to -\infty$ as $x \to -\infty$, because g is bounded above on compact sets. Since $g(x) \to \infty$ when $x \to -\infty$, $v'(-\infty) = 0$. Moreover

$$v'' \in L^1(-\infty, -1)$$

and

$$\int_{-\infty}^{-1} \beta^0(v(x)) dx = \int_{-\infty}^{a-1} \beta^0(y) \frac{1}{v'(v^{-1}(y))} dy = \int_{-\infty}^{a-1} \beta^0(y) g(y) dy < \infty.$$

Let u be any even, twice continuously differentiable function on \mathbf{R} which satisfies u(x) = v(x) for x < -1 and u < a everywhere. Then, by the construction, $f(x) \equiv u''(x) + \beta^0(u(x)) \in L^1(\mathbf{R})$ and $u'(\pm \infty) = 0$, u is a solution of (P_f) .

It remains to prove the existence of g with the properties (1). Select a sequence $\{a_n\}_{n=1}^{\infty}$ which satisfies $a_n < a_{n-1} < a$ for $n=1, 2, \ldots$ and $\int_{-\infty}^{a_n} \beta^0(x) dx < 1/n^2$. Now take g to be any nonincreasing continuously differentiable function so that $g(a_n) = \sqrt{n}$, $n=1, 2, \ldots$, and g=1 on $[a_1, a]$. Then

$$\int_{-\infty}^{a} \beta^{0}(x)g(x) dx = \int_{a_{1}}^{a} \beta^{0}(x) dx + \sum_{n=1}^{\infty} \int_{a_{n+1}}^{a_{n}} \beta^{0}(x)g(x) dx$$

$$\leq \int_{a_{1}}^{a} \beta^{0}(x) dx + \sum_{n=1}^{\infty} \sqrt{n+1} \int_{a_{n+1}}^{a_{n}} \beta^{0}(x) dx$$

$$\leq \int_{a_{1}}^{a} \beta^{0}(x) dx + \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}} < \infty;$$

g has the desired properties.

PROOF OF (ii) \Rightarrow (i). This implication is the most difficult and its proof requires several steps. The lemmas following outline the program.

LEMMA 1. Let $f, g \in L^1(\mathbb{R})_+$ and $\int_{-\infty}^{\infty} f(x) dx > \int_{-\infty}^{\infty} g(x) dx$. If (P_g) has a solution, then so does (P_f) .

LEMMA 2. If (ii) holds, then

$$\left\{ f \in L^{1}(\mathbf{R})_{+} | \exists g \in L^{1}(\mathbf{R})_{+}, \int_{-\infty}^{\infty} f(x) dx \right.$$

$$\left. > \int_{-\infty}^{\infty} g(x) dx, \text{ and } (\mathbf{P}_{g}) \text{ has a solution} \right\} = L^{1}(\mathbf{R})_{+}.$$

The combined implications of Lemmas 1-2 prove that (ii) \Rightarrow (i). If (ii) is valid, Lemmas 1 and 2 demonstate that (P_f) has a solution for all $f \in L^1(\mathbf{R})_+$. Again we prove these results in order of ascending difficulty.

PROOF OF LEMMA 2. Choose $f \in L^1(\mathbf{R})$ so that (P_f) has a solution u; by (ii) there is at least one such f (and in fact $f \in L^1(\mathbf{R})_+$). Now for fixed $\varepsilon > 0$ we prove that there is some $g \in L^1(\mathbf{R})_+$, $||g||_1 \le \varepsilon$, for which (P_g) also has a solution. If δ , M > 0, define $u_{\delta,M}(x) \equiv u(\delta x) - M$. Then $u_{\delta,M}$ solves $(P_{f_{\delta,M}})$, where

$$f_{\delta,M}(x) \equiv \beta^0(u_{\delta,M}(x)) - (u_{\delta,M})''(x) = \beta^0(u(\delta x) - M) - \delta^2 u''(x).$$

We have $\|u_{\delta,M}''\|_1 = \delta \|u''\|_1 \leqslant \varepsilon/2$ for a fixed δ small enough. Moreover $\lim_{M\to\infty} \beta^0(u(\delta x)-M)=0$ since $\beta^0(x)\to 0$ as $x\to -\infty$ (otherwise (ii) could not hold). By the Dominated Convergence Theorem we can choose M so large that $\|\beta^0(u(\delta x)-M)\|_1 \leqslant \varepsilon/2$. Then $g\equiv f_{\delta,M}$ satisfies $\|g\|_1 \leqslant \varepsilon$.

Therefore (P_g) has a solution for g's with arbitrarily small L^1 -norm. Now take any $f \in L^1(\mathbb{R})_+$ and let g be as above and satisfy $\int_{-\infty}^{\infty} f(x) dx > ||g||_1$. Then $\int_{-\infty}^{\infty} f(x) dx > \int_{-\infty}^{\infty} g(x) dx$. The proof is complete.

For the proof of Lemma 1 we require another Lemma 3(a) below. (Parts (b) and (c) are included for interest's sake.)

LEMMA 3. (a) Let $v \in \mathcal{L}$, and $p \in L^{\infty}(\mathbb{R})$ be locally Lipschitz continuous and nondecreasing. Then $p'(v){v'}^2 \in L^1(\mathbb{R})$ and

$$\int_{-\infty}^{\infty} p(v(x))v''(x) + p'(v(x))v'(x)^{2} dx = 0.$$

(b) Let

Sign
$$r = \begin{cases} \{1\}, & r > 0, \\ [-1, 1]; & r = 0, \\ \{-1\}, & r < 0. \end{cases}$$

If $a \in L^{\infty}(\mathbf{R})$, $v \in \mathcal{L}$, and $a(x) \in \text{Sign } v(x)$ a.e., then $\int_{-\infty}^{\infty} v'')a(x) dx \leq 0$. (c) If $f, \hat{f} \in L^{1}(\mathbf{R})_{+})u$, \hat{u} are solutions of (\mathbf{P}_{f}) and (\mathbf{P}_{f}) , respectively, then $\|(f + u'') - (\hat{f} + \hat{u}'')\|_{1} \leq \|f - \hat{f}\|_{1}$.

PROOF OF LEMMA 3. We adapt arguments used in [1] and [3] to this simple case. If R > 0, then

$$\int_{-R}^{R} p(v(x))v''(x) + p'(v(x))v'(x)^{2} dx = p(v(R))v'(R) - p(v(-R))v'(-R).$$

Since $p \in L^{\infty}(\mathbb{R})$ and $v'(\pm \infty) = 0$, (a) follows from Fatou's Lemma by letting $R \to \infty$ above.

To obtain (b), apply (a) with $p(s) = p_n(s) = p_0(ns)$, where $p_0(s) = s$ for $|s| \le 1$ and $p_0(s) = \text{sign } s$ for $|s| \ge 1$. Then by (a) $\int_{-\infty}^{\infty} p_n(v)v'' dx \le 0$. But $p_n(v) \to \text{sign}_0(v)$, where $\text{sign}_0 s = \text{sign } s$ for $s \ne 0$, $\text{sign}_0 s = 0$. Therefore we can send $n \to \infty$ to conclude

$$\int_{[v>0]} v''(x) \, dx - \int_{[v<0]} v''(x) \, dx \le 0$$

 $([v > 0] \equiv \{x | v(x) > 0\}, \text{ etc.})$. Finally v'(x) = 0 a.e. on [v = 0] and so v''(x) = 0 a.e. on this set (the derivative of any absolutely continuous function v vanishes a.e. on [v = c] for any $c \in \mathbb{R}$). If $a(x) \in \text{Sign } v(x)$ a.e., we therefore have

$$\int_{-\infty}^{\infty} a(x)v''(x) dx = \int_{[v>0]} v''(x) dx - \int_{[v<0]} v''(x) dx + \int_{[v=0]} a(x)v''(x) dx$$
$$= \int_{[v>0]} v''(x) dx - \int_{[v<0]} v''(x) dx \le 0.$$

(It is not hard to prove that equality actually holds.) To prove (c) let

$$a(x) = \begin{cases} 1 & \text{on } [f + u'' > \hat{f} + \hat{u}''] \cup [u > \hat{u}], \\ 0 & \text{on } [f + u'' = \hat{f} + \hat{u}''] \cap [u = \hat{u}], \\ -1 & \text{on } [f + u'' < \hat{f} + \hat{u}''] \cup [u < \hat{u}]. \end{cases}$$

Then a is well defined since β is monotone, $a(x) \in \text{Sign}(u - \hat{u})(x)$ a.e., and $a(f + u'' - (\hat{f} + \hat{u}'')) = |f + u'' - (\hat{f} + \hat{u}'')|$ a.e. By (b)

$$||f + u'' - (\hat{f} + \hat{u}'')||_{\mathbf{i}} = \int_{-\infty}^{\infty} a(f - \hat{f}) dx + \int_{-\infty}^{\infty} a(u - \hat{u})'' dx$$

$$\leq \int_{-\infty}^{\infty} a(f - \hat{f}) dx \leq ||f - \hat{f}||_{\mathbf{i}},$$

and (c) is proved.

PROOF OF LEMMA 1. Suppose $f, g \in L^1(\mathbb{R})_+$ and $\int_{-\infty}^{\infty} f(x) dx > \int_{-\infty}^{\infty} g(x) dx$. Assume (P_g) has a solution. To prove that then (P_f) has a solution we employ the following result of Benilan, Brezis and Crandall [1, §4]:

PROPOSITION 1. Suppose γ is a maximal monotone graph in \mathbb{R} with $0 \in \gamma(0)$ and $0 \in \operatorname{int} \gamma(\mathbb{R})$. Then for every $f \in L^1(\mathbb{R})$ there is a function v such that

- (a) $v, v' \in L^{\infty}(\mathbb{R})$ and $v'' \in L^{1}(\mathbb{R})$,
- (b) $f(x) + v''(x) \in \gamma(v(x))$ a.e.,
- (c) $v'(\pm \infty) = 0$, $||v'||_{\infty} \le ||v''||_{1} \le 2||f||_{1}$.

REMARK 1. At this point there is a discontinuity in our presentation: except for Proposition 1 the discussion does not assume the reader to be familiar with [1] or [3]. The interested reader should attempt to prove Proposition 1 for himself, at least for the special case when γ is continuous. (This one-dimensional proposition does not require the machinery of [1].)

Proposition 1 allows us to solve as follows certain problems approximating (P_f) .

For $0 < \lambda < \sup \beta(\mathbf{R})$ there is a number $r_{\lambda} \in D(\beta)$ with $\lambda \in \beta(r_{\lambda})$. Set $\beta^{\lambda}(x) \equiv \beta(x + r_{\lambda}) - \lambda$; then β^{λ} satisfies the assumptions on γ in Proposition 1. And so there exists a w_{λ} satisfying (a), (b), (c), with β^{λ} in place of γ . Define $u_{\lambda} \equiv w_{\lambda} + r_{\lambda}$. Then we have

(a)
$$u_{\lambda}$$
, $u'_{\lambda} \in L^{\infty}(\mathbb{R})$, $u''_{\lambda} \in L^{1}(\mathbb{R})$,

(2)
$$(b) f(x) + u_{\lambda}''(x) \in \beta^{\lambda}(w_{\lambda}(x)) = \beta(u_{\lambda}(x)) - \lambda \quad \text{a.e.,}$$

(c)
$$u'_{\lambda}(\pm \infty) = 0$$
, $||u'_{\lambda}||_{\infty} \le ||u''_{\lambda}||_{1} \le 2||f||_{1}$.

The solution u of (P_f) will be constructed as the limit of the u_{λ} as $\lambda \geq 0$. First we show the u_{λ} decreases as λ decreases. Let p be a smooth, nondecreasing function defined on \mathbf{R} such that p(x) = 0 for $x \geq 0$, p(x) < 0 for -1 < x < 0, p(x) = -1 for $x \leq -1$. Now $(u_{\lambda} - u_{\eta})'' \in (\beta(u_{\lambda}) - \beta(u_{\eta})) + \eta - \lambda$; and so, by the monotonicity of β ,

$$p(u_{\lambda}-u_{\eta})(u_{\lambda}-u_{\eta})'' \geqslant (\eta-\lambda)p(u_{\lambda}-u_{\eta}).$$

Lemma 3(a) implies $\int_{-\infty}^{\infty} p(u_{\lambda} - u_{\eta})(u_{\lambda} - u_{\eta})'' dx \le 0$. Letting $\lambda > \eta$ we conclude that $u_{\lambda} \ge u_{\eta}$ a.e.

To discover a (pointwise) lower bound for the u_{λ} we recall that the problem (P_g) has a solution v:

$$(P_g) g(x) + v(x)'' \in \beta(v(x)) a.e., v'(\pm \infty) = 0.$$

As in the preceding we construct approximate functions v_{λ} which satisfy conditions like (2), with g replacing f. The v_{λ} , like the u_{λ} , decrease as $\lambda \geq 0$. In addition, the v_{λ} are bounded from below by v; this is proved by the same method as above.

We claim that there is some $x_0 \in \mathbf{R}$ such that $\{u_{\lambda}(x_0)\}$ is bounded. If not, then $u_{\lambda}(x) \to -\infty$ as $\lambda \searrow 0$ for every $x \in \mathbf{R}$. Subtract the equation satisfied by v_{λ} from that satisfied by u_{λ} :

(3)
$$f(x) - g(x) + (u_{\lambda}(x) - v_{\lambda}(x))'' \in \beta(u_{\lambda}(x)) - \beta(v_{\lambda}(x)).$$

Multiply this by $p(u_{\lambda}(x) - v_{\lambda}(x))$ (p as defined above), recall the monotonicity of β , and integrate:

$$\int_{-\infty}^{\infty} (f(x) - g(x))p(u_{\lambda}(x) - v_{\lambda}(x)) + (u_{\lambda}(x) - v_{\lambda}(x))''p(u_{\lambda}(x) - v_{\lambda}(x)) dx$$

$$\geqslant 0.$$

By Lemma 3(a), we have

(4)
$$\int_{-\infty}^{\infty} (f(x) - g(x)) p(u_{\lambda}(x) - v_{\lambda}(x)) dx \geqslant 0.$$

For fixed x, $u_{\lambda}(x) \to -\infty$ and $v_{\lambda}(x)$ is bounded; therefore $p(u_{\lambda}(x) - v_{\lambda}(x)) \to -1$. So the Dominated Convergence Theorem applied to (4) leads to $\int_{-\infty}^{\infty} (g(x) - f(x)) dx \ge 0$. However this contradicts the assumption on f and g. Hence there is some x_0 for which $\{u_{\lambda}(x_0)\}$ is bounded; and this implies, since $\|u_{\lambda}'\|_{\infty} \le 2\|f\|_{1}$, that the u_{λ} are bounded uniformly on compact sets. They thus converge monotonically and uniformly on compact sets to a limit $u \equiv \lim_{\lambda \to 0} u_{\lambda}$.

Furthermore $u_{\lambda}(x)'' + \lambda + f(x) \in \beta(u_{\lambda}(x))$ and $u_{\eta}(x)'' + \eta + f(x) \in \beta(u_{\eta}(x))$ a.e. implies $u_{\lambda}'' + \lambda \leqslant u_{\eta}'' + \eta$ if $u_{\lambda} < u_{\eta}$. Since $u_{\lambda}'' = u_{\eta}''$ a.e. on $[u_{\lambda} = u_{\eta}], u_{\lambda}'' + \lambda \leqslant u_{\eta}'' + \eta$ a.e. Also $u_{\lambda}''(x) + \lambda > -f(x)$ a.e. because $0 < \beta^{0}(u_{\lambda}(x)) \leqslant u_{\lambda}(x)'' + \lambda + f(x)$. It follows that the u_{λ}'' converge in $L_{loc}^{1}(\mathbf{R})$ to u'' as $\lambda > 0$, and therefore that $f + u'' \in \beta(u)$ a.e.

We must show that $u'(\pm \infty) = 0$. Since $||u_{\lambda}''||_1 \le 2||f||_1$ by (2), Fatou's Lemma implies $u'' \in L^1(\mathbf{R})$, and therefore $u'(+\infty)$ and $u'(-\infty)$ exist. It suffices to prove that $u'(-\infty) = 0$, the same equality for $u'(+\infty)$ following by similar arguments. Since $u \le u_{\lambda}$ and $u_{\lambda}'(-\infty) = 0$, $u'(-\infty) \ge 0$. We multiply both sides of (3) by $p(u_{\lambda} - v_{\lambda})$ as before and integrate:

$$\int_{-\infty}^{y} (v_{\lambda}(x) - u_{\lambda}(x))'' p(u_{\lambda}(x) - v_{\lambda}(x)) dx$$

$$\leq \int_{-\infty}^{y} (f(x) - g(x)) p(u_{\lambda}(x) - v_{\lambda}(x)) dx$$

$$\leq \int_{-\infty}^{y} |f(x) - g(x)| dx.$$

Integrate by parts on the left and recall that $u'_{\lambda}(-\infty) = v'_{\lambda}(-\infty) = 0$:

$$(5) \qquad [v_{\lambda}'(y) - u_{\lambda}'(y)]p(u_{\lambda}(y) - v_{\lambda}(y)) \leqslant \int_{-\infty}^{y} |f(x) - g(x)| dx.$$

Since $u''_{\lambda} \to u''$ in $L^1_{loc}(\mathbf{R})$, $u'_{\lambda} \to u'$ in $C(\mathbf{R})$; and similarly for the v_{λ} . So for every y we can pass to the limit as $\lambda \searrow 0$ in (5) to deduce

(6)
$$[v'(y) - u'(y)] p(u(y) - v(y)) \leqslant \int_{-\infty}^{y} |f(x) - g(x)| dx.$$

Suppose that $u'(-\infty) > 0$. Then for all y less than some number, u(y) < v(y) - 1 and so p(u(y) - v(y)) = -1. Thus sending $y \to -\infty$ in (6) implies $u'(-\infty) \le v'(-\infty) = 0$, a contradiction. Therefore $u'(-\infty) = 0$, and the proof is complete.

REMARK 2. We record some additional facts about solutions u of (P_f) and the map $f \in L^1(\mathbb{R})_+ \mapsto Tf = f + u''$. First, T is a contraction by Lemma 3(c). Next, if u is a solution of (P_f) , then $u(\pm \infty) = -\infty$. Indeed, if there is a sequence x_n , $|x_n| \to \infty$ and $u(x_n) \ge -A$ for some A, then $u(x) \ge -A - \|u'\|_{\infty}$ on $|x - x_n| \le 1$ and measure($[u(x) \ge -A - \|u'\|_{\infty}]$) $= \infty$. But $\beta^0(u(x)) \ge \beta^0(-A - \|u'\|_{\infty}) > 0$ on this set, contradicting $\beta^0(u(x)) \in L^1(\mathbb{R})$. Second, if u and \hat{u} are solutions of (P_f) , then $Tf = f + u'' = f + \hat{u}''$ implies $u' - \hat{u}'$ is a constant. Since $u'(\pm \infty) = \hat{u}'(\pm \infty)$, $u' = \hat{u}'$. Thus $u = \hat{u} + c$ for some $c \in \mathbb{R}$, $c \ge 0$ without loss of generality. Now $Tf(x) \in \beta(\hat{u}(x)) \cap \beta(\hat{u}(x) + c)$ a.e. Since $\hat{u}(x) \to -\infty$ as $|x| \to \infty$, we can choose x so that u(x) is a point of strict increase of β^0 , $\beta^0(\hat{u}(x)) < \beta^0(\hat{u}(x) + r)$ for r > 0. For this x we conclude that c = 0. Finally, if $f, \hat{f} \in L^1(\mathbb{R})_+$, then

(7)
$$\int_{-\infty}^{\infty} (Tf - T\hat{f})^{+} dx \leqslant \int_{-\infty}^{\infty} (f - \hat{f})^{+} dx,$$

(8)
$$m \leqslant f \leqslant M$$
 a.e. implies $m \leqslant Tf \leqslant M$ a.e.,

and

(9)
$$f \in L^1(\mathbf{R})_+ \text{ implies } \int_{-\infty}^{\infty} j(Tf) dx \leqslant \int_{-\infty}^{\infty} j(f) dx$$

for every convex lower-semicontinuous function $j: \mathbb{R} \to [0, \infty]$ satisfying j(0) = 0. The estimates (7) (which imply that T is order preserving) and (8)

may be proved directly in a fashion similar to Lemma 3. Alternatively, according to [1], (7), (8) and (9) hold for the mappings $T_{\lambda}: f \to f + u_{\lambda}^{r}$, where u_{λ} is as in (2), and one just lets λ tend to zero. Also, (7) and (8) imply (9) by results of [3].

Added in proof. In a paper to appear in the Israel Journal of Mathematics, S. Fisher shows (among other things) that Theorem 1 remains correct if $\beta \in C(\mathbf{R})$; $\beta(-\infty) = 0$, $\beta > 0$ and $\beta \notin L^1(\mathbf{R})$. We also thank Professor Fisher for a useful remark.

REFERENCES

- 1. Ph. Benilan, H. Brezis and M. G. Crandall, A semilinear elliptic equation in $L^1(\mathbb{R}^N)$, MRC Technical Summary Report #1526; Ann. Scuola Norm. Sup. Pisa (4) 2 (1975), 521-555.
- 2. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espace de Hilbert, North-Holland Studies, no. 5, North-Holland, Amsterdam, 1973. MR 50 #1060.
- 3. H. Brezis and W. Strauss, Semi-linear second-order elliptic equations in L¹, J. Math. Soc. Japan 25 (1973), 565-590. MR 49 #826.
- 4. M. G. Crandall, An introduction to evolution governed by accretive operators, Dynamical Systems: An International Symposium, Vol. 1, L. Cesari, J. K. Hale, J. P. LaSalle, Editors, Academic Press, New York, 1976, 131–165.
- 5. T. Kurtz, Convergence of sequences of semigroups of nonlinear operators with an application to gas kinetics, Trans. Amer. Math. Soc. 186 (1973), 259-272. MR 49 # 1256.

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706 (Current address of M. G. Crandall)

Current address: (L. C. Evans): Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506