FINITENESS IN THE MINIMAL MODELS OF SULLIVAN

ΒY

STEPHEN HALPERIN(1)

ABSTRACT. Let X be a 1-connected topological space such that the vector spaces $\Pi_{\bullet}(X) \otimes \mathbf{Q}$ and $H^{\bullet}(X; \mathbf{Q})$ are finite dimensional. Then $H^{\bullet}(X; \mathbf{Q})$ satisfies Poincaré duality. Set $\chi_{\Pi} = \Sigma (-1)^p \dim \Pi_p(X) \otimes \mathbf{Q}$ and $\chi_c = \Sigma (-1)^p \dim H^p(X; \mathbf{Q})$. Then $\chi_{\Pi} < 0$ and $\chi_c > 0$. Moreover the conditions: (1) $\chi_{\Pi} = 0$, (2) $\chi_c > 0$, $H^{\bullet}(X; \mathbf{Q})$ evenly graded, are equivalent. In this case $H^{\bullet}(X; \mathbf{Q})$ is a polynomial algebra truncated by a Borel ideal.

Finally, if X is a finite 1-connected C.W. complex, and an r-torus acts continuously on X with only finite isotropy, then $\chi_{\Pi} < -r$.

1. Introduction. In this paper all vector spaces are defined over a field, Γ , of characteristic zero. We shall consider positively graded *finite* dimensional vector spaces $R = \sum_{k>0} R^k$ (R^k is the subspace of elements of degree k) with homogeneous bases x_1, \ldots, x_n . The free commutative algebra over R is written F(R) or $F(x_1, \ldots, x_n)$. $[F^l(R)]^k$ denotes the subspace spanned by elements of the form $x_{i_1} \cdots x_{i_l}$ with $\sum_{k} \deg x_{i_k} = k$. Such elements are called homogeneous of degree k.

Write $R = Q \oplus P$ where Q (respectively P) is the space spanned by the elements of even (respectively odd) degree. Then $F(R) = \bigvee Q \otimes \bigwedge P$ is the tensor product of the symmetric algebra $\bigvee Q$ over Q with the exterior algebra $\bigwedge P$ over P. We can also write $F(R) = F(x_1) \otimes \cdots \otimes F(x_n)$.

Now suppose (A, d_A) is a graded commutative differential algebra (positively graded, associative, with identity $1 \in A^{\circ}$) and suppose $\tau \colon R \to A \otimes F(R)$ is a linear map, homogeneous of degree 1. Then τ extends to a unique derivation, d_{τ} , of degree 1 in $A \otimes F(R)$ such that $d_{\tau}(a \otimes 1) = 0$. Extend d_A to $A \otimes F(R)$ by writing $d_A(a \otimes z) = d_A a \otimes z$.

DEFINITION. $(A, d_A; \tau; x_1, \ldots, x_n)$ will be called a *finite tower* over A if

(1)
$$\tau(x_1) \in A, \quad \tau(x_i) \in A \otimes F(x_1, \ldots, x_{i-1}) \qquad (i \ge 2)$$

and

$$(d_{\tau} + d_{A})^{2} = 0.$$

Received by the editors November 4, 1975.

AMS (MOS) subject classifications (1970). Primary 55J15, 55H05; Secondary 57E10.

Key words and phrases. Minimal models, homotopy Euler characteristic, Koszul complex, torus action, finite isotropy.

⁽¹⁾ This research is supported by NRC grant A-8047.

The graded differential algebra $(A \otimes F(R), d_{\tau} + d_{A})$ is called the *Koszul complex of the tower*, and the cohomology algebra $H(A \otimes F(R))$ is called the *cohomology* of the tower.

If $A = \Gamma$ then $(\tau; x_1, \ldots, x_n)$ will be called simply a *finite tower*. (In this case $\tau(x_1) = 0$.) If deg $x_i > 0$ (respectively > k) for all i then the tower is called connected (respectively k-connected).

Let $(F(R), d_{\tau})$ be the Koszul complex of a finite tower. The number

$$\chi_{\Pi} = \sum_{k} (-1)^{k} \dim R^{k}$$

is called the homotopy Euler characteristic of the tower. If dim $H(F(R), d_{\tau}) < \infty$ the tower is called c-finite; in this case

$$\chi_c = \sum_k (-1)^k \dim H^k(F(R))$$

is called the cohomology Euler characteristic. Finally, if

$$\tau(x_i) \in F^+(x_1, \ldots, x_{i-1}) \cdot F^+(x_1, \ldots, x_{i-1}), \quad i = 2, 3, \ldots,$$

then the tower is called minimal.

Among the principal results of this paper is the following:

THEOREM 1. Let $(\tau; x_1, \ldots, x_n)$ be a connected, finite, c-finite minimal tower. Then $\chi_{\Pi} \leq 0$ and $\chi_c \geq 0$. Moreover, the following conditions are equivalent:

- $(1) \chi_{\Pi} = 0.$
- (2) $\chi_c > 0$.
- (3) $H(F(x_1, \ldots, x_n))$ is evenly graded.

(In fact we shall show that for each p, $\sum_{i > p} (-1)^i \dim R^i \le 0$ (Corollary 2 in §6) where R^i is the span of the x_i with $\deg x_i = i$.)

The proof of Theorem 1 is contained in the next six sections. Then, in §8, we show that under the hypotheses of Theorem 1, $H(F(x_1, \ldots, x_n))$ satisfies Poincaré duality, and that the degree m of the top dimensional cohomology class is given by

$$m = r - \sum_{i=1}^{n} (-1)^{\deg x_i} \deg x_i$$

where r is the number of x_i of even degree.

In §§9 and 10, we show that if m is even and $\chi_{\Pi} < 0$, then the Poincaré inner product in $\sum_{j} H^{2j}(F(x_1, \ldots, x_n))$ is hyperbolic. Finally in §11, we show that if $\chi_{\Pi} = 0$ then $(F(x_1, \ldots, x_n), d_{\tau})$ is isomorphic with a Koszul complex of the form $(\bigvee Q \otimes \bigwedge P, d)$ with d(Q) = 0 and $d(P) \subset \bigvee Q$. In this case $H(\bigvee Q \otimes \bigwedge P) \cong \bigvee Q/I$, where I is the ideal generated by d(P).

Now consider a connected topological space X and let A(X) be the graded commutative differential algebra of rational differential forms on the singular complex of X (cf. Sullivan [5, §D]): in particular, $H(A(X)) \cong H^*(X; \mathbb{Q})$ (singular cohomology). There is a commutative connected graded differential algebra (F(R), d) (over \mathbb{Q}) and a homomorphism $\phi: F(R) \to A(X)$ of graded differential algebras such that

- (1) ϕ induces an isomorphism of cohomology.
- (2) There is a homogeneous basis $\{x_{\alpha}\}_{{\alpha}\in \mathbb{T}}$ of R, where \mathbb{T} is well ordered, such that dx_{α} is a polynomial in those x_{β} with $\beta<\alpha$ and $\deg x_{\beta}\leqslant \deg x_{\alpha}$.

Moreover, (F(R), d) is determined up to isomorphism by these conditions.

We shall call the spaces R^k the pseudo dual rational homotopy spaces of X, and denote them by $\Pi_{\psi}^k(X)$. If $H^1(X; \mathbf{Q}) = 0$ and $H^*(X; \mathbf{Q})$ has finite type, then these spaces are finite dimensional. If, in addition, X is simply connected then there are natural isomorphisms [5, §Z] $[\Pi_k(X) \otimes \mathbf{Q}]^* \cong \Pi_{\psi}^k(X)$.

Write $\Pi_{\psi}^*(X) = \sum_k \Pi_{\psi}^k(X)$ and $\Pi_*(X) = \sum_k \Pi_k(X)$. Then the remarks above, together with Theorem 1, yield:

THEOREM 1'. Let X be a connected topological space such that $\Pi_{\psi}^*(X)$ and $H^*(X; \mathbb{Q})$ are finite dimensional. Then

$$\sum_{k} (-1)^{k} \dim \Pi_{\psi}^{k}(X) \leq 0 \quad and \quad \sum_{k} (-1)^{k} \dim H^{k}(X; \mathbf{Q}) \geq 0.$$

Moreover, the following conditions are equivalent:

- (1) $\sum_{k} (-1)^{k} \dim \Pi_{\mu}^{k}(X) = 0.$
- (2) $\sum_{k} (-1)^{k} \dim H^{k}(X; \mathbf{Q}) > 0.$
- (3) $H^p(X; \mathbf{Q}) = 0$, p odd.

COROLLARY 1. If X is simply connected then the theorem remains true if $\Pi_{\psi}^{k}(X)$ is replaced by $\Pi_{k}(X) \otimes \mathbf{Q}$ everywhere in the statement.

Finally, we have the following application to transformation groups (see Remark 3 below):

THEOREM T. Let a compact Lie group G of rank r act on a simply connected finite C.W. complex X with only finite isotropy. Assume that $\Pi_*(X) \otimes \mathbf{Q}$ is finite dimensional. Then $\Sigma(-1)^k \dim \Pi_k(X) \otimes \mathbf{Q} \leq -r$.

PROOF. According to Allday [1, Theorem 2.1.1, p. 177] this follows from Theorem 1'(1).

REMARKS. 1. The special case of a finite tower over A with R oddly graded and $\tau(R) \subset A$ was first considered by Koszul [4] in 1950. Cartan [2] showed that the cohomology of a homogeneous space can be calculated via a Koszul complex of this form, where, in addition, A is a symmetric algebra and $d_A = 0$. Cartan also obtains a special case of Theorem 1; indeed the general theorem will be established by reduction to this earlier result.

The Koszul complex of a minimal connected tower is a nilpotent minimal model as defined by Sullivan [5].

- 2. Historically, this paper begins with Theorem T which was conjectured by W. Y. Hsiang in 1969 or earlier. Then in 1971 Allday [1] reduced Hsiang's conjecture to Theorem 1' $(\chi_{\Pi} \le 0)$ in the simply connected case. The translation from Theorem 1' (1) to Theorem 1(1) was observed by Sullivan who poses it as question 5 in [5, Q].
- 3. Theorem T remains valid for a much wider class of spaces, X. In particular it is sufficient to assume that X is connected (but not necessarily simply connected) if we replace $\Pi_*(X) \otimes \mathbf{Q}$ by $\Pi_{\psi}^*(X)$ everywhere in the statement. Precise statements and details of the proof will appear elsewhere. As a special case of this generalized Theorem T, however, we have

THEOREM H. Let $K \subset G$ be compact Lie groups and suppose a torus, T, acts on G/K continuously, with only finite isotropy. Then dim $T \leq \text{rank } G$ rank K.

When K = (e) this is proved by Allday [1]. If G/K is 1-connected then Theorem H follows from the "ungeneralized" Theorem T.

2. Notation. By a graded commutative differential algebra (A, d_A) we mean a positively graded associative algebra $A = \sum_{k \geq 0} A^k$ with identity $1 \in A^\circ$ such that $ab = (-1)^{rs}ba$, $a \in A^r$, $b \in A^s$. Here d_A denotes a derivation of degree 1 with $d_A^2 = 0$. The cohomology algebra $\ker d_A / \operatorname{Im} d_A$ is written $H(A) = \sum_k H^k(A)$. A homomorphism $\phi \colon (A, d_A) \to (B, d_B)$ of graded differential algebra induces a homomorphism $\phi^* \colon H(A) \to H(B)$.

The tensor product of graded algebras A and B is given the multiplication defined by $(a \otimes b)(a' \otimes b') = (-1)^{qp'}aa' \otimes bb', b \in B^q, a' \in A^{p'}$.

The subspace of a vector space spanned by elements u_1, \ldots is denoted by (u_1, \ldots) . If U and V are subspaces of a vector space W, U + V is the subspace spanned by U and V. If W is an algebra, $U \cdot V$ is the subspace spanned by elements of the form $uv, u \in U, v \in V$; $U \cdot U$ is written U^2 .

An evenly (respectively oddly) graded space is a space with no nonzero elements of odd (respectively even) degree.

The identity map of any set is denoted by ι .

Let $R = (x_1, \ldots, x_n)$ be as in the introduction, and suppose $(A, d_A; \tau; x_1, \ldots, x_n)$ is a tower over A with Koszul complex $(A \otimes F(R), d)$. Then for each m, $(A, d_A; \tau; x_1, \ldots, x_m)$ is a tower over A with Koszul complex the subdifferential algebra $(A \otimes F(x_1, \ldots, x_m), d)$. Write this (B, d_B) .

Then $A \otimes F(R) = B \otimes F(x_{m+1}, \ldots, x_n)$ and so we may regard τ as a linear map $\tau: (x_{m+1}, \ldots, x_n) \to B \otimes F(x_{m+1}, \ldots, x_n)$. Clearly $(B, d_B; \tau; x_{m+1}, \ldots, x_n)$ is a tower over B whose Koszul complex coincides

with the Koszul complex $(A \otimes F(R), d)$.

Next, let $(\tau; x_1, \ldots, x_n)$ be a finite tower and denote by (B, d_B) the subdifferential algebra $F(x_1, \ldots, x_m)$ of (F(R), d). Then, as above, (F(R), d) is also the Koszul complex of the tower $(B, d_B; \tau; x_{m+1}, \ldots, x_n)$ over B. The projection $\rho: B \to \Gamma$ satisfies $\rho \circ d_B = 0$. Hence by Lemma 1, below, it determines a tower $(\bar{\tau}; x_{m+1}, \ldots, x_n)$ with

$$\bar{\tau}(x_i) = (\rho \otimes \iota)(\tau x_i) \in F(x_{m+1}, \ldots, x_n), \quad i = m+1, \ldots, n.$$

The maps

$$F(x_1,\ldots,x_m) \to F(x_1,\ldots,x_n)$$

and

$$\rho \otimes \iota : F(x_1, \ldots, x_n) \to F(x_{m+1}, \ldots, x_n)$$

are homomorphisms of graded differential algebras. They will be called, respectively, a base inclusion and a fibre projection.

Finally, suppose $(A, d_A; \tau; x_1, \ldots, x_n)$ is a tower over A. Let $\omega \in S_n$ be some permutation such that for each $i, \tau(x_{\omega(i)}) \in A \otimes F(x_{\omega(1)}, \ldots, x_{\omega(i-1)})$. Then $(A, d_A; \tau; x_{\omega(1)}, x_{\omega(2)}, \ldots, x_{\omega(n)})$ is again a tower over A; it is called a rearrangement of the original tower, and has the same Koszul complex.

Observe that the following properties of a tower $(\tau; x_1, \ldots, x_n)$: c-finiteness, k-connectivity, minimality depend only on the Koszul complex, and so hold for any rearrangement. (In particular, the tower is minimal if and only if $\tau(R) \subset F^+(R) \cdot F^+(R)$.) If $(\tau; x_1, \ldots, x_n)$ is a minimal connected tower then there is a permutation, ω , such that $\deg x_{\omega(1)} \leq \deg x_{\omega(2)} \leq \ldots$, and $(\tau; x_{\omega(1)}, \ldots, x_{\omega(n)})$ is again a tower.

LEMMA 1. Suppose $(A, d_A; \tau; x_1, \ldots, x_n)$ is a tower, and let $\phi: (A, d_A) \to (B, d_B)$ be a homomorphism of graded commutative differential algebras. Define $\sigma: R \to B \otimes F(R)$ by $\sigma(x_i) = (\phi \otimes \iota)(\tau x_i)$.

Then $(B, d_B; \sigma; x_1, \ldots, x_n)$ is a tower over B and $\phi \otimes \iota$: $A \otimes F(R) \to B \otimes F(R)$ is a homomorphism of graded differential algebras. Moreover if ϕ^* : $H(A) \to H(B)$ is an isomorphism then $(\phi \otimes \iota)^*$ is an isomorphism.

PROOF. Clearly $\sigma(x_i) \in B \otimes F(x_1, \ldots, x_{i-1})$. Moreover

$$d_{\sigma}\circ (\phi\otimes \iota)(1\otimes x_i)=\sigma(x_i)=(\phi\otimes \iota)\circ d_{\tau}(1\otimes x_i)$$

and

$$d_{\sigma}\circ (\phi\otimes \iota)(a\otimes 1)=d_{\sigma}(\phi a\otimes 1)=0=(\phi\otimes \iota)\circ d_{\tau}(a\otimes 1).$$

Since $d_{\sigma} \circ (\phi \otimes \iota) - (\phi \otimes \iota) \circ d_{\tau}$ is a $(\phi \otimes \iota)$ -derivation these equations imply that it is zero:

$$d_{\sigma}\circ (\phi\otimes \iota)=(\phi\otimes \iota)\circ d_{\tau}.$$

Hence also $(d_{\sigma} + d_{B}) \circ (\phi \otimes \iota) = (\phi \otimes \iota) \circ (d_{\tau} + d_{A}).$

Now we obtain

$$(d_{\sigma} + d_{B})^{2}(1 \otimes x_{i}) = (d_{\sigma} + d_{B})^{2}(\phi \otimes \iota)(1 \otimes x_{i})$$
$$= (\phi \otimes \iota)(d_{\sigma} + d_{A})^{2}(1 \otimes x_{i}) = 0.$$

Since $(d_{\sigma} + d_{B})^{2}(b \otimes 1) = d_{B}^{2}(b) \otimes 1 = 0$, it follows that $(d_{\sigma} + d_{B})^{2} = 0$. Thus $(B, d_{B}; \sigma; x_{1}, \ldots, x_{n})$ is a tower and $\phi \otimes \iota$ is a homomorphism of graded differential algebras.

Finally, suppose ϕ^* is an isomorphism. We shall show (by induction on m) that the restrictions

$$(\phi \otimes \iota)_m : A \otimes F(x_1, \ldots, x_m) \to B \otimes F(x_1, \ldots, x_m)$$

induce isomorphisms of cohomology.

Suppose first that m = 1. Filter $A \otimes F(x_1)$ and $B \otimes F(x_1)$ by the subspaces

$$L^{-p} = \sum_{j=0}^{p} A \otimes F^{j}(x_{1})$$
 and $\hat{L}^{-p} = \sum_{j=0}^{p} B \otimes F^{j}(x_{1}), \quad p = 0, 1, \dots$

Then $\phi \otimes \iota$ is filtration preserving, and so it induces a homomorphism α_i : $(E_i, d_i) \to (\hat{E_i}, \hat{d_i})$ of spectral sequences. In particular, α_1 is given by

$$\alpha_1 = \phi^* \otimes \iota : H(A) \otimes F(x_1) \xrightarrow{\simeq} H(B) \otimes F(x_1).$$

Thus each α_i $(1 \le i \le \infty)$ is an isomorphism. Since $E_i^{p,q} = 0 = \hat{E}_i^{p,q}$ for p > 0 we have $E_{\infty}^{p,q} = \inf \lim E_i^{p,q}$ (*i* large). It follows that α_{∞} is an isomorphism. Hence $(\phi \otimes \iota)^*$ induces an isomorphism in the bigraded algebra determined by the filtrations in $H(A \otimes F(x_1))$ and $H(B \otimes F(s_1))$. This implies that $(\phi \otimes \iota)^*$ is an isomorphism.

Finally, assume by induction that $(\phi \otimes \iota)_{m-1}^*$ is an isomorphism. Write $(\phi \otimes \iota)_{m-1} = \psi$, $A \otimes F(x_1, \ldots, x_{m-1}) = A'$, $B \otimes F(x_1, \ldots, x_{m-1}) = B'$. Apply the argument above to

$$\phi_m \otimes \iota = \psi \otimes \iota : A' \otimes F(x_m) \to B' \otimes F(x_m)$$

to obtain that $(\phi_m \otimes \iota)^*$ is an isomorphism. Q.E.D.

EXAMPLE. Let $(A, d_A; \tau; x_1)$ be a tower with deg x_1 odd. Its Koszul complex is given by $(A \otimes \bigwedge x_1, d)$, where

$$d(a \otimes x_1 + b \otimes 1) = d_A a \otimes x_1 + \left((-1)^{\deg a} a \cdot \tau(x_1) + d_A b \right) \otimes 1.$$

In particular $\tau(x_1)$ is a cocycle representing a class $\alpha \in H(A)$.

A short exact sequence $0 \to A \to {}^{\phi}\!A \otimes \bigwedge x_1 \to {}^{\Psi}\!A \to 0$ is given by $\phi a = a \otimes 1$, $\Psi(a \otimes x_1 + b \otimes 1) = a$. The ensuing long exact (Gysin) sequence in cohomology has connecting homomorphism $\partial : H(A) \to H(A)$ given by $\partial \beta = \alpha \cdot \beta$. This sequence yields the short exact sequence

$$0 \to \operatorname{Coker} \partial \xrightarrow{\bar{\phi}^*} H(A \otimes \bigwedge x_1) \xrightarrow{\Psi^*} \operatorname{Ker} \partial \to 0.$$

(Cf. [3, Chapter III] for details.)

3. **Pure towers.** Let $(\sigma; x_1, \ldots, x_n)$ be a finite tower. As in §1 write $R = (x_1, \ldots, x_n) = Q \oplus P$ where Q is evenly graded and P is oddly graded. The tower will be called *pure* if $\sigma(P) \subset \bigvee Q$ and $\sigma(Q) = 0$. Koszul complexes of pure towers were studied by Koszul [4] and H. Cartan [2]; we recall here some of their results.

Let $(\bigvee Q \otimes \bigwedge P, d)$ be the Koszul complex of a pure tower $(\sigma; x_1, \ldots, x_n)$. Then $d: \bigvee Q \otimes \bigwedge^i P \to \bigvee Q \otimes \bigwedge^{i-1} P$, and thus the gradation $\bigvee Q \otimes \bigwedge P = \sum_k \bigvee Q \otimes \bigwedge^k P$ leads to a gradation of $H(\bigvee Q \otimes \bigwedge P)$, written $H(\bigvee Q \otimes \bigwedge P) = \sum_k H_k(\bigvee Q \otimes \bigwedge P)$. Let $\bigvee Q \circ P$ be the ideal in $\bigvee Q$ generated by $\sigma(P)$; then the inclusion $l: \bigvee Q \to \bigvee Q \otimes \bigwedge P$ induces an isomorphism $l^*: \bigvee Q / \bigvee Q \circ P \to H_0(\bigvee Q \otimes \bigwedge P)$.

If $P_1 \subset P$ is any graded subspace then $\bigvee Q \otimes \bigwedge P_1$ is a subdifferential algebra of $\bigvee Q \otimes \bigwedge P$.

LEMMA 2. If
$$H_k(\bigvee Q \otimes \bigwedge P_1) \neq 0$$
 then $H_k(\bigvee Q \otimes \bigwedge P) \neq 0$.

PROOF. By considering a sequence of spaces $P_1 \subset P_2 \subset \cdots \subset P_m = P$ we can reduce to the case $P = P_1 \oplus (x)$. Set $(A, d_A) = (\bigvee Q \otimes \bigwedge P_1, d)$; then $\bigvee Q \otimes \bigwedge P = A \otimes \bigwedge x$ is the Koszul complex of the tower $(A, d_A; \sigma; x)$.

Now apply the example of §2 to obtain a Gysin sequence in which the connecting homomorphism $\partial\colon H(A)\to H(A)$ is multiplication by the class $\alpha\in H(A)$ represented by $\sigma(x)$. Since $\sigma(x)\in\bigvee Q$ it follows that for some $p>0, \alpha\in H_0^p(\bigvee Q\otimes\bigwedge P_1)$. This implies that ∂ restricts to linear maps $\partial_i\colon H_i(\bigvee Q\otimes\bigwedge P_1)\to H_i(\bigvee Q\otimes\bigwedge P_1)$ of positive degree. In particular, since $H_k(\bigvee Q\otimes\bigwedge P_1)\neq 0$, then Coker $\partial_k\neq 0$.

Finally note that the inclusion Coker $\partial \to H(A \otimes \bigwedge x)$ of the example in §2 is the direct sum of inclusions Coker $\partial_i \to H_i(\bigvee Q \otimes \bigwedge P)$. Thus since Coker $\partial_k \neq 0$ we have $H_k(\bigvee Q \otimes \bigwedge P) \neq 0$. Q.E.D.

The following is due to Cartan [2]. A detailed proof is given in [3, Chapter 2].

THEOREM 2. Let $(\bigvee Q \otimes \bigwedge P, d)$ be the Koszul complex of a connected pure tower such that $\dim H(\bigvee Q \otimes \bigwedge P) < \infty$. Then $H(\bigvee Q \otimes \bigwedge P)$ has nonnegative Euler characteristic χ . Moreover $\dim P - \dim Q$ is the nonnegative integer k with the property

(3)
$$H_k(\bigvee Q \otimes \bigwedge P) \neq 0$$
, $H_{k+p}(\bigvee Q \otimes \bigwedge P) = 0$, $p \geqslant 1$.

Finally, the following conditions are equivalent:

- (i) dim $P = \dim Q$.
- (ii) $\chi > 0$.

(iii) $H(\bigvee Q \otimes \bigwedge P)$ is evenly graded.

(iv)
$$H(\bigvee Q \otimes \bigwedge P) = H_0(\bigvee Q \otimes \bigwedge P)$$
.

REMARK. dim $H(\bigvee Q \otimes \bigwedge P) < \infty$ if and only if dim $\bigvee Q/\bigvee Q \circ P < \infty$. In fact note that ker d is a $\bigvee Q$ -submodule of the finitely generated $\bigvee Q$ -module $\bigvee Q \otimes \bigwedge P$. Because $\bigvee Q$ is noetherian ker d is finitely generated. Thus $H(\bigvee Q \otimes \bigwedge P)$ is a finitely generated $\bigvee Q$ module.

This implies (clearly) that $H(\bigvee Q \otimes \bigwedge P)$ is a finitely generated module over $H_0(\bigvee Q \otimes \bigwedge P)$. Thus dim $H(\bigvee Q \otimes \bigwedge P) < \infty$ if and only if dim $H_0(\bigvee Q \otimes \bigwedge P) < \infty$; i.e., if and only if dim $\bigvee Q/\bigvee Q \circ P < \infty$.

4. The S-spectral sequence. As in §1 let $R = (x_1, \ldots, x_n)$. Assume deg $x_i > 0$, $i = 1, \ldots, n$. Let S be a subspace spanned by some of the x_i and let T be the subspace spanned by the remaining x_i . (Then $R = T \oplus S$.)

Now suppose $(A, d_A; \tau; x_1, \ldots, x_n)$ is a tower over A. Then $A \otimes F(R) = A \otimes F(T) \otimes F(S)$ and so a bigradation of $A \otimes F(R)$ is given by

$$[A \otimes F(R)]^{p,q} = [A \otimes F(T) \otimes F^{-q}(S)]^{p+q}.$$

Write $(A \otimes F(R), d_{\tau} + d_{A}) = (C, d_{c}): C = \sum_{p,q} C^{p,q}$.

Clearly $C^{p,q} \cdot C^{r,s} \subset C^{p+r,q+s}$ and so C is filtered by the ideals $I^p = \sum_{i>p} C^{j,*}$. (Note $C^{p,q} = 0$ if p < 0.)

Now let $\sigma: R \to A \otimes F(T)$ be the unique linear map such that $\sigma(x) = 0$, $x \in T$ and $\sigma(x) - \tau(x) \in A \otimes F(T) \otimes F^+(S)$, $x \in S$. Extend σ to a derivation d_{σ} in C such that $d_{\sigma}(A) = 0$. Clearly $d_{\sigma}^2 = 0$.

LEMMA 3. (i) d_a is homogeneous of bidegree (0, 1).

(ii)
$$d_c - d_a : I^p \to I^{p+1}$$
.

Proof. Clear.

The lemma shows that the I^p filter the graded differential algebra (C, d_c) , and that the first term of the resulting spectral sequence (of graded differential algebras) is given by

$$(E_0, d_0) \cong (C, d_\sigma).$$

Moreover, because the elements in $F^q(S)$ have degree at least q, it follows that $C^{p,q} = 0$ unless $0 \le -2q \le p$. This implies that the spectral sequence converges to $H(C, d_c)$. This spectral sequence will be called the S-spectral sequence.

In particular, if P denotes the subspace of R of elements of odd degree then the P-spectral sequence will be called the *odd spectral sequence*.

5. The odd spectral sequence of a tower. Let $R = (x_1, \ldots, x_n)$ and suppose $(\tau; x_1, \ldots, x_n)$ is a connected finite tower. As usual write $F(R) = \bigvee Q \otimes \bigwedge P$.

Let $\sigma: R \to \bigvee Q$ be the linear map defined by $\sigma(Q) = 0$ and $\sigma(x) - \tau(x) \in \bigvee Q \otimes \bigwedge^+ P$, $x \in P$. Then $(\sigma; x_1, \ldots, x_n)$ is a pure tower, called the associated pure tower for $(\tau; x_1, \ldots, x_n)$.

Observe as well that $\tau(Q) \subset F(R)^{\text{odd}} \subset \bigvee Q \otimes \bigwedge^+ P$. It follows that

$$(5) d_{\sigma} - d_{\sigma}: \bigvee Q \otimes \bigwedge P \to \bigvee Q \otimes \bigwedge^{+} P.$$

If (E_i, d_i) is the odd spectral sequence for the original tower then

(6)
$$(E_0, d_0) \cong (\bigvee Q \otimes \bigwedge P, d_0)$$

(cf. formula (4), §4). This isomorphism restricts to isomorphisms $E_0^{p,q} \cong (\bigvee Q \otimes \bigwedge^{-q} P)^{p+q}$. Thus there is an algebra isomorphism

(7)
$$E_1 \cong H(\bigvee Q \otimes \bigwedge P, d_a)$$

which restricts to isomorphisms

(8)
$$E_1^{p,q} \cong H_{-q}^{p+q} (\bigvee Q \otimes \bigwedge P, d_{\sigma}).$$

Now we show that $d_1 = 0$, so that $E_2 \cong E_1$. In fact by (5), $(d_\tau - d_\sigma)(Q) \subset \bigvee Q \otimes \bigwedge^+ P$ while

$$(d_{\tau} - d_{\sigma})(P) \subset (\bigvee Q \otimes \bigwedge^{+} P) \cap \left(\sum_{r \text{ even}} (\bigvee Q \otimes \bigwedge P)^{r} \right)$$
$$\subset \sum_{j \geq 2} \bigvee Q \otimes \bigwedge^{j} P.$$

Thus

$$(d_{\tau}-d_{\sigma}): (\bigvee Q \otimes \bigwedge^{-q}P)^{p+q} \to \sum_{i>1} (\bigvee Q \otimes \bigwedge^{-q+j}P)^{p+q+1}.$$

It follows that $d_{\tau} - d_{\sigma}$: $I^p \to I^{p+2}$ (the I^p are the ideals defining the spectral sequence) and hence the differential $d_1 = 0$.

Similarly, it follows at once from the definition that

$$I^{p} \cap F(R)' = \sum_{k>p-r} (\bigvee Q \otimes \bigwedge^{k} P)'.$$

Thus if $J = \bigvee Q \otimes \bigwedge^+ P$ and $J_k = J \cdot \cdot \cdot \cdot J$ (k factors), then $I^p \cap F(R)^r = \sum_{k > n-r} J_k \cap F(R)^r$.

Now suppose $F(R') = \bigvee Q' \otimes \bigwedge P'$ is the Koszul complex of a second finite tower and assume $\phi: F(R) \to F(R')$ is a homomorphism of graded differential algebras. Since J and J' are the ideals generated by elements of odd degree, $\phi(J_k) \subset J'_k$, $k = 1, 2, \ldots$

Now the formula above for I^p shows that ϕ is filtration preserving. Hence it induces a homomorphism of spectral sequences. In particular, if ϕ is an isomorphism then ϕ^{-1} is also filtration preserving and so ϕ and ϕ^{-1} induce inverse isomorphisms of the odd spectral sequences.

6. **Proof of Theorem 1.** Recall from §2 that a tower $(\tau; x_1, \ldots, x_n)$ determines towers $(\bar{\tau}; x_p, \ldots, x_n)$. Since $\bar{\tau}(x_p) = 0$, x_p is a cocycle in $(F(x_p, \ldots, x_n))$. Let $[x_p] \in H(F(x_p, \ldots, x_n), d_{\bar{\tau}})$ be the class represented by x_p .

PROPOSITION 1. Let $(\tau; x_1, \ldots, x_n)$ be a connected, finite, minimal tower. Write $R = (x_1, \ldots, x_n)$, $F(R) = \bigvee Q \otimes \bigwedge P$. Suppose (E_i, d_i) denotes the odd spectral sequence and $(\sigma; x_1, \ldots, x_n)$ is the associated pure tower. Then the following are equivalent:

- (1) The tower is c-finite: dim $H(\bigvee Q \otimes \bigwedge P, d_{\tau}) < \infty$.
- (2) For each p the class $[x_p] \in H(F(x_p, \ldots, x_n), d_{\bar{\tau}})$ is nilpotent: $[x_p]^k = 0$, some k.
 - (3) dim $H(\bigvee Q \otimes \bigwedge P, d_{\sigma}) < \infty$.
 - (4) dim $E_1 < \infty$.

PROOF. (1) \Rightarrow (2). This is deferred until §7 (Lemma 5).

 $(2) \Rightarrow (3)$. Denote by Q_p the subspace of Q spanned by the x_i of even degree with $i \leq p$, and set $Q_0 = 0$. We show first by induction on p that the elements of Q_p represent nilpotent classes in $H(\bigvee Q \otimes \bigwedge P, d_p)$.

This is certainly true for p = 0. Suppose it is true for p - 1. If x_p has odd degree then $Q_p = Q_{p-1}$ and our claim is true for p. If x_p has even degree our hypothesis shows that for some $u, v_i \in \bigvee Q \otimes \bigwedge P$ and some $k \ge 1$:

$$x_p^k = d_\tau u - \sum_{i=1}^{p-1} x_i \cdot v_i.$$

Hence $d_{\tau}u - x_{p}^{k} \in Q_{p-1} \cdot \bigvee Q + \bigvee Q \otimes \bigwedge^{+}P$. Thus formula (5) yields (9) $d_{\sigma}u - x_{p}^{k} \in Q_{p-1} \cdot \bigvee Q + \bigvee Q \otimes \bigwedge^{+}P.$

Now write $u = \sum u_i$, $u_i \in \bigvee Q \otimes \bigwedge^i P$. Since $d_{\sigma} : \bigvee Q \otimes \bigwedge^i P \to \bigvee Q \otimes \bigwedge^{i-1} P$, it follows from (9) that

$$d_{\sigma}u_1-x_p^k\in Q_{p-1}\cdot\bigvee Q.$$

Since the elements of $\bigvee Q$ are d_{σ} -cocycles and the elements of Q_{p-1} represent nilpotent classes in $H(\bigvee Q \otimes \bigwedge P, d_{\sigma})$, it follows that the elements of $Q_{p-1} \cdot \bigvee Q$ represent nilpotent classes. Hence the equation above implies that x_n represents a nilpotent class. The induction is now closed.

We have now shown that the elements in Q represent nilpotent classes in $H(\bigvee Q \otimes \bigwedge P, d_{\sigma})$. This implies that $\bigvee Q$ has finite dimensional image in $H(\bigvee Q \otimes \bigwedge P, d_{\sigma})$. The remark in §3 now implies that

$$\dim H(\bigvee Q \otimes \bigwedge P, d_{\sigma}) < \infty.$$

- $(3) \Rightarrow (4)$. Apply formula (7).
- $(4) \Rightarrow (1)$. Recall that the spectral sequence converges to

$$H(\bigvee Q \otimes \bigwedge P, d_{\tau})$$
. Q.E.D.

COROLLARY. If $(\tau; x_1, \ldots, x_n)$ is a connected, finite, c-finite, minimal tower, then for each p the tower $(\bar{\tau}; x_p, \ldots, x_n)$ is also c-finite.

THEOREM 1. Let $(\tau; x_1, \ldots, x_n)$ be a connected, finite, c-finite, minimal tower. Then $\chi_{\Pi} \leq 0$ and $\chi_c \geq 0$. Moreover, the following conditions are equivalent.

- (1) $\chi_{\Pi} = 0$.
- (2) $\chi_c > 0$.
- (3) $H(F(x_1, \ldots, x_n), d_\tau)$ is evenly graded.

PROOF. We adopt the notation of Proposition 1. Then according to Proposition 1, $H(\bigvee Q \otimes \bigwedge P, d_{\sigma})$ has finite dimension. Denote its Euler characteristic by χ . Since $H(\bigvee Q \otimes \bigwedge P, d_{\sigma}) \cong E_1$ and since (E_i, d_i) converges to $H(\bigvee Q \otimes \bigwedge P, d_{\sigma})$ it follows that $\chi = \chi_c$.

Moreover, since $H(\bigvee Q \otimes \bigwedge P, d_o)$ has finite dimension we can apply Theorem 2, §3 to obtain $\chi_{\Pi} = \dim Q - \dim P \leq 0$ and $\chi_c = \chi \geq 0$.

The equivalence of conditions (i), (ii) and (iii) in Theorem 2 implies that conditions (1) and (2) are equivalent, and hold if and only if

$$H(\bigvee Q \otimes \bigwedge P, d_{\sigma})$$

is evenly graded. But in this case E_1 is evenly graded and so the odd spectral sequence collapses at the E_1 -term. In particular, $H(\bigvee Q \otimes \bigwedge P, d_7)$ is evenly graded. Thus $(1) \Leftrightarrow (2) \Rightarrow (3)$. But clearly $(3) \Rightarrow (2)$. Q.E.D.

COROLLARY 1. Let (E_i, d_i) be the odd spectral sequence of a connected, finite, c-finite minimal tower. Then for $i \ge 1$: $E_i^{p,q} = 0$, $q < \chi_{\Pi}$.

PROOF. By formula (8), $E_1^{p,q} \cong H_{-q}^{p+q}(\bigvee Q \otimes \bigwedge P, d_\sigma)$. If $q < \chi_{\Pi}$ then $H_{-q}(\bigvee Q \otimes \bigwedge P, d_\sigma) = 0$ by formula (3), Theorem 2. Thus $E_1^{p,q} = 0$, $q < \chi_{\Pi}$ and so $E_i^{p,q} = 0$, $q < \chi_{\Pi}$. Q.E.D.

COROLLARY 2. Let $(\tau; x_1, \ldots, x_n)$ be a connected, finite, c-finite minimal tower. Then for each p,

(10)
$$\sum_{i=n}^{n} (-1)^{\deg x_i} \leq 0.$$

In particular, if $R = (x_1, \ldots, x_n)$ then for each p,

(11)
$$\sum_{i>p} (-1)^i \dim R^i \leq 0.$$

PROOF. In view of the corollary to Proposition 1 we may apply Theorem 1 to the tower $(\bar{\tau}; x_p, \ldots, x_n)$ to obtain (10). Next note (cf. §2) that we may

rearrange the x_i so that deg $x_{\omega(1)} \le \deg x_{\omega(2)} \le \ldots$. Now (11) is a special case of (10) (with x_i replaced by $x_{\omega(i)}$). Q.E.D.

COROLLARY 3. Let X be a connected topological space such that $H^*(X; \mathbf{Q})$ and $\Pi_{\psi}^*(X)$ are finite dimensional. Then for each p, $\sum_{i \geqslant p} (-1)^i \dim \Pi_{\psi}^i(X) \leqslant 0$. If X is simply connected then for each p, $\sum_{i \geqslant p} (-1)^i \dim \Pi_i(X) \otimes \mathbf{Q} \leqslant 0$.

PROOF. This follows from Corollary 2 in the same way Theorem 1' followed from Theorem 1 (cf. §1). Q.E.D.

COROLLARY 4. The odd spectral sequence for a connected, finite, c-finite, minimal tower with $\chi_{\Pi} = 0$ collapses at the E_1 -term.

Proposition 2 below and its proof are due to C. Allday (private communication). It is a special case of his conjecture ** in [1]; the general case remains open.

Let $A = \sum_{k > 0} A^k$ be a graded vector space of finite type. Its *Poincaré series* is the formal series $f_A(t) = \sum_k \dim A^k t^k$. Following Hsiang set

$$\rho_0(A) = \inf \{ \alpha \in \mathbb{R} | (1-t)^{\alpha} f_A(t) \to 0 \text{ as } t \to 1- \}.$$

If $g = \sum a_k t^k$ and $h = \sum b_k t^k$ are two formal series with integer coefficients we write $g \le h$ to mean $a_k \le b_k$, each k.

PROPOSITION 2. Suppose $(F(R), d_{\tau})$ is the Koszul complex of a connected, finite, minimal tower $(\tau; x_1, \ldots, x_n)$ with homotopy Euler characteristic χ_{Π} . Assume H(F(R)) is finitely generated as an algebra over Γ . Then $\chi_{\Pi} \leq \rho_0(H(F(R)))$.

REMARK. As will appear in the proof, $\rho_0(H(F(R)))$ is the Krull dimension of the commutative algebra $\sum_k H^{2k}(F(R))$.

PROOF. Denote the commutative subalgebra $\sum_k H^{2k}(F(R))$ by A. Using the argument of [7, p. 201] we construct a sequence z_0, \ldots, z_l of homogeneous elements in A^+ as follows: assume z_0, \ldots, z_i are constructed with $z_0 = 0$, and generate an ideal Z_i with isolated prime ideals J_1, \ldots, J_k (cf. [6, p. 211]). These are necessarily graded, and hence in A^+ . Thus either k = 1 and $J_1 = A^+$ or there is a homogeneous element z_{i+1} in A^+ such that $z_{i+1} \not\in \bigcup_{\lambda} J_{\lambda}$.

The sequence Z_1, Z_2, \ldots terminates at some Z_l because A is noetherian; in particular, A^+ is the unique prime ideal for Z_l and so A/Z_l has finite dimension.

Choose a sequence $K_l \supset \cdots \supset K_1 \supset K_0$ with K_i an isolated prime ideal for Z_i ; then $z_i \not\in K_{i-1}$, $i \ge 1$. Thus an easy induction on l-i shows that the obvious homomorphism $\bigvee (z_{i+1}, \ldots, z_l) \to A/Z_i$ is injective. In particular we have an inclusion $\bigvee (z_1, \ldots, z_l) \to A$. On the other hand, if F is a (finite dimensional) graded space such that $F \oplus Z_l = A$, then the obvious map $\bigvee (z_1, \ldots, z_l) \otimes F \to A$ is surjective. It follows that (denoting $\bigvee (z_1, \ldots, z_l)$

by B) that $f_B \leqslant f_A \leqslant f_B f_F$, whence $\rho_0(A) = \rho_0(B) = l$.

Moreover, if $S \subset H^{\text{odd}}(F(R))$ is a finite dimensional graded subspace, which, together with A generates H(F(R)), then $f_A \leq f_{H(F(R))} \leq f_A \cdot f_{\wedge S}$. Hence $\rho_0(H(F(R))) = \rho_0(A) = l$.

On the other hand, let y_1, \ldots, y_l be cocycles representing z_1, \ldots, z_l and let $U = (u_1, \ldots, u_l)$ be a graded space with deg $u_i = \deg z_i - 1$. Define Koszul complexes $(F(R) \otimes \bigwedge U, d)$ and $(H(F(R)) \otimes \bigwedge U, \overline{d})$ by

$$d(\Phi \otimes 1) = d_{\tau}\Phi \otimes 1, \quad d(1 \otimes u_i) = y_i \otimes 1, \quad \overline{d}(1 \otimes u_i) = z_i \otimes 1.$$

According to [4] there is a spectral sequence converging to

$$H(F(R) \otimes \bigwedge U, d)$$

with E_2 -term $H(H(F(R)) \otimes \bigwedge U, \overline{d})$. (See [3, Chapter III] for details.) (This spectral sequence, introduced by Koszul, is a special case of the Eilenberg-Moore spectral sequence.) Since A/Z_I has finite dimension, the argument in the remark of §3 shows that, so does $H(H(F(R)) \otimes \bigwedge U)$.

It follows that $H(F(R) \otimes \bigwedge U)$ has finite dimension. Its homotopy Euler characteristic is given by $\chi_{\Pi} - l$ (χ_{Π} the homotopy Euler characteristic of F(R)). Now apply Theorem 1 to get $\chi_{\Pi} - l \leq 0$; i.e. $\chi_{\Pi} \leq l = \rho_0(H(F(R)))$. Q.E.D.

COROLLARY. Let X be a connected topological space with dim $\Pi_{\psi}^*(X) < \infty$ and $H^*(X; \mathbf{Q})$ finitely generated. Set $\chi_{\Pi}(X) = \Sigma (-1)^k \dim \Pi_{\psi}^k(X)$ and $\rho_0(X) = \rho_0(H^*(X; \mathbf{Q}))$. Then $\chi_{\Pi}(X) \le \rho_0(X)$.

7. Two lemmas.

LEMMA 4. Suppose $(\tau; x_1, \ldots, x_n)$ is a connected, finite, minimal tower. Then there is a tower $(\sigma; x_1, \ldots, x_n, y_1, \ldots, y_n)$ with $\deg y_i = \deg x_i - 1$ and with the following properties for each $i \ (1 \le i \le n)$:

- (i) $\sigma(x_i) = \tau(x_i)$.
- (ii) $\sigma(y_i) x_i \in (x_1, \ldots, x_{i-1}) \cdot F(x_1, \ldots, x_{i-1}, y_1, \ldots, y_{i-1}).$
- (iii) $H(F^+(x_1, \ldots, x_i, y_1, \ldots, y_i), d_{\sigma}) = 0$. (Note that (ii) implies that $F(x_1, \ldots, x_i, y_1, \ldots, y_i)$ is stable under d_{σ} .)
- (iv) If i < n then for some $w \in (x_1, \ldots, x_i) \cdot F(x_1, \ldots, x_i, y_1, \ldots, y_i)$, $d_{\sigma}(x_{i+1} w) = 0$.

PROOF. We use induction on p to define elements

$$\sigma(y_p) \in F(x_1, \ldots, x_p, y_1, \ldots, y_p)$$

so that conditions (i)–(iv) hold for $i \leq p$.

If p = 1 set $\sigma(y_1) = x_1$. Since $\tau(x_1) = 0$ it follows that $(\sigma; x_1, y_1)$ and $(\sigma; x_1, \ldots, x_n, y_1)$ are towers. Condition (ii) is obvious, while (iii) asserts that $H(F^+(x_1, y_1)) = 0$; this is a simple and classical calculation. (If deg x_1 is odd

it is essential that Γ have characteristic 0!.)

Finally, since the original tower was minimal, for some $a \in F^+(x_1)$, $\tau(x_2) = ax_1$. Set $w = (-1)^{\deg a} ay_1$. Then in $F(x_1, x_2, y_1)$, $d_{\sigma}(x_2 - w) = ax_1 - ax_1 = 0$.

Suppose now that $\sigma(y_j)$ is constructed for j < p so that (i)-(iv) hold for j < p. Then $(\sigma; x_1, \ldots, x_p, y_1, \ldots, y_{p-1})$ is a tower, and by (iv) there is an element $w \in (x_1, \ldots, x_{p-1}) \cdot F(x_1, \ldots, x_{p-1}, y_1, \ldots, y_{p-1})$ such that $d_{\sigma}(x_p - w) = 0$. Set $\sigma(y_p) = x_p - w$. Then $d_{\sigma}^2(y_p) = d_{\sigma}(x_p - w) = 0$ and so $(\sigma; x_1, \ldots, x_p, y_1, \ldots, y_p)$ is a tower. Hence so is $(\sigma; x_1, \ldots, x_n, y_1, \ldots, y_p)$.

Moreover (ii) (for i = p) is immediate from the definition. To check (iii) write $(F(x_1, \ldots, x_{p-1}, y_1, \ldots, y_{p-1}), d_q) = (A, d_A)$. Then

$$(F(x_1,\ldots,x_p,y_1,\ldots,y_p),d_\sigma)$$

is the Koszul complex of the tower $(A, d_A; \sigma, x_p, y_p)$ over (A, d_A) .

Let $\rho: A \to \Gamma$ and $\rho \otimes \iota: A \otimes F(x_p, y_p) \to F(x_p, y_p)$ be the projections. By (i) and (ii) (for i = p) $(\rho \otimes \iota)(\sigma x_p) = 0$ and $(\rho \otimes \iota)(\sigma y_p) = x_p$. Thus if we define $(\bar{\sigma}; x_p, y_p)$ by $\bar{\sigma}(y_p) = x_p$, $\bar{\sigma}(x_p) = 0$, then $(\rho \otimes \iota) \circ d_{\sigma} = d_{\bar{\sigma}} \circ (\rho \otimes \iota)$.

By our induction hypothesis (iii) (for i = p - 1), ρ^* is an isomorphism. Hence (cf. Lemma 1, §2) $(\rho \otimes \iota)^*$ is an isomorphism. Thus

$$H(F^{+}(x_{1},...,x_{p},y_{1},...,y_{p}),d_{\sigma}) \cong H(F^{+}(x_{p},y_{p}),d_{\bar{\sigma}}) = 0.$$

It remains to prove (iv). Since $\tau(x_{p+1})$ is a cocycle in $F(x_1, \ldots, x_p)$, it is a cocycle in $F(x_1, \ldots, x_p, y_1, \ldots, y_p)$. By (iii) (for i = p) we can write $\tau(x_{p+1}) = d_{\sigma}(w)$ for some $w \in F(x_1, \ldots, x_p, y_1, \ldots, y_p)$. In view of (i) this gives (12) $d_{\sigma}(x_{p+1} - w) = 0.$

Write $w = u + v, u \in (x_1, ..., x_p) \cdot F(x_1, ..., x_p, y_1, ..., y_p), v \in F(y_1, ..., y_p).$

We prove (iv) by showing that v = 0. If $v \neq 0$ then for some q,

$$v = \sum_{k=0}^{m} y_q^k b_k,$$

where $b_k \in F(y_1, \ldots, y_{q-1}), b_m \neq 0$ and $m \geq 1$. Suppose this is the case. Let $I = (x_1, \ldots, x_p) \cdot F(x_1, \ldots, x_p, y_1, \ldots, y_p)$ and set $J = (x_1, \ldots, x_{q-1}) \cdot F(x_1, \ldots, x_p, y_1, \ldots, y_p)$. (If q = 1 set J = 0.) Then we have the

short exact sequence

$$0 \to I \cdot I + J \to F(x_1, \ldots, x_p, y_1, \ldots, y_p)$$

$$\stackrel{\Pi}{\to} \left[\Gamma \oplus (x_q, \ldots, x_n) \right] \otimes F(y_1, \ldots, y_p) \to 0.$$

It follows from (ii) that $\sigma(y_i) \in I$ ($i \leq p$). The minimality of $(\tau; x_1, \ldots, x_n)$ implies that $\sigma(x_i) = \tau(x_i) \in I \cdot I$ ($i \leq p+1$). Hence $d_{\sigma}(I) \subset I \cdot I$ and $d_{\sigma}(x_{p+1}) \in I \cdot I$. Thus applying Π to equation (12) we find that

$$\Pi d_{\sigma}v = \Pi d_{\sigma}(x_{n+1}) - \Pi d_{\sigma}u = 0.$$

Moreover it follows from (ii) that $d_{\sigma}y_i = \sigma(y_i) \in J(i < q)$ and $d_{\sigma}y_q - x_q \in J$. Hence

$$\prod d_{\sigma}v = \sum_{k=1}^{m} k \prod (x_{q}y_{q}^{k-1}b_{k}) = \sum_{k=1}^{m} kx_{q}y_{q}^{k-1}b_{k} \neq 0.$$

This contradiction shows that v = 0. The induction is now closed and the proof is complete. Q.E.D.

COROLLARY. For each p (σ ; $x_1, \ldots, x_{p-1}, y_1, \ldots, y_{p-1}, x_p, \ldots, x_n$) is a tower, and the induced fibre projection

$$\Pi: \left(F(x_1,\ldots,x_n,y_1,\ldots,y_{p-1}),d_{\sigma}\right) \to \left(F(x_p,\ldots,x_n),d_{\bar{\tau}}\right)$$

induces an isomorphism in cohomology.

LEMMA 5. Let $(\tau; x_1, \ldots, x_n)$ be a connected, finite, c-finite minimal tower. Let $[x_p] \in H(F(x_p, \ldots, x_n))$ be the class represented by x_p . Then for each $p \in (1 \le p \le n)$, $[x_p]$ is nilpotent.

PROOF. Let $(\sigma; x_1, \ldots, x_n, y_1, \ldots, y_n)$ be the tower of Lemma 4, and fix p. Part (iv) of Lemma 4 implies that for some w of the form

$$w = \sum_{i=1}^{p-1} x_i u_i, \qquad u_i \in F(x_1, \ldots, x_{p-1}, y_1, \ldots, y_{p-1}),$$

we have $d_{\sigma}(x_p - w) = 0$ in $F(x_1, ..., x_n, y_1, ..., y_{p-1})$.

Thus if Π is the projection in the corollary to Lemma 4, $\Pi(x_p - w) = x_p$. Let $\alpha \in H(F(x_1, \ldots, x_n, y_1, \ldots, y_{p-1}), d_o)$ be the cohomology class represented by $x_p - w$. Then $\Pi^*\alpha = [x_p]$. Since Π^* is an isomorphism we need only prove that $\alpha^k = 0$, for some k.

Denote by (X, d_X) the Koszul complex of $(\tau; x_1, \ldots, x_n)$. Since H(X) is finite dimensional there is an integer $k \ge 2$ such that $H^j(X) = 0, j \ge k$. Let $C \subset X^{k-1}$ be a subspace such that $X^{k-1} = C \oplus (\ker d_X)^{k-1}$. Define a graded, d_X -stable ideal $I \subset X$ by $I^j = 0$ (j < k-1), $I^{k-1} = C$, $I^j = X^j$ $(j \ge k)$.

Let A = X/I and let d_A be the derivation induced by d_X in A. Then the projection $\rho: X \to A$ is a homomorphism of graded differential algebras, and ρ^* is an isomorphism.

On the other hand, $(F(x_1, \ldots, x_n, y_1, \ldots, y_{p-1}), d_{\sigma})$ is the Koszul complex of the tower $(X, d_X; \sigma; y_1, \ldots, y_{p-1})$ over (X, d_X) . Thus by Lemma 1, §2 there is a tower $(A, d_A; \lambda; y_1, \ldots, y_{p-1})$ such that

$$(\rho \otimes \iota): (X \otimes F(y_1, \ldots, y_{p-1}), d_{\sigma}) \to (A \otimes F(y_1, \ldots, y_{p-1}), d_A + d_{\lambda})$$

is a homomorphism of graded differential algebras. Moreover $(\rho \otimes \iota)^*$ is an isomorphism.

But $x_p - w \in X^+ \otimes F(y_1, \ldots, y_{p-1})$ and so $(\rho \otimes \iota)(x_p - w) \in A^+ \otimes F(y_1, \ldots, y_{p-1})$. Since $A^j = 0, j \ge k$ this implies that

$$(\rho \otimes \iota)(x_p - w)^k = [(\rho \otimes \iota)(x_p - w)]^k = 0.$$

Hence $(\rho \otimes \iota)^*(\alpha^k) = 0$. Since $(\rho \otimes \iota)^*$ is an isomorphism, $\alpha^k = 0$. Q.E.D.

8. Poincaré duality. A finite dimensional graded algebra $A = \sum_{p=0}^{n} A^{p}$ is said to have formal dimension n if $A^{n} \neq 0$ (and $A^{p} = 0$, p > n). A Poincaré duality algebra (P.d.a.) is a finite dimensional graded commutative algebra $A = \sum_{p=0}^{n} A^{p}$ such that dim $A^{n} = 1$ and such that multiplication defines nondegenerate bilinear maps $A^{p} \times A^{n-p} \to A^{n} (\cong \Gamma)$, $p = 0, 1, \ldots$ If ε is a nonzero element in A^{n} then the scalar product \langle , \rangle in A given by

 $\langle \alpha, \beta \rangle = 0$, deg α + deg $\beta \neq n$, $\langle \alpha, \beta \rangle \varepsilon = \alpha \cdot \beta$, deg α + deg $\beta = n$ induces isomorphisms $A^{n-p} \cong (A^p)^*$. These are called, respectively, the *Poincaré scalar product* and the *Poincaré isomorphism*.

The tensor product of two graded commutative algebras is a P.d.a. if and only if each factor is a P.d.a. If (A, d_A) is a graded differential algebra such that A and H(A) both have formal dimension n, and if A is a P.d.a., then so is H(A).

In this section we establish

THEOREM 3. Let $(\tau; x_1, \ldots, x_n)$ be a connected, finite, c-finite minimal tower with odd spectral sequence (E_i, d_i) . Then

(i) $H(F(x_1, \ldots, x_n), d_{\tau})$ and each E_i $(i \ge 1)$ have the same formal dimension m, given by

$$m = r - \sum_{i=1}^{n} (-1)^{\deg x_i} \deg x_i$$

where r is the number of x_i of even degree.

- (ii) $H(F(x_1, \ldots, x_n), d_{\tau})$ and each E_i are P.d.a.'s.
- (iii) For $i \ge 1$ $E_i^{*,q} = 0$, $q < \chi_{\Pi}$ and $E_i^{*,q} \ne 0$, $q = \chi_{\Pi}$.

Exactly as in $\S1$ (Theorem $1 \Rightarrow$ Theorem 1'), Theorem 3 yields

THEOREM 3'. Let X be a connected topological space such that $H^*(X; \mathbf{Q})$ and $\Pi_{\psi}^*(X)$ are finite dimensional. Then $H^*(X; \mathbf{Q})$ is a P.d.a. of formal dimension m given by

$$m = \sum_{i} \dim \Pi_{\psi}^{2i}(X) - \sum_{k} (-1)^{k} k \dim \Pi_{\psi}^{k}(X).$$

If X is simply connected the theorem remains true if $\Pi_{\psi}^*(X)$ is replaced by $\Pi_{\star}(X) \otimes \mathbf{Q}$ everywhere in the statement.

LEMMA 6. Theorem 3 is correct for pure towers.

PROOF. Suppose $(\tau; x_1, \ldots, x_n)$ is a pure tower satisfying the hypotheses of the theorem. Write $R = (x_1, \ldots, x_n)$; $F(R) = \bigvee Q \otimes \bigwedge P$. Let z_1, \ldots, z_r be a homogeneous basis of Q and choose an integer $k \ge 2$ so that $z_i^k = d_r w_i$, $i = 1, \ldots, r$.

Let $U = (u_1, \ldots, u_r)$ be a graded vector space with deg $u_i = k \deg z_i - 1$. Define a graded differential algebra $(\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d)$ by

$$d\Phi = d_r \Phi, \quad \Phi \in \bigvee Q \otimes \bigwedge P \quad \text{and} \quad du_i = z_i^k, \quad i = 1, \dots, r.$$

Then an isomorphism $\phi: (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge P \otimes \bigvee U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge Q \otimes \bigvee U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge Q \otimes \bigvee Q \otimes \bigvee U, d_{\tau} \otimes \iota) \rightarrow^{\cong} (\bigvee Q \otimes \bigwedge Q \otimes \bigvee Q$

$$\phi \Phi = \Phi, \quad \Phi \in \bigvee Q \otimes \bigwedge P, \quad \phi u_i = u_i - w_i, \quad i = 1, \ldots, r.$$

This yields an isomorphism of graded algebras

(13)
$$H(\bigvee Q \otimes \bigwedge P, d_{\tau}) \otimes \bigwedge U \xrightarrow{\simeq} H(\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d).$$

On the other hand, let A_i be the truncated polynomial algebra $\bigvee (z_i)/z_i^k$ and set $A = A_1 \otimes \cdots \otimes A_r$. The projection $\Pi: \bigvee Q \to A$ determines a graded differential algebra $(A \otimes \bigwedge P, \overline{d})$.

Moreover, Π extends to the homomorphism Π : $(\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d) \to (A \otimes \bigwedge P, \overline{d})$ of graded differential algebras given by $\Pi(y) = y, y \in P$ and $\Pi(u) = 0, u \in U$. Since the restriction of Π to $\bigvee Q \otimes \bigwedge U$ induces an isomorphism $H(\bigvee Q \otimes \bigwedge U) \to \cong A$, Lemma 1, §2 shows that Π induces an isomorphism of graded algebras

(14)
$$\Pi^*: H(\bigvee Q \otimes \bigwedge P \otimes \bigwedge U, d) \xrightarrow{\cong} H(A \otimes \bigwedge P, \bar{d}).$$

Now A and $\bigwedge P$ are obviously P.d.a.'s of formal dimensions a and d given by

$$a = \sum_{i=1}^{r} (k-1) \deg z_i$$
 and $d = \sum_{i=1}^{s} \deg y_i$

where y_1, \ldots, y_s is any homogeneous basis of P. Hence $A \otimes \bigwedge P$ is a P.d.a. of formal dimension a + d, and $(A \otimes \bigwedge P)^{a+d} = A^a \otimes \bigwedge^s P$.

Since Im $\bar{d} \subset \sum_{j < s} A \otimes \bigwedge^{j} P$ it follows that the elements in $A^{a} \otimes \bigwedge^{s} P$ are not coboundaries; hence $H(A \otimes \bigwedge P)$ is a P.d.a. of formal dimension a + d. Now the isomorphisms (13) and (14) show that $H(\bigvee Q \otimes \bigwedge P, d_{\tau})$ is a P.d.a. of formal dimension

$$m = a + d - \sum_{i=1}^{r} \deg u_i.$$

A simple calculation shows now that m is given by the formula of Theorem 3(i).

This proves parts (i) and (ii) of Theorem 3 for pure towers. (The odd spectral sequence collapses in this case!) Part (iii) follows at once from formula (3) of Theorem 2. Q.E.D.

LEMMA 7. Let $(\tau; x_1, \ldots, x_n)$ be a tower satisfying the hypotheses of Theorem 3. Then $H(F(x_1, \ldots, x_n), d_{\tau})$ has formal dimension m, where m is given by Theorem 3(i).

PROOF. By induction on n. For n = 1, $\tau = 0$, x_1 has odd degree and the lemma is trivial. Assume it holds for n - 1 and distinguish two cases:

Case 1. deg x_1 is odd. Write $F(x_1, \ldots, x_n) = \bigwedge x_1 \otimes F(x_2, \ldots, x_n)$ and filter by the ideals $I^p = \sum_{j \ge p} (\bigwedge x_1)^j \otimes F(x_2, \ldots, x_n)$. The resulting spectral sequence \check{E}_i satisfies (if deg $x_1 > 1$)

$$\check{E}_{2}^{p,q}=\left(\bigwedge x_{1}\right)^{p}\otimes H^{q}\left(F\left(x_{2},\ldots,x_{n}\right),d_{\bar{q}}\right).$$

According to the corollary to Proposition 1, §6, the tower $(\bar{\tau}; x_2, \ldots, x_n)$ also satisfies the hypotheses of Theorem 3. Thus by the induction hypothesis $H(F(x_2, \ldots, x_n))$ has formal dimension

$$l = r - \sum_{i=2}^{n} (-1)^{\deg x_i} \deg x_i = m - \deg x_1.$$

The formal dimension of $\bigwedge x_1$ is simply deg $x_1 = m - l$. Hence $\check{E}_2^{p,q} = 0$ if p > m - l or q > l, while $\check{E}_2^{m-l,l} \neq 0$. It follows that $\check{E}_{\infty}^{p,q} = 0$ if p > m - l or q > l and $\check{E}_{\infty}^{m-l,l} \neq 0$. Hence \check{E}_{∞} , and so $H(F(x_1, \ldots, x_n), d_{\tau})$ have formal dimension m. The case deg $x_1 = 1$ is left to the reader.

Case 2. deg x_1 is even. Choose k so that $x_1^k = d_\tau w$ and let U = (u) be a 1-dimensional graded space with deg $u = k \deg x_1 - 1$. Let A be the truncated polynomial algebra $\bigvee (x_1)/x_1^k$.

The projection $\bigvee(x_1) \to A$ defines a tower $(A, 0; \rho, x_2, \ldots, x_n)$. Moreover a slight modification of the proof of Lemma 6 yields an isomorphism of graded algebras:

$$H(F(x_1,\ldots,x_n),d_{\tau})\otimes \bigwedge(u)\cong H(A\otimes F(x_2,\ldots,x_n),d_{\rho}).$$

Now filter $A \otimes F(x_2, \ldots, x_n)$ and repeat the argument of Case 1 (with A replacing $\bigwedge(x_1)$) to complete the proof. Q.E.D.

PROOF OF THEOREM 3. (i) Let $(\sigma; x_1, \ldots, x_n)$ be the associated pure tower; according to Proposition 1, §6 it is c-finite. Hence Lemma 6 applies and shows that $H(F(x_1, \ldots, x_n), d_{\sigma})$ is a P.d.a. of formal dimension m. This is therefore true of E_1 as well (cf. §5).

On the other hand by Lemma 7, $H(F(x_1, \ldots, x_n), d_\tau)$ also has formal dimension m. Since for each i

formal dim $E_1 \ge$ formal dim $E_i \ge$ formal dim $H(F(x_1, \ldots, x_n), d_\tau)$,

it follows that all the E_i have formal dimension m.

- (ii) By Lemma 6, E_1 is a P.d.a. Since $E_i = H(E_{i-1})$ and since E_i and E_{i-1} have the same formal dimension, an inductive argument shows that each E_i is a P.d.a. Hence E_{∞} is a P.d.a. and so $H(F(x_1, \ldots, x_n), d_{\tau})$ is a P.d.a.
- (iii) The statement $E_i^{*,q} = 0$, $q < \chi_{\Pi}$, is Corollary 1 to Theorem 1, §6. Let $q = \chi_{\Pi}$. Then $E_1^{*,q} (= H_{-q}(\bigvee Q \otimes \bigwedge P, d_o))$ is a nonzero ideal in E_1 (cf. Theorem 2, §3). Since E_1 is a P.d.a. of formal dimension m (cf. Lemma 6) we have $E_1^{(m)} \subset E_1^{*,q}$. It follows that if $i \ge 1$, $0 \ne E_i^{(m)} \subset E_i^{*,q}$. Q.E.D.
- 9. Hyperbolic towers. Suppose A is a P.d.a. of even formal dimension 2m. Then the Poincaré scalar product restricts to a symmetric inner product in the subspace $\sum_j A^{2j}$. An inner product space (X, \langle , \rangle) is called *hyperbolic* if there is a subspace Y such that $\langle y_1, y_2 \rangle = 0$ ($y_i \in Y$) (then Y is called *isotropic*) and such that dim X = 2 dim Y. If $\sum_j A^{2j}$ is hyperbolic we say A is a *hyperbolic* P.d.a. Note that this is independent of the choice of basis vector in A^{2m} . In this section we prove

THEOREM 4. Let $(\tau; x_1, \ldots, x_n)$ be a connected, finite, c-finite, minimal tower such that $H(F(x_1, \ldots, x_n), d_{\tau})$ has formal dimension 2m.

Assume $\chi_{\Pi} < 0$. Then $H(F(x_1, \ldots, x_n), d_{\tau})$ is a hyperbolic P.d.a. In particular (if $\Gamma \subset \mathbb{R}$) the inner product space $\sum_j H^{2j}(F(x_1, \ldots, x_n), d_{\tau})$ has zero signature.

COROLLARY. Let M be a simply connected, compact oriented 4k-manifold such that $\Pi_*(M; \mathbf{Q})$ is finite dimensional. Assume that $H^j(M; \mathbf{Q}) \neq 0$ for some odd j. Then $\mathrm{sign}(M) = 0$.

PROOF. It follows from Theorem 1' that $\chi_{\Pi} < 0$. Now apply Theorem 4.

PROOF OF THEOREM 4. In the next section we show (Proposition 3) that the theorem holds for pure towers. Hence it holds for the E_1 -term of the odd spectral sequence. On the other hand since E_i and $H(E_i)$ have the same formal dimension 2m it follows that there is an isometry $\sum_j E_i^{(2j)} \cong \sum_j H^{2j}(E_i)$ $\oplus X$ where X is a hyperbolic inner product space and \oplus means orthogonal direct sum. If $\sum_j E_i^{(2j)}$ is hyperbolic this implies that $\sum_j H^{2j}(E_i)$ is hyperbolic.

Thus an induction argument shows that $\sum_{j} E_{\infty}^{(2j)}$ is hyperbolic; the same must then be true for $\sum_{j} H^{2j}(F(x_1, \ldots, x_n), d_n)$. Q.E.D.

REMARK. Theorem 4 shows that the only "interesting" inner products arise when dim $P = \dim Q$. In this case (cf. Theorem 5, §11) the Koszul complex is the Koszul complex of a pure tower, totally determined by a linear map σ : $P \to \bigvee Q$.

It would be interesting and useful to have an explicit means of calculating invariants of the inner product (e.g. signature) directly from σ .

10. The pure case. In this section we prove

PROPOSITION 3. Let $(\bigvee Q \otimes \bigwedge P, d_{\sigma})$ be the Koszul complex of a connected finite, c-finite, pure tower. Suppose $H(\bigvee Q \otimes \bigwedge P)$ has formal dimension 2m, and assume dim $P > \dim Q$. Then $\sum_i H^{2i}(\bigvee Q \otimes \bigwedge P)$ is hyperbolic.

LEMMA 8. There is a basis u_1, \ldots, u_s of P (not necessarily homogeneous) with the following properties: Let $I_i \subset \bigvee Q$ be the ideal generated by $\sigma(u_1), \ldots, \sigma(u_i)$. Let $I_0 = 0$. Then

- (i) $\overline{\sigma(u_i)} \in \bigvee Q/I_{i-1}$ is not a zero divisor, $1 \le i \le r$, where $r = \dim Q$.
- (ii) dim $\bigvee Q/I_r < \infty$.

PROOF. We construct u_k $(1 \le k \le r)$ by induction on k and extend to any basis of P. If k = 1, let u_1 be any nonzero element of P. Now suppose (for some $k \le r$) u_1, \ldots, u_k are constructed, and that (i) holds for $i \le k$.

By the Noether decomposition theorem I_k is the finite irredundant intersection of primary ideals in $\bigvee Q$; denote the associated prime ideals by J_1, \ldots, J_l (cf. [6, Chapter 4]). Let $d(J_i)$ be the transcendence degree of $\bigvee Q/J_i$.

Suppose J_i is not contained in any J_j . Then according to [7, p. 394, Appendix 6], J_i has height k. Hence by [7, Theorem 20, Chapter 7], $d(J_i) = r - k$. Thus Macaulay's theorem [7, Theorem 26, Chapter 7] applies and asserts that I_k is unmixed; i.e., $d(J_i) = r - k$, $i = 1, \ldots, l$. We now distinguish two cases:

Case 1. For some element u_{k+1} of P, $\overline{\sigma(u_{k+1})} \in \bigvee Q/I_k$ is not a zero divisor. In this case we have constructed a sequence u_1, \ldots, u_{k+1} satisfying (i); repeating the argument above yields ideals J with d(J) = r - k - 1, and so $r \ge k + 1$.

Case 2. Every $u \in P$ yields a zero divisor $\overline{\sigma(u)}$ in $\bigvee Q/I_k$. Choose an infinite sequence w_1, w_2, \ldots of elements in P such that any subsequence of length s is a basis (possible because char $\Gamma = 0$ and so Γ is infinite). Each $\overline{\sigma(w_i)}$ is a zero divisor in $\bigvee Q/I_k$. Hence by [6, Theorem 11, Chapter 4] $\sigma(w_i) \in \bigcup_j J_j$. By renumbering the J_j we can arrange that infinitely many $\sigma(w_i) \in J_1$.

It follows that J_1 contains $\sigma(P)$ and so $\bigvee Q \cdot \sigma(P) \subset J_1$. Thus

 $\dim \bigvee Q/J_1 \leq \dim \bigvee Q/\bigvee Q \cdot \sigma(P) \leq \dim H(\bigvee Q \otimes \bigwedge P) < \infty.$

It follows that $d(J_1) = 0$ and so k = r.

Thus u_1, \ldots, u_r are constructed. Moreover, $d(J_j) = 0, j = 1, \ldots, l$, and so dim $\bigvee Q/J_j < \infty, j = 1, \ldots, l$. This implies that dim $\bigvee Q/I_r < \infty$. Q.E.D.

Now define differential algebras $(A_{p,t},d)$, $p \le t \le s$, by $(A_{p,p},d) = (\bigvee Q/I_p,0)$ and

$$A_{p,t} = (\bigvee Q/I_p) \otimes \bigwedge (u_{p+1}, \dots, u_t),$$

$$d(\Phi \otimes u_{\alpha_0} \wedge \dots \wedge u_{\alpha_q})$$

$$= \sum_{j=0}^{q} (-1)^j \Phi \cdot \overline{\sigma(u_{\alpha_j})} \otimes u_{\alpha_0} \wedge \dots \wedge \hat{u}_{\alpha_j} \wedge \dots \wedge u_{\alpha_q},$$

$$1 \leq p \leq r.$$

Note that these are *not* graded differential algebras. Lemma 8 has the following corollary.

COROLLARY. There is an isomorphism of algebras

$$H(\bigvee Q \otimes \bigwedge P, d_{\sigma}) \xrightarrow{\cong} H(\bigvee Q/I_{r} \otimes \bigwedge (u_{r+1}, \ldots, u_{s}))$$

which restricts to isomorphisms

$$H_k(\bigvee Q \otimes \bigwedge P) \xrightarrow{\simeq} H_k(\bigvee Q/I_r \otimes \bigwedge (u_{r+1}, \ldots, u_s)).$$

PROOF. Extend the projections $\Pi: \bigvee Q/I_p \to \bigvee Q/I_{p+1}$ to homomorphisms $\Pi: \bigvee Q/I_p \otimes \bigwedge (u_{p+1}) \to \bigvee Q/I_{p+1}$ by setting $\Pi(u_{p+1}) = 0$. It follows directly from Lemma 8(i) that Π^* is an isomorphism from

$$H(\bigvee Q/I_p \otimes \bigwedge (u_{p+1}))$$

onto $\bigvee Q/I_{p+1}$.

Write $\Pi_k = \Pi \otimes \iota: A_{p,p+k} \to A_{p+1,p+k}$. Assume by induction on k that Π_k^* is an isomorphism. Write Π_{k+1} in the form

$$\Pi_{k+1} = \Pi_k \otimes \iota : A_{p,p+k} \otimes \bigwedge (u_{p+k+1}) \to A_{p+1,p+k} \otimes \bigwedge (u_{p+k+1}).$$

Both sides have a Gysin sequence (cf. the example in §2) and so the 5-lemma implies that Π_{k+1}^* is an isomorphism.

In this way we obtain a sequence of isomorphisms

$$H(\bigvee Q/I_p \otimes \bigwedge (u_{p+1}, \ldots, u_s)) \xrightarrow{\cong} H(\bigvee Q/I_{p+1} \otimes \bigwedge (u_{p+2}, \ldots, u_s)),$$

$$0 \leq p < r.$$

Composing them gives the desired isomorphism. Q.E.D.

LEMMA 9. There is an ideal $I \subset \bigvee^+ Q$ and a basis (not necessarily homogeneous) u_1, \ldots, u_s of P with the following properties: Let $\rho(u_i) \in \bigvee Q/I$ be the image of $\sigma(u_i)$ under the projection $\bigvee Q \to \bigvee Q/I$. Then

- (i) $\bigvee Q/I$ has finite dimension and the elements in $\bigvee {}^+Q/I$ are nilpotent.
- (ii) There is an isomorphism of algebras,

$$\Psi: H(\bigvee Q \otimes \bigwedge P, d_{\sigma}) \cong H(\bigvee Q/I \otimes \bigwedge (u_{r+1}, \ldots, u_{s}), d_{\rho})$$

which restricts to isomorphisms

$$H_k(\bigvee Q \otimes \bigwedge P) \cong H_k(\bigvee Q/I \otimes \bigwedge (u_{r+1}, \ldots, u_s)).$$

PROOF. Let u_1, \ldots, u_s be the basis of Lemma 8, and write $B = \bigvee Q/I_r$. Multiplication by $\sigma(u_i)$ is a linear transformation ϕ_i of the finite dimensional commutative algebra B; in particular ϕ_i commutes with multiplication by elements of B. Let $d = \dim B$.

Then ideals $K_{r+1}, \ldots, K_s, L_{r+1}, \ldots, L_s$ are defined by the equations:

$$K_{r+1} = \phi_{r+1}^d(B), \quad \phi_{r+1}^d(L_{r+1}) = 0, \quad B = K_{r+1} \oplus L_{r+1},$$

and for i > r + 1,

$$K_i = \phi_i^d(L_{i-1}), \quad \phi_i^d(L_i) = 0, \quad L_{i-1} = K_i \oplus L_i.$$

 ϕ_i restricts to an automorphism of K_i while each ϕ_i is nilpotent in L_s . Moreover $B = K_{r+1} \oplus \cdots \oplus K_s \oplus L_s$.

Now let I be the inverse image of $K_{r+1} \oplus \cdots \oplus K_s$ under the canonical projection $\bigvee Q \to B$. For $z \in Q$ we know that some $z^k \in \bigvee Q \cdot \sigma(P)$. It follows that if \bar{z} is the image of z in B then multiplication by \bar{z} is nilpotent in L_s . Hence $\bar{z}^j \in K_{r+1} \oplus \cdots \oplus K_s$ for some j and so $z^j \in I$. Thus the elements of $\bigvee^+ Q$ determine nilpotent elements in $\bigvee Q/I$. This implies (clearly) that $I \subset \bigvee^+ Q$, and (i) is proved.

To prove (ii) we need only show that projection

$$\bigvee Q/I_r \otimes \bigwedge (u_{r+1}, \ldots, u_s) \rightarrow \bigvee Q/I \otimes \bigwedge (u_{r+1}, \ldots, u_s)$$

induces an isomorphism in cohomology. Since K_i , L_i are ideals, we have

(15)
$$H(B \otimes \bigwedge(u_{r+1}, \ldots, u_s)) = \sum_{i=r+1}^{s} H(K_i \otimes \bigwedge(u_{r+1}, \ldots, u_s))$$
$$\bigoplus H(L_s \otimes \bigwedge(u_{r+1}, \ldots, u_s)).$$

Now ϕ_i is multiplication by a coboundary, hence it induces zero in cohomology. On the other hand each K_k , L_j is stable under ϕ_i and ϕ_i is an isomorphism in K_i . Hence ϕ_i induces an isomorphism in

$$H(K_i \otimes \bigwedge (u_{r+1}, \ldots, u_s)).$$

This implies that $H(K_i \otimes \bigwedge (u_{r+1}, \ldots, u_s)) = 0$, $i = r+1, \ldots, s$, and so (ii) follows from formula (15). Q.E.D.

Denote $\bigvee Q/I$ by A, \bigvee^+Q/I by A^+ . (But note that A is not graded!) Let $K \subset A$ be the subspace of elements x such that $x \cdot A^+ = 0$. Finally, denote (u_{r+1}, \ldots, u_s) by U. Then clearly

$$K \otimes u_{r+1} \wedge \cdots \wedge u_s \subset (A \otimes \bigwedge^{s-r}U) \cap \ker d_{\rho} \subset H_{s-r}(A \otimes \bigwedge U).$$

(The last inclusion is an inclusion because Im $d_{\rho} \subset \sum_{j < s-r} A \otimes \bigwedge^{j} U$.)

COROLLARY. The space K satisfies dim K = 1. If $0 \neq a \in K$ then the class $[a \otimes u_{r+1} \wedge \cdots \wedge u_s]$ corresponds under the isomorphism Ψ of Lemma 9 to

an element of $H^{2m}(\bigvee Q \otimes \bigwedge P)$. (Recall that 2m is the formal dimension of $H(\bigvee Q \otimes \bigwedge P)$.)

PROOF. It follows from Lemma 9(i) that $K \neq 0$. Let $a \in K$. Then $(a \otimes u_{r+1} \wedge \cdots \wedge u_s) \cdot (A^+ \otimes \wedge U + A \otimes \wedge^+ U) = 0$. If $\alpha \in H(\bigvee Q \otimes \bigwedge P)$ is defined by $\Psi(\alpha) = [a \otimes u_{r+1} \wedge \cdots \wedge u_s]$, then this equation implies that $\alpha \cdot H^+(\bigvee Q \otimes \bigwedge P) = 0$. But this condition characterizes

$$H^{2m}(\bigvee Q \otimes \bigwedge P),$$

and dim $H^{2m}(\bigvee Q \otimes \bigwedge P) = 1$ by Lemma 6, §8. Q.E.D.

Lemma 10. There is a subspace $X \subset \Sigma_j H^{2j}(\bigvee Q \otimes \bigwedge P)$ with the following properties:

(i) 2 dim
$$X = \dim(\sum_i H^{2j}(\bigvee Q \otimes \bigwedge P))$$
.

(ii)
$$X \cdot X \cap H^{2m}(\bigvee Q \otimes \bigwedge P) = 0$$
.

PROOF. Clearly $\Sigma_j H^{2j}(\bigvee Q \otimes \bigwedge P) = \Sigma_j H_{2j}(\bigvee Q \otimes \bigwedge P)$. Thus we need only find a subspace $Z \subset \Sigma_j H_{2j}(A \otimes \bigwedge U)$ such that 2 dim $Z = \dim(\Sigma_j H_{2j}(A \otimes \bigwedge U))$ and $Z \cdot Z \cap K \otimes \bigwedge^{s-r} U = 0$ (cf. Lemma 9 and its corollary).

Furthermore, since $H^{2m}(\bigvee Q \otimes \bigwedge P) \subset H_{s-r}(\bigvee Q \otimes \bigwedge P)$, it follows that s-r=2k.

Choose a subspace $N \subset A$ so that $A = N \oplus K = N \oplus (a)$ (a, a basis vector for K). Define a bilinear function \langle , \rangle : $A \times A \to \Gamma$ by $a_1 a_2 - \langle a_1, a_2 \rangle a \in N$. Since the elements of A^+ are nilpotent, and since a is a basis for K, it follows easily that this is a nondegenerate inner product in A.

Next assign $\bigwedge U$ the standard Poincaré scalar product determined by the basis vector $u_{r+1} \bigwedge \cdots \bigwedge u_s$ in $\bigwedge^{s-r}U$:

$$\Phi \wedge \Psi - \langle \Phi, \Psi \rangle u_{r+1} \wedge \cdots \wedge u_s \in \sum_{j < s-r} \wedge^j U.$$

These two scalar products define a scalar product \langle , \rangle in $A \otimes \bigwedge U$, for which $\langle A \otimes \bigwedge^j U, A \otimes \bigwedge^l U \rangle = 0$ unless j + l = s - r. In particular, $\langle \operatorname{Im} d_{\rho}, 1 \rangle = 0$.

A simple calculation shows as well that

(16)
$$\langle \Phi, \Psi \rangle = \langle \Phi \cdot \Psi, 1 \rangle, \quad \Phi, \Psi \in A \otimes \bigwedge U,$$

whence

(17)
$$\langle d_{\rho}\Phi, \Psi \rangle + (-1)^{p} \langle \Phi, d_{\rho}\Psi \rangle = 0,$$

$$\Phi \in A \otimes \bigwedge^{p} U, \Psi \in A \otimes \bigwedge U.$$

Thus the scalar product of two cocycles depends only on their respective cohomology classes, and so a scalar product is induced in $H(A \otimes \bigwedge U)$. It satisfies

(18)
$$\langle \alpha, \beta \rangle = \langle \alpha \cdot \beta, 1 \rangle, \quad \alpha, \beta \in H(A \otimes \bigwedge U).$$

Moreover $\langle H_j(A \otimes \bigwedge U), H_l(A \otimes \bigwedge U) \rangle = 0$ if $j + l \neq s - r$; since s - r = 2k the spaces $\sum_j A \otimes \bigwedge^{2j} U$ and $\sum_j H_{2j}(A \otimes \bigwedge U)$ are inner product spaces.

Now choose subspaces $C_j \subset A \otimes \bigwedge^j U$ such that $C_j \oplus d_\rho(A \otimes \bigwedge^{j+1} U) = \ker d_\rho \cap (A \otimes \bigwedge^j U)$. Then the restriction of \langle , \rangle to $\sum_j C_{2j}$ is nondegenerate and the inner product spaces $\sum_j C_{2j}$ and $\sum_j H_{2j}(A \otimes \bigwedge U)$ are isometric. Write

$$\sum A \otimes \bigwedge^{2j} U = \sum_j C_{2j} \oplus \left(\sum_j C_{2j}\right)^{\perp}.$$

The left-hand side is obviously hyperbolic. Moreover, $\sum_j d_{\rho}(A \otimes \bigwedge^{2j+1}U)$ is an isotropic subspace of $(\sum_j C_{2j})^{\perp}$ and

$$2 \dim \sum_{i} d_{\rho} (A \otimes \bigwedge^{2j+1} U) = \dim \left(\sum_{i} C_{2j} \right)^{\perp}.$$

Hence $(\sum C_{2i})^{\perp}$ is hyperbolic.

It follows that $\Sigma_j C_{2j}$ is hyperbolic; hence so is $\Sigma_j H_{2j}(A \otimes \bigwedge U)$. Choose an isotropic subspace $Z \subset \Sigma_j H_{2j}(A \otimes \bigwedge U)$ such that 2 dim $Z = \dim(\Sigma_j H_{2j}(A \otimes \bigwedge U))$. Formula (18) implies that $Z \cdot Z \cap (K \otimes u_{r+1} \wedge \cdots \wedge u_s) = 0$. Q.E.D.

PROOF OF PROPOSITION 3. Let X be the subspace of Lemma 10. Then there is a basis, $\alpha_1, \ldots, \alpha_N$ of X with the following property: There are linearly independent elements β_1, \ldots, β_N in $\sum_i H^{2i}(\bigvee Q \otimes \bigwedge P)$ such that

(i) β_i is homogeneous.

(ii)
$$\alpha_i - \beta_i \in \sum_{j>|\beta_i|} H^j(\bigvee Q \otimes \bigwedge P) (|\beta_i| = \deg \beta_i).$$

Now let \langle , \rangle denote the Poincaré scalar product in $H(\bigvee Q \otimes \bigwedge P)$. Then $\langle \beta_i, \beta_j \rangle = 0$ if $|\beta_i| + |\beta_j| < 2m$. On the other hand, if $|\beta_i| + |\beta_j| = 2m$ then (ii) implies that $\langle \beta_i, \beta_j \rangle \varepsilon = \beta_i \cdot \beta_j = \alpha_i \cdot \alpha_j$. Since

$$X \cdot X \cap H^{2m} (\bigvee Q \otimes \bigwedge P) = 0$$

this equation implies $\alpha_i \alpha_j = 0$; i.e. $\langle \beta_i, \beta_j \rangle = 0$ if $|\beta_i| + |\beta_j| = 2m$. Thus the β_i span an isotropic space $Y \subset \sum_j H^{2j}(\bigvee Q \otimes \bigwedge P)$. Since

$$\dim Y = \dim X = \frac{1}{2} \sum_{i} \dim H^{2i} (\bigvee Q \otimes \bigwedge P),$$

the inner product space $\Sigma_j H^{2j}(\bigvee Q \otimes \bigwedge P)$ is hyperbolic. Q.E.D.

11. The case that $\chi_{\Pi} = 0$. The object of this section is to establish

Theorem 5. Let $(\tau; x_1, \ldots, x_n)$ be a connected, finite, c-finite, minimal tower. Assume $\chi_{\Pi} = 0$. Then the Koszul complex of the tower and the Koszul complex of the associated pure tower are isomorphic as graded differential

algebras: $(\bigvee Q \otimes \bigwedge P, d_{\tau}) \cong (\bigvee Q \otimes \bigwedge P, d_{\sigma})$.

Throughout the section $(\tau; x_1, \ldots, x_n)$ denotes a fixed tower satisfying the hypotheses of the theorem; $R = (x_1, \ldots, x_n)$; $F(R) = \bigvee Q \otimes \bigwedge P$; $(\sigma; x_1, \ldots, x_n)$ is the associated pure tower. To establish the theorem we may assume without loss of generality that

$$(19) \deg x_1 \leq \deg x_2 \leq \dots$$

We assume this throughout the section.

LEMMA 11. Suppose x_i has even degree. Then for some

$$u_i \in F^+(x_1, \ldots, x_{i-1}) \cdot F^+(x_1, \ldots, x_{i-1}), \quad d_{\tau}(x_i + u_i) = 0.$$

PROOF. By Corollary 4, §6, the odd spectral sequence collapses at the E_1 -term. Moreover $d_0(x_i) = 0$. Thus x_i represents an element in $E_{\infty}^{p,0}$ ($p = \deg x_i$). It follows that $d_{\tau}(x_i + u_i) = 0$ for some $u_i \in \Sigma_{j>0} F(R)^{j+p,-j}$. But $F(R)^{j+p,-j} \subset \bigvee Q \otimes \bigwedge^{j} P$. Since u_i has even degree p this gives

$$u_i \in \sum_{j \geq 2} \bigvee Q \otimes \bigwedge^j P \subset F^+(R) \cdot F^+(R).$$

It follows now from (19) that $u_i \in F^+(x_1, ..., x_{i-1}) \cdot F^+(x_1, ..., x_{i-1})$. Q.E.D.

Now define an automorphism ϕ of the graded algebra F(R) by setting $\phi x_i = x_i$ $(x_i \in P)$ and $\phi x_i = x_i + u_i$ $(x_i \in Q)$. Then ϕ restricts to automorphisms of each $F(x_1, \ldots, x_i)$. Hence a tower $(\rho; x_1, \ldots, x_n)$ is defined by

$$\rho(x_i) = \phi^{-1} d_\tau \phi(x_i), \qquad i = 1, \ldots, n.$$

Lemma 11 yields

$$\rho(x) = 0, \quad x \in Q.$$

Clearly $\phi: (F(R), d_{\rho}) \to (F(R), d_{\tau})$ is an isomorphism of graded differential algebras. It follows (cf. §2) that $(\rho; x_1, \ldots, x_n)$ is a connected, finite, c-finite, minimal tower, with zero homotopy Euler characteristic. In view of (20) this tower can be rearranged (cf. §2) in the form $(\rho; z_1, \ldots, z_m, y_1, \ldots, y_m)$, where the z_i are a basis of Q and the y_i a basis of P. (z_1, \ldots, y_m) is a permutation of x_1, \ldots, x_n .)

Let $(\lambda; z_1, \ldots, z_m, y_1, \ldots, y_m)$ be the associated pure tower. Proposition 1, applied to $(\rho; x_1, \ldots, x_n)$ shows that $H(\bigvee Q \otimes \bigwedge P, d_{\lambda})$ has finite dimension. Hence Theorem 2 implies that $H_+(\bigvee Q \otimes \bigwedge P, d_{\lambda}) = 0$. Let P_i be the subspace of P spanned by y_1, \ldots, y_i . Lemma 2, §3 implies now that for each $i, H_+(\bigvee Q \otimes \bigwedge P_i, d_{\lambda}) = 0$.

LEMMA 12. For each i the inclusion $\theta: \bigvee Q \to \bigvee Q \otimes \bigwedge P_i$ induces a surjective homomorphism $\theta^*: \bigvee Q \to H(\bigvee Q \otimes \bigwedge P_i, d_o)$.

PROOF. Since $H_+(\bigvee Q \otimes \bigwedge P_i, d_\lambda) = 0$, $H(\bigvee Q \otimes \bigwedge P_i, d_\lambda)$ is evenly graded. Thus if (F_k, d_k) is the odd spectral sequence for $(\rho; z_1, \ldots, z_n)$ z_m, y_1, \ldots, y_i , $F_1 = H(\bigvee Q \otimes \bigwedge P_i, d_\lambda)$ is evenly graded. Hence $F_1 = F_\infty$. Now filter $\bigvee Q$ by the ideals $\hat{I}^p = \sum_{j \geqslant p} (\bigvee Q)^j$. The corresponding

spectral sequence is given $\hat{F}_k = \bigvee Q$, $\hat{d}_k = 0$. Observe that θ is filtration preserving and so induces a homomorphism θ_k :

 $\hat{F}_k \to F_k$ of spectral sequences. In particular, $\theta_1 : \bigvee Q \to H(\bigvee Q \otimes \bigwedge P_i, d_\lambda)$ is surjective, since $H_+(\bigvee Q \otimes \bigwedge P_i, d_\lambda) = 0$. But $F_1 = F_\infty$, $\hat{F}_1 = \hat{F}_\infty$; thus $\theta_{\infty} = \theta_1$ and so θ_{∞} is surjective. This implies at once that θ^* is surjective. O.E.D.

PROOF OF THEOREM 5. We continue the notation developed above. Since (ρ) $z_1, \ldots, z_m, y_1, \ldots, y_m$) is a tower it follows that

$$\rho(y_i) \in \ker d_{\rho} \cap (\bigvee Q \otimes \bigwedge P_{i-1}), \quad i = 1, 2, \dots, m.$$

In view of Lemma 12 above we can write

$$\rho(y_i) = v_i + d_{\rho}w_i, \quad v_i \in \bigvee Q, \quad w_i \in \bigvee Q \otimes \bigwedge P_{i-1}.$$

Define an automorphism Ψ of the graded algebra $\bigvee Q \otimes \bigwedge P$ by setting

$$\Psi(z_i) = z_i, \quad \Psi(y_i) = y_i - w_i, \quad i = 1, ..., m.$$

Then define $\gamma: R \to \backslash / O \otimes \bigwedge P$ by

(21)
$$\gamma(y_i) = v_i \text{ and } \gamma(z_i) = 0.$$

It follows from the definition that $\Psi d_{\gamma} = d_{\rho} \Psi$.

In particular, Im $\gamma \subset F^+(R) \cdot F^+(R)$. In view of (21) this implies that $(\gamma;$ x_1, \ldots, x_n) is a pure, minimal tower. Thus it coincides with the associated pure tower.

Now consider the isomorphism $\phi \circ \Psi \colon (F(R), d_{\nu}) \to \cong (F(R), d_{\tau})$ of Koszul complexes. According to §5 it induces an isomorphism of the odd spectral sequences. The isomorphism of the E_0 -terms can be written α : $(F(R), d_{\gamma})$ $\rightarrow \cong (F(R), d_a)$. Thus $\phi \circ \psi \circ \alpha^{-1}$: $(F(R), d_a) \rightarrow \cong (F(R), d_a)$ is the desired isomorphism. Q.E.D.

COROLLARY 1.
$$H^*(F(R), d_\tau) \cong \bigvee Q/\bigvee Q \cdot \sigma(P)$$
.

Proof. Apply Theorem 2.

COROLLARY 2. Suppose the bases y_i of P and z_i of Q satisfy $\deg y_i = g_i$, $\deg z_i = k_i$. Then

$$\sum_{p} \dim H^{p}(F(R), d_{\tau}) t^{p} = \prod_{i=1}^{m} (1 - t^{g_{i}+1}) \prod_{i=1}^{m} (1 - t^{k_{i}})^{-1}.$$
Moreover the Euler characteristic, χ_{c} (equals the dimension of the

cohomology) is given by formula $\chi_c = ((g_i + 1) \dots (g_m + 1))/(k_1 \dots k_m)$.

PROOF. See [4] or [3, Chapter 2].

REFERENCES

- 1. C. Allday, On the rank of a space, Trans. Amer. Math. Soc. 166 (1972), 173-185. MR 45 #1158.
- 2. H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologie (espaces fibrés), Bruxelles (1950), Thone, Liège; Masson, Paris, 1951, pp. 57-71. MR 13, 107.
- 3. W. H. Greub, S. Halperin and J. R. Vanstone, Connections, curvature and cohomology, vol. III, Academic Press, New York, 1975.
- 4. J.-L. Koszul, Sur un type d'algèbres différentielles en rapport avec la transgression, Colloque de Topologie (espaces fibrés), Bruxelles (1950), Thone, Liège; Masson, Paris, 1951, pp. 73-81. MR 13, 109.
 - 5. D. Sullivan, Infinitesimal computations in topology (preprint).
- 6. O. Zariski and P. Samuel, *Commutative algebra*, Vol. I, Van Nostrand, Princeton, N.J., 1958. MR 19, 833.
 - 7. ____, Commutative algebra. Vol. II, Van Nostrand, Princeton, N.J., 1960. MR 22 #11006.
- U.E.R. MATHEMATIQUES PURES ET APPLIQUES, UNIVERSITE DES SCIENCES ET TECHNIQUES DE LILLE I, B. P. 36, 59650 VILLENEUVE D'ASCQ, FRANCE

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, M5S 1A7, CANADA