LINEAR OPERATORS FOR WHICH T^*T AND $T + T^*$ COMMUTE. II

R١

STEPHEN L. CAMPBELL(1) AND RALPH GELLAR

ABSTRACT. Let θ denote the set of bounded linear operators T, acting on a separable Hilbert space $\mathcal K$, such that T^*T and $T+T^*$ commute. It is shown that such operators are G_1 . A complete structure theory is developed for the case when $\sigma(T)$ does not intersect the real axis. Using this structure theory, several nonhyponormal operators in θ with special properties are constructed.

- 1. Let θ denote the set of bounded linear operators T, acting on a separable Hilbert space \mathcal{K} , such that T^*T and $T+T^*$ commute. It is shown that such operators are G_1 . A complete structure theory is developed for the case when $\sigma(T)$ does not intersect the real axis. Using this structure theory, nonhyponormal operators in θ are constructed. Some results on the structure of $\sigma(T)$ are also obtained.
- 2. Introduction. The class θ has been studied in [3], [4], [5], and considered in [8], [9]. Our notation and terminology will be that of [5]. We shall review it briefly. If $T \in \theta$, then $4T^*T (T^* + T)^2 \ge 0$ [5]. Define

(1)
$$C = \frac{(T^* + T) + i\sqrt{4T^*T - (T^* + T)^2}}{2}.$$

Then C is normal, $\sigma(C)$ is contained in the closed upper half-plane, $C^*C = T^*T$, and $T + T^* = C + C^*$ [5]. In particular,

$$(\lambda - T^*)(\lambda - T) = (\lambda - C^*)(\lambda - C)$$

for all λ . If $T \in \theta$ and T is completely nonnormal, then $\sigma(T) = \sigma(T^*)$, $\sigma(C) \subseteq \sigma(T)$, $\partial \sigma(T) \subseteq \sigma(C) \cup \sigma(C^*)$, and $\sigma_p(T) = 0$ [4], [5]. The spectral measure for C is denoted by $F(\cdot)$. Any operator E such that $E^2 = E$ will be called a projection. The real numbers are denoted by \Re . UHP (LHP) is the open

Received by the editors November 19, 1975.

AMS (MOS) subject classifications (1970). Primary 47A15; Secondary 47B20, 47B99.

Key words and phrases. Operator such that T^*T and $T+T^*$ commute, spectrum, hyponormal operator, G_1 operator, subnormal operator, normal extension.

⁽¹⁾ Supported in part by a grant from the North Carolina Engineering Foundation.

upper (lower) half-plane, $\overline{\text{UHP}}$ ($\overline{\text{LHP}}$) are their closures. The restriction of an operator B to subspace $\mathfrak M$ is denoted $B|\mathfrak M$.

3. $T \in \theta$ with $\sigma(T) \cap \Re = \emptyset$. Our first result will be fundamental in the sequel.

Theorem 1. Suppose that C is a normal operator on $\mathcal K$ and E is a projection such that

(i)
$$C^*(I-E) = (I-E)C^*(I-E), \{EC^*(I-E) = 0\},$$

(ii)
$$CE = ECE$$
, $\{(I - E)CE = 0\}$,

(iii)
$$E^*(C-C^*)(I-E)=0$$
.

Let

$$(2) T = CE + C^*(I - E).$$

Then $T \in \theta$.

PROOF. Suppose that C, E satisfy conditions (i), (ii), (iii). Note that by (iii) and (i):

$$E^*C^{*2}(I-E) = E^*C^*(I-E)C^*(I-E) = E^*C(I-E)C^*(I-E)$$
$$= E^*CC^*(I-E).$$

Let
$$T = CE + C^*(I - E)$$
. Then

$$T + T^* = CE + C^*(I - E) + E^*C^* + (I - E^*)C$$
$$= C^* + C + [CE - C^*E + E^*C^* - E^*C].$$

But.

$$CE - C^*E + E^*C^* - E^*C = (C - C^*)E + E^*(C^* - C)$$
$$= (C - C^*)E + E^*(C^* - C)E = (I - E^*)(C - C^*)E = 0.$$

Thus $T + T^* = C + C^*$. Hence $T^* = C + C^* - T$, or

(3)
$$T^* = C^*E + C(I - E).$$

Using (2), (3) we get

$$T^*T = [C^*E + C(I-E)][ECE + (I-E)C^*(I-E)] = C^*C.$$

Thus $T \in \theta$. \square

Our next result shows that if $\sigma(T) \cap \Re = \emptyset$, then T is in the form of Theorem 1.

THEOREM 2. Suppose that $T \in \theta$ and $\sigma(T) \cap \Re = \emptyset$. Let E be the projection

obtained by integrating $(\lambda - T)^{-1}$ around that portion of $\sigma(T)$ in the upper halfplane. Let C be as in (1). Then C, E satisfy (i), (ii), (iii) and $T = CE + C^*(I - E)$.

PROOF. Since $(\lambda - T^*)(\lambda - T) = (\lambda - C^*)(\lambda - C)$ for all λ , we have for all $\lambda \notin \sigma(C) \cup \sigma(C^*)$

$$(C - C^*)(\lambda - T)^{-1} = [(\lambda - C)^{-1} - (\lambda - C^*)^{-1}](\lambda - T^*).$$

Integrating this first around the upper portion of $\sigma(T)$ and then the lower portion of $\sigma(T)$ gives

$$(C-C^*)E=C-T^*$$
 or $E=(C-C^*)^{-1}(C-T^*)$,

and

$$(C-C^*)(I-E) = -(C^*-T^*)$$
 or $I-E = (C-C^*)^{-1}(T^*-C^*)$.

By definition of E, we have TE = ET. Now

$$CE = C(C - C^*)^{-1}(T - C^*) = (C - C^*)^{-1}(CT - C^*C)$$
$$= (C - C^*)^{-1}(C - T^*)T = ET = TE.$$

Thus (ii) holds. Similarly, $C^*(I-E) = (I-E)T = T(I-E)$. Thus $T = CE + C^*(I-E)$. There remains only to check (iii);

$$E^*(C - C^*)(I - E) = (C^* - T)(C^* - C)^{-1}(C - C^*)(I - E)$$
$$= -C^*(I - E) + T(I - E) = 0. \quad \Box$$

One might suppose that the existence of the C, E in Theorem 1 is restrictive. The next theorem shows it is not.

THEOREM 3. Let C be any normal operator such that $\sigma(C) \subseteq UHP$. Let \mathfrak{N}_1 be any invariant subspace for C. Let $\mathfrak{N}_2 = (C - C^*)^{-1} \mathfrak{N}_1^{\perp}$. Let E be the projection onto \mathfrak{N}_1 along \mathfrak{N}_2 . Then $T = CE + C^*(I - E) \in \theta$ and C, E satisfy (i), (ii), (iii).

PROOF. Let C, \mathfrak{M}_1 , \mathfrak{M}_2 be as in the statement of the theorem. Clearly \mathfrak{M}_1 is C invariant. Thus \mathfrak{M}_2 is C^* invariant since \mathfrak{M}_1^{\perp} is C^* invariant. Let $(C-C^*)^{1/2}$ denote an analytic square root of $C-C^*$. Now $(C-C^*)^{1/2}\mathfrak{M}_1$ \oplus $(C-C^*)^{-1/2}\mathfrak{M}_1^{\perp}=\mathfrak{K}$. Multiplying by $(C-C^*)^{-1/2}$ we see that $\mathfrak{M}_1+\mathfrak{M}_2=\mathfrak{K}$, + denoting a direct sum. Thus E is bounded. Conditions (i), (ii) are now immediate. Condition (iii) is equivalent to $(C-C^*)\mathfrak{M}_2\subseteq\mathfrak{M}_1^{\perp}$. But this follows from the definition of \mathfrak{M}_2 . \square

COROLLARY 1. If $T \in \theta$, and $\sigma(T) \cap \Re = \emptyset$, then T is similar to the orthogonal sum of two subnormal operators, T_1 , T_2 and $\sigma(T) = \sigma(T_1) \cup \sigma(T_2)$, $\sigma(T_1) \cap \sigma(T_2) = \emptyset$.

Thus if $T \in \theta$, $\sigma(T) \cap \Re = \emptyset$, and T is completely nonnormal, any results about the spectra of subnormal operators may be applied to T.

For a compact set X, let C(X) denote the continuous functions on X and $\mathfrak{R}(X)$ the functions on X which are uniformly approximable by rational functions with poles off X. Then from [6] and the results of this section we have:

PROPOSITION 1. A compact set Σ such that $\Sigma \cap \Re = \emptyset$ is the spectrum of a completely nonnormal $T \in \theta$ if and only if Σ is symmetric with respect to the real axis and $\Re(\Sigma \cap \overline{D}) \neq C(\Sigma \cap \overline{D})$ for every open disc D such that $\Sigma \cap D \neq \emptyset$.

The only part that needs to be proved is that if C is normal with an invariant subspace \mathfrak{M} , C is the minimal normal extension of $C|\mathfrak{M}$, and $C|\mathfrak{M}$ is completely nonnormal, then the T generated by C, \mathfrak{M} is completely nonnormal. We now examine the relationship between the complete nonnormality of T and the complete nonnormality of $C|\mathfrak{M}$.

First we need the following well-known result whose proof we omit.

PROPOSITION 2. Suppose T is hyponormal. If the subspace \mathfrak{M} is invariant under T and $T | \mathfrak{M}$ is normal, then \mathfrak{M} reduces T.

PROPOSITION 3. Let $\mathfrak{N}_1 \subseteq N(T-C)$, $(\mathfrak{N}_2 \subseteq N(T-C^*))$ be C, (C^*) invariant subspaces. If $C|\mathfrak{N}_1(C^*|\mathfrak{N}_2)$ has a normal summand, then T has a normal summand.

The proof follows from Proposition 2 and the fact that $T\phi = C\phi$, $T^*\phi = C^*\phi$ for $\phi \in \mathfrak{M}_1$ ($T\phi = C^*\phi$, $T^*\phi = C\phi$ for $\phi \in \mathfrak{M}_2$).

THEOREM 4. Suppose that $T \in \theta$, $\sigma(T) \cap \Re = \emptyset$, and C, E are as in Theorem 1. Let $\Re_1 = E \Re$ and $\Re_2 = (I - E)\Re$. Then T is completely nonnormal if and only if both $C | \Re_1$, and $C^* | \Re_2$ are completely nonnormal.

PROOF. Proposition 3 takes care of the only if part. Suppose now that T has a normal summand so that $T = T_1 \oplus T_2$ where T_2 is normal. Since $(\lambda - T)^{-1} = (\lambda - T_1)^{-1} \oplus (\lambda - T_2)^{-1}$, one of E or (I - E) has a normal summand and C has a corresponding normal summand. Hence either $C|\mathfrak{M}_1$ or $C^*|\mathfrak{M}_2$ has a normal summand. \square

Theorem 4 has the following interesting consequence.

THEOREM 5. Let T, C, E, \mathfrak{N}_1 be as in Theorem 4. Then T is completely nonnormal if and only if $C|\mathfrak{N}_1$ is completely nonnormal and C is the minimal normal extension of $C|\mathfrak{N}_1$.

PROOF. C is not the minimal normal extension of $C \mid \mathfrak{M}_1$ if and only if there is a subspace $\mathfrak{N} \subseteq \mathfrak{M}_1^{\perp}$ which reduces C. But from Theorem 3, $\mathfrak{N}_2 = (C - C^*)^{-1} \mathfrak{M}_1^{\perp}$. Clearly $(C - C^*)^{-1} \mathfrak{M} = \mathfrak{N}$. Thus C is not the minimal normal extension of $C \mid \mathfrak{M}_1$ if and only if $C^* \mid \mathfrak{M}_2$ has a normal summand. Theorem 5 now follows from Theorem 4. \square

Theorems 1, 2, and 3 completely characterize $T \in \theta$ with $\sigma(T) \cap \Re = \emptyset$. When considering some specific examples in §5 we will need the following results.

THEOREM 6. Suppose that $T \in \theta$, there exists C, E satisfying (i), (ii), (iii), and $C - C^*$ is one-to-one. If T is also hyponormal, then T is normal.

PROOF. Suppose that $T \in \theta$, C and E satisfy (i)–(iii), $C - C^*$ is one-to-one, and T is hyponormal. Then

$$T^*T - TT^* = C^*C - [CE + C^*(I - E)][E^*C^* + (I - E)^*C]$$

$$= C^*C - CEE^*C^* - E(I - E)^*C$$

$$- C^*(I - E)E^*C^* - C^*(I - E)(I - E)^*C$$

$$= CEE^*(C - C^*) + C^*EE^*(C^* - C)$$

$$+ (C^* - C)EC + C^*E^*(C - C^*)$$

$$= (C^* - C)EE^*(C^* - C)$$

$$+ (C^* - C)EC + C^*E^*(C - C^*).$$

Thus $(I - E^*)[T^*T - TT^*](I - E) = 0$. But $[T^*T - TT^*] \ge 0$ so that $[T^*T - TT^*](I - E) = 0$. Thus by (4), we have $(C^* - C)EC(I - E) = 0$. But $C^* - C$ is one-to-one. Hence EC(I - E) = 0, or EC = ECE = CE. Since C is normal we also have $EC^* = C^*E$ by Fuglede's theorem [10]. Thus (iii) becomes $(C - C^*)E^*(I - E) = 0$ or $E^*(I - E) = 0$. But then $E^* = E^*E$. Hence E is hermitian and reduces T. But $\sigma(TE) \subseteq UHP$, $TE \in \theta$, implies T is normal [5]. \square

COROLLARY 2. If $T \in \theta$, $\sigma(T) \cap \Re = \emptyset$, and T is not normal, then T is not seminormal.

COROLLARY 3. If $T \in \theta$ is hyponormal and completely nonnormal, then there does not exist an E satisfying (i), (ii), (iii) where (2) holds.

4. Operators in θ are G_1 . An operator is called G_1 if for all $\lambda \notin \sigma(T)$, $\|(\lambda - T)^{-1}\|$ is the reciprocal of the distance from λ to $\sigma(T)$. That is,

$$\|(\lambda-T)^{-1}\|=1/\rho(\lambda,\sigma(T)).$$

Hyponormal operators are always G_1 [16].

THEOREM 7. If $T \in \theta$, then T is G_1 .

PROOF. We may assume that $T \in \theta$ and T is completely nonnormal. Let C be as in (1). Let D_{ε} be the complement of $\Re \times [-i\varepsilon, i\varepsilon]$. Then $(\lambda - T) \cdot (\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon})$ is analytic on \overline{UHP} and

$$(\lambda - T)(\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon}) = (\lambda - T)(\lambda - C^*)^{-1}F(D_{\varepsilon})$$

for $\lambda \notin \sigma(C^*) \subseteq \sigma(T)$. But for any vector $\phi \in \mathcal{K}$ and any real λ ,

$$\begin{split} &\|(\lambda - T)(\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon})\phi\|^2 \\ &= \langle (\lambda - T)(\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon})\phi, (\lambda - T)(\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon})\phi \rangle \\ &= \langle (\lambda - C^*)(\lambda - C)(\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon})\phi, (\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon})\phi \rangle \\ &= \langle (\lambda - CF(D_{\varepsilon}))F(D_{\varepsilon})\phi, (\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon})\phi \rangle \\ &= \langle F(D_{\varepsilon})\phi, F(D_{\varepsilon})\phi \rangle = \|F(D_{\varepsilon})\phi\|^2 \leqslant \|\phi\|^2. \end{split}$$

Also $\lim_{|\lambda|\to\infty} \|(\lambda-T)(\lambda-C^*F(D_{\varepsilon}))^{-1}\| = 1$. Thus

$$\|(\lambda - T)(\lambda - C^*F(D_{\varepsilon}))^{-1}F(D_{\varepsilon})\| \leqslant 1$$

for all $\lambda \in \overline{\text{UHP}}$. Hence $\|(\lambda - T)(\lambda - C^*)^{-1}\| \le 1$ for all $\lambda \in \overline{\text{UHP}}$, $\lambda \notin \sigma(T)$ since $F(D_{\varepsilon})$ converges strongly to I as $\varepsilon \to 0$ [5]. Similarly $\|(\lambda - T) \cdot (\lambda - C)^{-1}\| \le 1$ for all $\lambda \in \overline{\text{LHP}}$, $\lambda \notin \sigma(T)$. Now if $\lambda \in \overline{\text{UHP}}$, $\lambda \notin \sigma(T)$, we have

$$\begin{split} \|(\overline{\lambda} - T)^{-1}\| &= \|(\lambda - T^*)^{-1}\| = \|(\lambda - T)(\lambda - C^*)^{-1}(\lambda - C)^{-1}\| \\ &\leq \|(\lambda - T)(\lambda - C^*)^{-1}\| \|(\lambda - C)^{-1}\| \\ &\leq \|(\lambda - C)^{-1}\| = 1/\rho(\lambda, \sigma(C)) = 1/\rho(\overline{\lambda}, \sigma(C^*)) \\ &= 1/\rho(\overline{\lambda}, \sigma(T)). \end{split}$$

Similarly, if $\lambda \in \overline{LHP}$, $\lambda \notin \sigma(T)$,

$$\|(\overline{\lambda} - T)^{-1}\| \leq 1/\rho(\overline{\lambda}, \sigma(T)).$$

Hence T is G_1 . \square

From [17, Theorem 1] and Theorem 7 we have:

PROPOSITION 4. Suppose that $T \in \theta$ is completely nonnormal. Then for any $z_0 \in \sigma(T)$ and disc D centered at z_0 , $D \cap \sigma(T)$ cannot lie on a Jordan arc.

While Propositions 1 and 4 are similar, they are not equivalent.

Knowing that $T \in \theta$ is G_1 allows alternative proofs of some of our earlier results. For example, that isolated points of $\sigma(T)$ are reducing eigenvalues for G_1 operators is known [14]. It also tells us that the convex hull of $\sigma(T)$ is the closure of the numerical range of T, $\operatorname{Cl} W(T)$ [12]. That is, T is convexoid. It does not however, provide an alternative proof of the fact that all eigenvalues of T are reducing [4]. Note that there are nonnormal compact G_1 operators [16], though there are no nonnormal compact operators in θ [4].

If $T \in \theta$, then T restricted to any reducing subspace is also in θ . Thus $T \in \theta$ are not only G_1 but also reduction- G_1 [1].

5. Examples and extension of the model. Our first example is, in a certain sense, canonical for $T \in \theta$, T completely nonnormal, $\sigma(T) \cap \Re = \emptyset$. Theorem 3 will be the basis for most of our constructions.

EXAMPLE 1. Let H^2 be the usual Hardy space of the circle. Let C be multiplication by $e^{i\theta} + 2i$ in L^2 of the circle. Let $\mathfrak{M}_1 = H^2$ and $\mathfrak{M}_2 = (2 + \sin \theta)^{-1} H^{2^{\perp}}$. Let T be the operator generated by C, \mathfrak{M}_1 , \mathfrak{M}_2 . Then $T \in \theta$, T is completely nonnormal and $\sigma(T)$ is the union of two discs centered at 2i, -2i and of radius one. By Corollary 2, T is not hyponormal.

Example 1 shows that Conjecture (C) of [4] is false and the class of operators in θ is nontrivially larger then was conjectured there. It also shows that $\sigma(T)$ need not be connected as was suggested in [5].

The point spectrum of the adjoint of an operator is preserved by similarity. Hence $\sigma_p(T^*) = \{z | |z - 2i| < 1\} \cup \{z | z + 2i| < 1\}$ for the T in Example 1 since $C|H^2$ is just 2i + S, S a unilateral shift.

If α , β are real scalars and $T \in \theta$, then $\alpha T + \beta \in \theta$. By taking direct sums of these operators, T as in Example 1, it is possible to build a completely nonnormal nonhyponormal operator $T \in \theta$ whose spectrum is any closed set Σ whose interior is dense in Σ , and which is symmetric with respect to the real axis. Let Δ be a subset of the unit disc, equipped with a measure μ , so that $\Re(\Delta)$ is not dense in $L^2(\Delta, d\mu)$. Let $\Re^2(\Delta)$ be the L^2 closure of $\Re(\Delta)$. If Δ has no interior and we repeat the construction of Example 1 using $\Re^2(\Delta)$ instead of H^2 , we get a $T \in \theta$, T completely nonnormal, T not hyponormal, and $\sigma(T)$ with no interior. For example, Δ could be chosen as a 'Swiss Cheese' space [14].

We shall now briefly consider two possible ways of extending the structure theory of Theorems 2 and 3 to operators with $\sigma(T) \cap \Re \neq \emptyset$. Note from the proof of Theorem 2, that if $\sigma(T) \cap \Re = \emptyset$, then $\Re_2 = N(C - T^*)$ while $\Re_1 = N(C - T)$. Conversely;

PROPOSITION 5. Suppose that $T \in \theta$ and C is (1). Let $\mathfrak{M}_1 = N(C - T)$, $\mathfrak{M}_2 = N(C^* - T)$. Then \mathfrak{M}_1 , \mathfrak{M}_2 are T invariant, $T|\mathfrak{M}_1 = C|\mathfrak{M}_1$, and $T|\mathfrak{M}_2 = C^*|\mathfrak{M}_2$. Furthermore, if $C - C^*$ is one-to-one, then $\mathfrak{M}_1 \cap \mathfrak{M}_2 = \{0\}$.

PROOF. Note that $C^* - T^* = T - C$, $T^* - C = C^* - T$, and $C^*C = T^*T$. Thus $C^*(T - C) = (T - C)T$ and $C(T - C^*) = (T - C^*)T$. \square There need not, however, exist a nontrivial null space for either C - T or $C^* - T$.

PROPOSITION 6. Let S be a unilateral shift. Let C be as in (1). Then $N(C-S) = \{0\}$ and $N(C-S^*) = \{0\}$.

PROOF. Since $S^*S = I$, C is a unitary operator with spectrum on the upper half of the unit circle. Thus $C \mid \mathfrak{M}$ is normal for any invariant subspace \mathfrak{M} of C. By Proposition 2, N(C-S) and $N(C-S^*)$ reduce C. But $C-S = S^* - C^*$ and $C-S^* = S-C^*$. Thus N(C-S), $N(C-S^*)$ reduce S. Since S is completely nonnormal, we have $N(C-S) = \{0\}$ and $N(C-S^*) = \{0\}$. \square

Since operators in θ are G_1 , another possible extension is to use the results of Stampfli [18] to generalize Theorem 2. In [18] a method is developed to integrate a scalar multiple of the resolvent around pieces of $\sigma(T)$. For example, if $\sigma(T) \subseteq D_{e_1} \cup D_{e_2}$ where D_{e_i} are two discs, tangent say at 0, then [18] gives hyperinvariant subspaces \mathfrak{M}_1 , \mathfrak{M}_2 for T such that $\sigma(T|\mathfrak{M}_1) \subseteq D_{e_1}$, $\sigma(T|\mathfrak{M}_2) \subseteq D_{e_2}$. If $\sigma(T) \cap \mathfrak{R} = \emptyset$, then this \mathfrak{M}_1 , \mathfrak{M}_2 are complementary. In general, however, they need not be complementary. This difficulty is implicit in [18].

EXAMPLE 2. Let $C_{\epsilon} = e^{i\theta} + (1+\epsilon)i$ for $\epsilon > 0$ on L^2 of the circle. Let $\mathfrak{M}_1(\epsilon) = H^2$, $\mathfrak{M}_2(\epsilon) = (\sin\theta + 1 + \epsilon)^{-1}H^{2\perp}$, and E_{ϵ} be the projection onto $\mathfrak{M}_1(\epsilon)$ along $\mathfrak{M}_2(\epsilon)$. Assume for the moment that $||E_{\epsilon}|| \to \infty$ as $\epsilon \to 0$. Define T_{ϵ} using C_{ϵ} , $\mathfrak{M}_1(\epsilon)$, $\mathfrak{M}_2(\epsilon)$. If T_{ϵ} , C_{ϵ} are multiplied by the same real scalar, then $T_{\epsilon} = C_{\epsilon}E_{\epsilon} + C_{\epsilon}^*(I - E_{\epsilon})$ still holds. Define

$$T = \sum_{i=1}^{\infty} \bigoplus T_{\epsilon_i} / \|E_{\epsilon_i}\|$$
 where $\epsilon_i \to 0$.

If $\varepsilon_i \to 0$ not too fast, we have $T \in \theta$, $\sigma(T)$ is connected, and $\sigma(T) \cap \Re = \{0\}$. Let \Re_1 , \Re_2 be the subspaces generated by Stampfli's theorem. Using f_1 , f_2 nonzero except at zero, we have \Re_1 , \Re_2 are hyperinvariant for T, $\sigma(T|\Re_1) \subseteq \sigma(T) \cap \overline{\text{UHP}}$, $\sigma(T|\Re_2) \subseteq \sigma(T) \cap \overline{\text{LHP}}$, $\Re_1 + \Re_2$ is dense, and $\Re_1 \cap \Re_2 = \{0\}$. The integrals used to define \Re_1 , \Re_2 are the orthogonal sum of the corresponding integral on each L^2 space. Since f_1 , f_2 were assumed nonzero away from zero, we have

$$\bigcup_{n} \left[\sum_{i=1}^{n} \oplus \mathfrak{M}_{1}(\varepsilon_{i}) \right] \subseteq \mathfrak{M}_{1}, \qquad \bigcup_{n} \left[\sum_{i=1}^{n} \oplus \mathfrak{M}_{2}(\varepsilon_{i}) \right] \subseteq \mathfrak{M}_{2}.$$

Thus to show that \mathfrak{M}_1 and \mathfrak{M}_2 are not complementary it suffices to show $\|E_{\varepsilon_i}\| \to \infty$. To see that $\|E_{\varepsilon}\| \to \infty$ as $\varepsilon \to 0$, let α_{ε} , β_{ε} be the two roots of $z^2 + 2(1+\varepsilon)iz - 1$. One root has modulus greater then one, the other has modulus less then one. Assume $|\alpha_{\varepsilon}| < 1$, $1 < |\beta_{\varepsilon}|$. Note that α_{ε} , $\beta_{\varepsilon} \to -i$ as $\varepsilon \to 0$. Let $f_{\varepsilon} = -\overline{\beta}_{\varepsilon}(z-\beta_{\varepsilon})^{-1}$, $\overline{f}_{\varepsilon} = (1-\alpha_{\varepsilon}\overline{z})\overline{z}$. Note that $f_{\varepsilon} \in H^2$ and $f_{\varepsilon} \in H^{2\perp}$. Now let

$$g_{\varepsilon} = f_{\varepsilon} + (z - \overline{z} + 2i(\varepsilon + 1))^{-1} \tilde{f}_{\varepsilon},$$

and observe that $f_{\varepsilon} \in \mathfrak{M}_{1}(\varepsilon)$, $(z - \overline{z} + 2i(\varepsilon + 1))^{-1}\tilde{f}_{\varepsilon} \in \mathfrak{M}_{2}(\varepsilon)$. Thus $E_{\varepsilon}g_{\varepsilon} = f_{\varepsilon}$ and $||f_{\varepsilon}|| \to \infty$ as $\varepsilon \to 0$ since $\beta_{\varepsilon} \to -i$. But for |z| = 1,

$$g_{\varepsilon} = -\overline{\beta}_{\varepsilon}(z - \beta_{\varepsilon})^{-1} + z(z^{2} + 2i(\varepsilon + 1)z - 1)^{-1}(1 - \alpha_{\varepsilon}\overline{z})\overline{z}$$

$$= -\overline{\beta}_{\varepsilon}(z - \beta_{\varepsilon})^{-1} + (z - \alpha_{\varepsilon})^{-1}(z - \beta_{\varepsilon})^{-1}(1 - \alpha_{\varepsilon}\overline{z})$$

$$= (z - \beta_{\varepsilon})^{-1}(-\overline{\beta}_{\varepsilon} + \overline{z}).$$

Thus $\|g_{\epsilon}\| = 1$, $\|E_{\epsilon}g_{\epsilon}\| \to \infty$, and hence $\|E_{\epsilon}\| \to \infty$ as desired.

It would be of interest to know if for every completely nonnormal $T \in \theta$ such that $\sigma(T) \cap \Re$ is a single point, one has \Re_1 , \Re_2 as in Example 2. Provided $\sigma(T) \cap \overline{\text{LHP}}$ and $\sigma(T) \cap \overline{\text{UHP}}$ are separated by the appropriate curves, Stampfli's result gives an \Re_1 , \Re_2 hyperinvariant for T such that $\Re_1 \cap \Re_2 = \{0\}$. The difficulty is in showing $\Re_1 + \Re_2$ is dense.

If one considers the special case in [18, Theorem 1] where $f_i(\lambda) = \lambda^m$, i = 1, 2, m an integer ≥ 1 , one can show that $\mathfrak{M}_1 + \mathfrak{M}_2$ is dense if $0 \notin \sigma_p(T^{*m})$, since

$$T^{m} = \int_{\partial D_{1}} \chi^{m} (\lambda - T)^{-1} d\lambda + \int_{\partial D_{2}} \chi^{m} (\lambda - T)^{-1} d\lambda.$$

Putnam has shown that if $0 \in \sigma_p(T^*)$, $0 \in \partial\sigma(T)$, and there exists $\lambda_n \to 0$ such that $|\lambda_n| \| (T^* - \lambda_n)^{-1} \| \to 1$ as $n \to \infty$, then 0 is a reducing eigenvalue [13]. Putnam's result is thus one way of getting $\overline{\mathfrak{M}_1 + \mathfrak{M}_2} = \mathfrak{R}$ for completely nonnormal T. However, this result and its subsequent generalizations, force $\partial\sigma(T)$ to approach 0 almost vertically in order to apply them. Our next result does much better for operators in θ .

THEOREM 8. Suppose that there exist lines $y^2 = ax^2$, a > 0 and fixed, such that all points in $\sigma(T)$ except zero lie either above both lines or below both lines. Suppose that $T \in \theta$ and T is completely nonnormal. Then $0 \notin \sigma_n(T^*)$.

PROOF. Suppose that $T^*\phi = 0$, $\|\phi\| = 1$. Note that for real ε , $\varepsilon \neq 0$, $(\varepsilon - C^*)^{-1}(\varepsilon - T^*)$ is unitary. Thus $1 = \|\phi\| = \|(\varepsilon - C^*)^{-1}(\varepsilon - T^*)\phi\| = \|\varepsilon(\varepsilon - C^*)^{-1}\phi\|$. Now

$$\varepsilon(\varepsilon-C^*)^{-1}\phi=\int_{\sigma(C)}\frac{\varepsilon}{(\varepsilon-\overline{\lambda})}F(d\lambda)\phi.$$

But $|\varepsilon(\varepsilon-\overline{\lambda})^{-1}| \le |\varepsilon| |\varepsilon-\overline{\lambda}_0|^{-1}$ where $\overline{\lambda}_0$ is on the two lines. Since the ratio between ε and the distance from ε to the nearest point on a line is a constant K, we have $|\varepsilon(\varepsilon-\overline{\lambda})^{-1}| \le K$ all $\overline{\lambda} \in \sigma(C)$ and K is independent of ε . From [5] we have 0 is not a point mass of $F(\cdot)$. Hence there exists $\varepsilon_1 > 0$ such that $||F(\{|z| < \varepsilon_1\})\phi|| < (2K)^{-1}$. Also there is an $\varepsilon_0 > 0$ such that $\{\lambda : |\varepsilon_0(\varepsilon_0 - \overline{\lambda})| > 1/2\} \subseteq \{z : |z| < \varepsilon_1\}$. Now

$$\int_{\sigma(C)} \frac{\varepsilon_0}{(\varepsilon_0 - \overline{\lambda})} F(d\lambda) \phi = \int_{|\lambda| < \varepsilon_1} \frac{\varepsilon_0}{\varepsilon_0 - \overline{\lambda}} F(d\lambda) \phi + \int_{|\lambda| > \varepsilon_1} \frac{\varepsilon_0}{\varepsilon_0 - \overline{\lambda}} F(d\lambda) \phi.$$

But

$$\left\| \int_{|\lambda| < \epsilon_1} \frac{\epsilon_0}{\epsilon_0 - \overline{\lambda}} F(d\lambda) \phi \right\| < K(2K)^{-1} = 1/2$$

and

$$\left\|\int_{|\lambda| \geq \varepsilon_1} \varepsilon_0 (\varepsilon_0 - \overline{\lambda})^{-1} F(d\lambda) \phi\right\| < \|\phi\|/2 = 1/2.$$

Thus $\|\varepsilon_0(\varepsilon_0 - C^*)^{-1}\phi\| < \|\phi\|$ which is a contradiction. \square

One can weaken the assumptions of Theorem 9 to only $T \in \theta$, T completely nonnormal and there exists real ε_n , $\varepsilon_n \notin \sigma(T)$, $\varepsilon_n \to 0$, such that $\varepsilon_n \rho(\varepsilon_n, \sigma(T))^{-1}$ is bounded independently of n.

The example on pp. 280–281 of [13] shows that Theorem 8 is not true for T which are not in θ but are G_1 .

Regardless of whether or not the subspaces generated by Stampfli's theorem have dense sum, their existence gives much information about $\sigma(T)$.

THEOREM 9. Suppose that $T \in \theta$, $\sigma(T) \cap \Re = \{0\}$, and T is completely nonnormal. Suppose further that there exist functions f_1 , f_2 and domains D_1 , D_2 satisfying the assumptions of [18, Theorem 1 and Theorem 1']. Let \Re_1 , \Re_2 be the closure of the ranges of

$$A = \int_{\partial D_1} f_1(\lambda) (\lambda - T)^{-1} d\lambda, \qquad B = \int_{\partial D_2} f_2(\lambda) (\lambda - T)^{-1} d\lambda$$

respectively. Let C be as in (1). Then $T|\mathfrak{M}_1 = C|\mathfrak{M}_1$, and $T|\mathfrak{M}_2 = C^*|\mathfrak{M}_2$, $\sigma(T|\mathfrak{M}_1) \subseteq \overline{UHP}$, and $\sigma(T|\mathfrak{M}_2) \subseteq \overline{LHP}$.

PROOF. The only part that needs proof is $T|\mathfrak{M}_1 = C|\mathfrak{M}_1$ and $T|\mathfrak{M}_2 = C^*|\mathfrak{M}_2$. The rest is done in [18]. First note that

$$\begin{split} \int_{\partial D_1} (C - \lambda) f_1(\lambda) (\lambda - T)^{-1} d\lambda \\ &= \int_{\partial D_1} (C - \lambda) f_1(\lambda) (\lambda - C)^{-1} (\lambda - C^*)^{-1} (\lambda - T^*) d\lambda \\ &= -\int_{\partial \Omega_1} f_1(\lambda) (\lambda - C^*)^{-1} (\lambda - T^*) d\lambda = 0. \end{split}$$

But then

$$0 = \int_{\partial D_1} (C - \lambda) f_1(\lambda) (\lambda - T)^{-1} d\lambda$$

$$= C \int_{\partial D_1} f_1(\lambda) (\lambda - T)^{-1} d\lambda - \int_{\partial D_1} \lambda f_1(\lambda) (\lambda - T)^{-1} d\lambda$$

$$= CA - TA \quad \text{as desired.}$$

The proof that $(C^* - T)B = 0$ is similar. \square

6. Comments and more examples. While the results of [4], [5] and this paper have developed many basic properties of the class θ , numerous questions remain. For convenience, let (Q) denote the class of quasinormals [2] and (QA) denote operators of the form $T_1 + T_2$ where $T_1 \in (Q)$, $T_1 T_2 = T_2 T_1$, and T_2 is selfadjoint. Then $(Q) \subset (QA) \subset \theta$ and all inclusions are proper. An obvious problem is to determine what types of restrictions on operators in θ force them to be in (Q) or (QA). In particular, are there $T \in \theta$ which are subnormal and not in (QA)?

It was shown in [4] that if $T^*T - TT^*$ has a kernel, then operators in θ have a block decomposition much like the operators in (QA). If $T \in \theta$ and $T^*T - TT^*$ has rank one, then $T \in (QA)$.

THEOREM 10. Suppose that $T \in \theta$ and $T^*T - TT^*$ has rank one. Then $T = [\lambda_1 + \lambda_2 S] \oplus N$ where λ_1 is real, $\lambda_2 > 0$, S is a unilateral shift of multiplicity one, and N is normal.

PROOF. Suppose that $T \in \theta$, $T^*T - TT^*$ has rank one, and T is completely nonnormal. Then by [4] T has the scalar matrix,

$$T = \begin{bmatrix} a_1 & 0 & 0 & \cdot \\ b_1 & a_2 & 0 & \cdot \\ 0 & b_2 & a_3 & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix},$$

all b_i are nonzero, and the (1, 1) entry acts on the range of $[T^*T - TT^*]$. From (2) of [4] we have $\overline{b_i}a_{i+1} = a_i\overline{b_i}$, $|a_{i+1}|^2 + |b_{i+1}|^2 = |b_i|^2 + |a_{i+1}|^2$. Also $\overline{a_i}|b_1|^2 = |b_1|^2a_1$ since $T \in \theta$. Let $\lambda_1 = a_1$. Then λ_1 is real and $a_i = \lambda_1$ for all i. Also $|b_i|^2$ is independent of i. Let $\lambda_2 = |b_i|$ and recall that weighted shifts

are unitarily equivalent if their weight sequences have the same moduli [10].

However, if $T^*T - TT^*$ has rank greater then one, the situation is different. We shall now construct a $T \in \theta$ such that T is hyponormal, $T \notin (QA)$, and $T^*T - TT^*$ has rank two.

EXAMPLE 3. Let T be given by

(5)
$$T = \begin{bmatrix} A_1 & 0 & 0 & 0 & \cdot \\ B_1 & A_2 & 0 & 0 & \cdot \\ 0 & B_2 & A_3 & 0 & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

on countably many copies of a two dimensional Hilbert space. Let

$$A_i = \begin{bmatrix} 0 & e_i \\ f_i & 0 \end{bmatrix}, \quad B_i = \begin{bmatrix} \delta_i & 0 \\ 0 & \gamma_i \end{bmatrix},$$

where e_i , f_i , δ_i , γ_i are real scalars. Then $T^*T - TT^*$ has matrix Diag(D, 0, 0, ...) if and only if

(6)
$$A_1^*A_1 + B_1^*B_1 - A_1A_1^* = D,$$

(7)
$$A_i^* A_i + B_i^* B_i = B_{i-1} B_{i-1}^* + A_i A_i^*, \quad i \geqslant 2,$$

and

(8)
$$B_i^* A_{i+1} = A_i B_i^*, \quad i \geqslant 1.$$

If (6), (7), (8) are satisfied, then $T \in \theta$ if A_1^*D is hermitian [4]. Take $0 < \alpha < 1$ and $c = (2 + 2\alpha)^{-1/2}$. Set $e_1 = c\alpha$, $f_1 = c$, and

$$\delta_1 = \gamma_1 = (1 + |c|^2(\alpha^2 - 1))^{1/2} = (\alpha + |c|^2(1 - \alpha^2))^{1/2}.$$

Equation (6) gives $D = \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}$. Equation (7) becomes

(9)
$$e_{i+1} = e_i \gamma_i / \delta_i, \quad f_{i+1} = f_i \delta_i / \gamma_i, \quad i \geqslant 1,$$

while (8) is

(10)
$$\delta_{i+1}^2 = \delta_i^2 + e_{i+1}^2 - f_{i+1}^2, \quad \gamma_{i+1}^2 = \gamma_i^2 + f_{i+1}^2 - e_{i+1}^2.$$

Note that given e_i , f_i , δ_i , γ_i , then e_{i+1} , f_{i+1} are determined by (9). Then (10), if consistent, gives a unique positive δ_{i+1} , γ_{i+1} . A straightforward computation yields that $e_1 = e_7$, $f_1 = f_7$, $\delta_1 = \delta_7$, $\gamma_1 = \gamma_7$. Thus the sequences A_i , B_i , defined by (9), (10), our initial conditions and the requirement δ_i , $\gamma_i \ge 0$, are well defined and bounded. Furthermore, A_1^*D is hermitian so $T \in \theta$. But

 DA_1^*D is not hermitian so $T \notin (QA)$ [4]. Note also that T is hyponormal since D > 0.

For the convenience of the reader interested in studying this example more carefully we give the B_i , A_i , explicitly. As noted, $A_{i+6} = A_i$, $B_{i+6} = B_i$. The blocks are

$$B_{1} = \begin{bmatrix} \delta_{1} & 0 \\ 0 & \delta_{1} \end{bmatrix}, \qquad B_{2} = \begin{bmatrix} \sqrt{\alpha} & 0 \\ 0 & 1 \end{bmatrix}, \qquad B_{3} = \begin{bmatrix} \sqrt{\alpha} & 0 \\ 0 & 1 \end{bmatrix},$$

$$B_{4} = \begin{bmatrix} \delta_{1} & 0 \\ 0 & \delta_{1} \end{bmatrix}, \qquad B_{5} = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{\alpha} \end{bmatrix}, \qquad B_{6} = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{\alpha} \end{bmatrix},$$

and

$$A_{1} = \begin{bmatrix} 0 & c\alpha \\ c & 0 \end{bmatrix}, \qquad A_{2} = \begin{bmatrix} 0 & c\alpha \\ c & 0 \end{bmatrix}, \qquad A_{3} = \begin{bmatrix} 0 & c\sqrt{\alpha} \\ c\sqrt{\alpha} & 0 \end{bmatrix},$$

$$A_{4} = \begin{bmatrix} 0 & c \\ c\alpha & 0 \end{bmatrix}, \qquad A_{5} = \begin{bmatrix} 0 & c \\ c\alpha & 0 \end{bmatrix}, \qquad A_{6} = \begin{bmatrix} 0 & c\sqrt{\alpha} \\ c\sqrt{\alpha} & 0 \end{bmatrix}.$$

In Example 1, the two components of $\sigma(T)$ were not spectral sets since the projections obtained by integrating the resolvent were not hermitian. Hence $\sigma(T)$ was not a spectral set of T.

EXAMPLE 4. Let $\{T_i\}$ be a family of operators in θ constructed as in Example 1 such that $\bigcup_i \sigma(T_i)$ is dense in the unit disc. Let $T = \Sigma \oplus T_i$. Each T_i has norm no greater than one. So T is a contraction such that $\sigma(T)$ is the unit disc. Thus $\sigma(T)$ is a spectral set for T [15, p. 441]. Note that T is nonhyponormal and completely nonnormal.

However, if $T \in \theta$, $\sigma(T)$ is the unit disc and $\sigma(C)$ is contained in the unit circle, then T is an isometry since $T^*T = C^*C = I$. For a related result see [7].

If $T \in (Q)$, then $T^n \in (Q)$ for all positive integers n. Which other operators in θ have powers also in θ ? As a partial answer we note that

PROPOSITION 7. If $T \in (QA)$, then $T^2 \in \theta$ if and only if $T \in (Q)$.

PROOF. Using the canonical form for (Q) given in [2] it is easy to reduce the problem to showing that $(\alpha + S)^2 \notin \theta$ for all real $\alpha \neq 0$ where S is a unilateral shift. It suffices to show that $T = 2\alpha S + S^2 \notin \theta$. But

$$T^*T = (S^* + 2\alpha)(S + 2\alpha) = 4\alpha^2 + I + 2\alpha(S + S^*),$$

$$T + T^* = 2\alpha(S + S^*) + S^2 + S^{*2}.$$

Thus $T \notin \theta$ if $S^* + S$ and $S^2 + S^{*2}$ do not commute. But

$$[(S^* + S)(S^2 + S^{*2}) - (S^2 + S^{*2})(S^* + S)]S$$

$$= (S^* + S)(S^3 + S^*) - (S^2 + S^{*2})(1 + S^2)$$

$$= S^2 + S^{*2} + S^4 + SS^* - S^2 - S^{*2} - S^4 - 1 = SS^* - 1 \neq 0.$$

Thus $T \notin \theta$.

Note that if T is a weighted bilateral shift with positive weights whose smallest period is k, then $T^{nk} \in \theta$, $T^m \notin \theta$ for all $m \neq nk$, where $n \geqslant 0$.

The structure of the spectral measure of C and the structure of T are, of course, related. It was shown in [5] that if $T \in \theta$ is completely nonnormal, then $F(\Re) = 0$. Since eigenspaces of $T + T^*$ reduce T if T is hyponormal [11], we have

PROPOSITION 8. If $T \in \theta$, T is hyponormal, and T is completely nonnormal, then F(L) = 0 for any verticle line L.

EXAMPLE 5. Let Δ be the boundary of $\{x + iy: |x| \le 1, |y| \le 1\}$ equipped with linear Lebesgue measure. Let $\mathfrak{N}_1 = H^2(\Delta)$, C be the operator of multiplication by z + 2i and define T as in Example 1. Then T is completely nonnormal, $T \in \theta$, $\sigma(C)$ is a square centered at 2i, and $F(\{z: \text{Re } z = 1\}) \ne 0$.

Consideration of the shift shows that one can have $T \in \theta$, $\sigma_p(T^*) \neq \emptyset$, and $\sigma_p(C) = \emptyset$. The converse is not possible.

PROPOSITION 9. If $T \in \theta$ and $\lambda \in \sigma_p(C)$, then at least one of the following must hold:

- (a) λ is a reducing eigenvalue of T,
- (b) $\overline{\lambda}$ is a reducing eigenvalue of T,
- (c) λ , $\overline{\lambda}$ are both eigenvalues of T^* .

PROOF. Suppose that $T \in \theta$ and $C\phi = \lambda \phi$. Then

$$(\lambda - T^*)(\lambda - T)\phi = (\lambda - C^*)(\lambda - C)\phi = 0,$$

and

$$(\overline{\lambda} - T^*)(\overline{\lambda} - T)\phi = (\overline{\lambda} - C)(\overline{\lambda} - C^*)\phi = 0. \quad \Box$$

The next example shows that (c) of Proposition 9 is actually possible. It is based on an operator first constructed by Sarason [10, Problem 156].

EXAMPLE 6. Let \mathcal{K}_0 be a one-dimensional Hilbert space, $g \in \mathcal{K}_0$ of norm one. Let \mathcal{K} be the orthogonal sum of L^2 of the circle and \mathcal{K}_0 . Let $\tilde{S} = \mathfrak{M}_z \oplus 0$, where \mathfrak{M}_z is multiplication by z in L^2 . Let \mathfrak{M}_1 be the \tilde{S} invariant subspace generated by $1 \oplus g$ and zH^2 . \tilde{S} is the minimal normal dilation of $\tilde{S} | \mathfrak{M}_1$. Let $C = \tilde{S} + 2i$ and define T as in Theorem 3. Then $T \in \theta$. T is completely nonnormal by Theorem 5, so $\sigma_p(T) = \emptyset$. But $2i \in \sigma_p(C)$ since $0 \in \sigma_p(\tilde{S})$.

Note that in Example 6, $\partial \sigma(C) \subseteq \partial \sigma(T)$. Since $S \mid \mathfrak{M}_1$ and $S^* \mid \mathfrak{M}_2$ are both unitarily equivalent to a unilateral shift we have that the T of Example 1 is similar to the T of Example 6. However, the C of Example 1 has no point spectrum and hence is not similar to the C of Example 6.

REFERENCES

- 1. S. K. Berberian, Some conditions on an operator implying normality. II, Proc. Amer. Math. Soc. 26 (1970), 277-281. MR 42 #884.
- 2. Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723-728. MR 15, 538.
- 3. S. L. Campbell, Operator-valued inner functions analytic on the closed disc. II, Pacific J. Math. 60 (1975), 37-50.
- 4. _____, Linear operators for which T^*T and $T + T^*$ commute, Pacific J. Math. 61 (1975), 53-58.
- 5. S. L. Campbell and Ralph Gellar, Spectral properties of linear operators for which T^*T and $T + T^*$ commute, Proc. Amer. Math. Soc. 60 (1976), 197-202.
- 6. K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc. 163 (1972), 239-244. MR 45 #934.
- 7. W. Donoghue, On a problem of Nieminen, Inst. Hautes Études Sci. Publ. Math. No. 16 (1963), 31-33. MR 27 #2864.
- 8. Mary R. Embry, Conditions implying normality in Hilbert space, Pacific J. Math. 18 (1966), 457-460. MR 33 #4675.
- 9. ——, A connection between commutativity and separation of spectra of operators, Acta Sci. Math. (Szeged) 32 (1971), 235–237. MR 46 #2459.
- 10. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.J., 1967. MR 34 #8178.
- 11. Roger Howe, A functional calculus for hyponormal operators, Indiana Univ. Math. J. 23 (1973/74), 631-644. MR 48 #2816.
 - 12. G. Orland, On a class of operators, Proc. Amer. Math. Soc. 15 (1964), 75-79. MR 28 #480.
- 13. C. R. Putnam, Eigenvalues and boundary spectra, Illinois J. Math. 12 (1968), 278-282. MR 37 #2030.
- 14. ——, The spectra of operators having resolvents of first-order growth, Trans. Amer. Math. Soc. 133 (1968), 505-510. MR 37 #4651.
- 15. F. Riesz and B. Sz.-Nagy, Functional analysis, 2nd ed., Akad. Kiadó, Budapest, 1953; English transl., Ungar, New York, 1955. MR 15, 132; 17, 175.
- 16. J. G. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469-476. MR 30 #3375; erratum, ibid. 117 (1965), 550. MR 33 #4686.
- 17. ——, A local spectral theory for operators, J. Functional Analysis 4 (1969), 1-10. MR 39 #4698.
- 18. ——, A local spectral theory for operators. IV: Invariant subspaces, Indiana Univ. Math. J. 22 (1972/73), 159-167. MR 45 #5793.

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607