ON THE SEIFERT MANIFOLD OF A 2-KNOT

BY

M. A. GUTIERREZ¹

ABSTRACT. From geometric facts about embeddings $S^2 \to S^4$ we study the relationship between the smallest number of normal generators (weight) of a group and its preabelian presentations.

Introduction. Let $f: S^2 \to S^4$ be an embedding or 2-knot: f always [9, Lemma 1] extends to an embedding $\bar{f}: S^2 \times D^2 \to S^4$. Let X be the closure of $S^4 - \text{Im } f$, a compact manifold called the *complement* of f. $\partial X = S^2 \times S^1$ and $\pi_1(X)$ is a finitely presented group G. Such G are called knot groups.

If $z_0 \in S^2$ and $z_0' \in S^1$ we choose $(z_0, z_0') \in \partial X$ as our basepoint. Let x be the element of G represented by $z_0 \times S^1$. Then [5, Theorem 1]

- (1) $H_1(G) = G/G' = Z$ with generator x (a meridian for f).
- (2) $H_2(G) = 0$.
- (3) x and all its conjugates generate G.
- (G') is the commutator subgroup [G, G] of G.)

In general if $S \subseteq G$, we write $N_G S$ for $\bigcap N$, where $N \triangleleft G$ and $N \supseteq S$. Then (3) is $N_G \{x\} = G$, and $G' = N_G \{[g, h]: g, h \in G\}$.

Condition (2) is hard to handle geometrically in S^4 . We choose instead a somewhat stronger statement:

(2') G has a finite presentation with r + 1 generators and r relators.

Statement (2) is strictly stronger than (2') and knots exist whose group does not satisfy (2') [5, pp. 106–107]. The purpose of this note is to show:

THEOREM. Let G be a finitely presented group satisfying (1), (2') and (3); then

- (i) There exists a knot $f: S^2 \to S^4$ with group G.
- (ii) There exists a submanifold $V \subset S^4$ of the form $(S^1 \times S^2 \# \cdots \# S^1 \times S^2)_0$ (that is, $S^1 \times S^2 \# \cdots \# S^1 \times S^2$ minus an open disk) with $\partial V = f(S^2)$, $\pi_1(V)$ free of rank r.
- (iii) $\pi_1(V) = \pi_1(S^4 V)$ is a free group Φ of rank r; there exist monomorphisms $\nu_0, \nu_1 \colon \Phi \to \Phi$ such that G has a presentation

$$\langle x, \Phi : \nu_0(\varphi) = x\nu_1(\varphi)x^{-1}, \varphi \in \Phi \rangle.$$

Received by the editors November 1, 1976.

AMS (MOS) subject classifications (1970). Primary 57C45, 57D60.

Key words and phrases. Seifert manifolds, iterated free product with amalgamation.

¹ Research supported by CUNY.

As a corollary we show that no such group G can be of the form A * B, $A \neq 1$, $B \neq 1$ (cf. [3]). We also obtain useful information about the cohomology of G.

1. Seifert manifolds of knots. Suppose $f: S^2 \to S^4$ is a knot. A Seifert manifold for f is any compact, framed 3-manifold $V \subseteq S^4$ with boundary $f(S^2)$.

If the group associated to f satisfies (2') then it has a presentation of the form

$$\langle x, b_1, \ldots, b_r : b_1 B_1, \ldots, b_r B_r \rangle \qquad (B_1, \ldots, B_r \in F'), \tag{1}$$

where we write F for the free group $\langle x, b_1, \ldots, b_r \rangle$, J for $\langle x \rangle$ and L for $\langle b_1, \ldots, b_r \rangle$ so that F = J * L. Let $\lambda \colon F \to L$ be the map defined by $\lambda(x) = 1, \lambda(b_i) = b_i, j = 1, \ldots, r$.

Clearly any group with presentation (1) satisfies conditions (1) and (2'). For it to satisfy condition (3) it is necessary and sufficient that

$$L = N_L \{ \lambda(b_1 B_1), \dots, \lambda(b_r B_r) \}.$$
 (2)

Conversely for any group with a presentation (1) and satisfying condition (2) we can find an embedding $f: S^2 \to \Sigma^4$, where Σ is a homotopy sphere and $G = \pi_1(\Sigma^4 - f(S^2))$. In [2] we prove we may assume $\Sigma = S^4$ but the paper contains some gaps. We wish to present that proof here with more detail.

LEMMA (1). Let G be a finitely presented group satisfying conditions (1), (2') and (3). Then we may assume G has a presentation (1) such that $\lambda(b_1B_1), \ldots, \lambda(b_rB_r)$ actually generate L.

PROOF. I. Let $\iota_0\colon D^3\to D^5$ be the standard embedding of the 3-ball in D^5 and let $W_0=D^5-L(D^3)$. The boundary U_0 of W_0 is the complement of the trivial knot $f_0=\iota_0|S^2$, with group J. Let $\psi_j\colon S^0\times D^4\to U_0$ be mutually disjoint embeddings $(j=1,\ldots,r)$. We attach 1-handles $h_j^1\approx D^1\times D^4$ to W_0 via ψ_j . Let ι' be the embedding $D^3\to D^5+\Sigma h_j^1$ and W' the complement of $\iota'(D^3)$. The fundamental group of $U'=\partial W'$ is now F=J*L, where the b_j correspond to the h_j^1 . Let now $\psi_j\colon S^1\times D^3\to U'$ be mutually disjoint embeddings representing $b_jB_j\in\pi_1(U')$, that is, $\psi_j(S^1\times 0)$ is a loop in U' representing the word b_jB_j . Attaching 2-handles $h_j^2\approx D^2\times D^3$ to W' via the ψ_j we obtain an embedding $\iota''\colon D^3\to T$, where $T=D^5+\Sigma h_j^1+\Sigma h_j^2$ is a contractible space with boundary Σ , a homotopy 4-sphere. Embedding $f=\iota''|S^2$ is a knot whose group is presented by (1).

II. Recall now f_0 extends to an embedding $d_0: \Delta \to S^4$, where Δ is the 3-disk. Let $d': \dot{\Delta} \to U'$ be the composition $\dot{\Delta} \to U_0 \cup \varphi_j(S^0 \times D^4) \subset U'$ which we may assume to be transversal to the ψ_j . Let $\sigma: J * L \to J$ be the map defined by $\sigma x = x$, $\sigma b_j = 1$ its kernel is a free product $\prod^* L_n$ $(n \in \mathbb{Z})$ where $L_n = \langle b_{1n}, \ldots, b_{m}: \rangle, b_{jn} = x^n b_j x^{-n}$.

We observe now that $d'\mathring{\Delta}$ has a framing $\bar{\nu}'(z,t) \in U'$ $(z \in \mathring{\Delta}, -1 \le t \le 1)$ such that $\bar{\nu}'(z,0) = d'z$. Define $\nu_{\varepsilon}': \mathring{\Delta} \to U' - d'\mathring{\Delta}$ by $z \mapsto \bar{\nu}'(z,\varepsilon)$, $\varepsilon = \pm 1$. If $z_0 \in \mathring{\Delta}$ is the basepoint, we adopt $u_0 = \nu_1' z_0$ as the basepoint for $U' - d'\mathring{\Delta}$. Let γ be a fixed arc from u_0 to $\nu_{-1}'(z_0)$ in $U' - d'\mathring{\Delta}$. We are going to alter $\mathring{\Delta}$ but we may assume γ remains in the complement of it throughout.

Suppose j=1 for the time being, and let $b_1B_1=b_1w_0x^{e_1}\cdots x^{e_j}w_j$ where, if $1 \le a \le s$, $w_\alpha \in L$, $\sum \varepsilon_\alpha = 0$ and so $b_1B_1=b_{10}\prod_\alpha w_{\alpha n_\alpha}(w_{\alpha n_\alpha} = x^{n_\alpha}w_\alpha x^{-n_\alpha})$ for certain $n_\alpha \in Z$. Let $M=\max\{n_\alpha\colon n_\alpha>0\}$, $\mu=\min\{n_\alpha\colon n_\alpha<0\}$. Define H^0_M (resp. H^0_μ) to be the subgroup of L generated by the w_α for which $n_\alpha=M$ (resp. $n_\alpha=\mu$). Both subgroups are free of finite rank generated by, say, $h^0_1,\ldots,h^0_{t_0}$ and $g^0_1,\ldots,g^0_{u_0}$. It is understood that each h^0_p (g^0_q) is one of the w_α ($n_\alpha=M$) or w_α ($n_\alpha=\mu$) for $p=1,\ldots,t_0$; $q=1,\ldots,u_0$.

With u_0 as basepoint, define maps \bar{h}_p , \bar{g}_q : $S^1 \times D^3 \to U' - d' \mathring{\Delta}$ representing h_p^0 , g_q^0 respectively. Then we may define new embeddings \bar{h}_p' , \bar{g}_q' : $S^1 \times D^3 \to U'$ representing $xh_p^0x^{-1}$ and $x^{-1}g_q^0x$ which are transversal to d' and where $\bar{h}_p'(S^1 \times D^3) \cap d'\mathring{\Delta} = S^0 \times D^3$ for each p and a similar relation for \bar{g}_q' . The points in $(\bar{h}_p')^{-1}$ $(\bar{h}_p'(S^1 \times 0) \cap d'\mathring{\Delta})$ partition S^1 in two intervals I_p , I_p' and if we join the endpoints of $\bar{h}_p'(I_p)$ and $\bar{h}_p'(I_p')$ in $d'\mathring{\Delta}$ one of the resulting loops, say the one coming from I_p , represents h_p^0 in U'. Similarly, let I_q be the corresponding interval for \bar{g}_q' . Write

$$\Delta' = \Delta - \bigcup_{p,q} \left\{ \bar{h}'_p (\dot{I}_p \times \dot{D}^3) \cup \bar{g}'_q (\dot{J}_q \times \dot{D}^3) \right\},$$

$$\Delta_1 = \Delta' \cup \bigcup_{p,q} \left\{ \bar{h}'_p (I_p \times \dot{D}^3) \cup \bar{g}'_q (J_q \times \dot{D}^3) \right\}.$$

Then d' can be extended to a (framed) embedding d'_1 : $\Delta_1 \to U'$ with framing $\bar{\nu}_1$ and we may assume $z_0 \in \Delta_1$, $\gamma \subset U' - d'_1\mathring{\Delta}_1$. The intersection points in $P_0 = \Delta \cap \bar{\psi}_1(S^1 \times 0)$ are in 1-1 correspondence with $\{1, \ldots, s\} \times S^0$, whereas $P_1 = \Delta_1 \cap \bar{\psi}_1(S^1 \times 0)$ is in 1-1 correspondence with $\{\alpha: \mu \neq n_\alpha \neq M\} \times S^0$. Algebraically, this means the loop $\bar{\psi}_1(S^1 \times 0)$ represents a word $b_{10}w'_0x^{e'_1} \cdot \dots \cdot x^{e'_l}w'_l$ (l < s), $l_l \in \pi_1(U' - l_l\Delta_1) = l \cdot H^0_\mu \cdot H^0_M$ and so we can write $[\bar{\psi}_1(S^1 \times 0)] = b_{10}\Pi_\beta w'_{\beta n_\beta}$ where if $1 < \beta < t$, $l_l \in H^0$ and so we 1.

III. We now repeat the procedure in II on the words w'_{β} with $n_{\beta} = M - 1$ or $\mu + 1$ provided M - 1 > 0, $\mu + 1 < 0$. If, say, $\mu + 1 = 0$ we work with $\{w'_{\beta}|n_{\beta} = M - 1\}$ only. Let H^1_{M-1} and $H^1_{\mu+1}$ be the free group generated by $\{w'_{\beta}|n_{\beta} = M - 1\}$ and $\{w'_{\beta}|n_{\beta} = \mu + 1\}$ respectively and $\{h^1_1, \ldots, h^1_{l_1}\}$, $\{g^1_1, \ldots, g^1_{u_1}\}$ subsets of the above generating sets that freely generate the groups. Define $h^{(1)}_{p}$, $g^{(1)}_{q}$: $S^1 \times D^3 \to U' - d_1(\mathring{\Delta}_1)$ representing the h^1_{p} , g^1_{q} respectively and alter them to embeddings $h^{(1)}_{p}$, $g^{(1)}_{q}$: $S^1 \times D^3 \to U'$ representing $xh^1_{p}x^{-1}$ and $x^{-1}g^1_{q}x$, transversal to d'_1 and intersecting $d_1(\Delta_1)$ in a copy of $S^0 \times D^3$. Again $(h^{(1)}_{p})^{-1}$ $(h^{(1)}_{p}(S^1 \times 0) \cap d_1(\Delta_1))$ partitions S^1 in two intervals

 $I_p^{(1)}$ and $I_p^{(1)'}$ and we choose, as in II, $I_p^{(1)}$, that one that represents $h_p^{(1)}$. We may alter Δ_1 to Δ_2 and find a framed embedding d_2 : $\mathring{\Delta}_2 \to U'$ (with framing $\bar{\nu}_2$) so that $\gamma \subset U' - d_2(\Delta_2)$ and where $P_2 = d_2\Delta_2 \cap \psi_1(S^1 \times 0)$ is in 1-1 correspondence with $\{\alpha: \mu + 2 \le n_\alpha \le M - 2\}$. After $m = \max\{|\mu|, M\}$ we obtain a framed embedding $d_m: \Delta_m \to U'$ disjoint from $\psi_1(S^1 \times D^3)$ and Δ_m is obtained from the connected sum of S copies of $S^1 \times S^2$ by removing an open disk (or Δ_m is obtained from Δ by attaching S handles $D^1 \times S^2$). We may assume $z_0 \in \Delta_m$, $\gamma \subset U' - d_m \mathring{\Delta}_m$.

IV. The fundamental group $\pi_1(\Delta_1)$ is free and its free generators are in 1-1 correspondence with h_p^0 and g_q^0 . Similarly $\pi_1(\Delta_2)$ is free in a set in 1-1 correspondence with h_p^{η} , g_q^{θ} , $0 \le \eta$, $\theta \le 1$. In general $\pi_1(\Delta_m)$ has free generators which we may label $h_p^{(\eta)}$, for $p = 1, \ldots, t_{\eta}$, $1 \le \eta \le M$ and $g_q^{(\theta)}$, $q = 1, \ldots, u_{\theta}$, $1 \le \theta \le |\mu|$.

On the other hand, $\pi_1(U' - d_m \dot{\Delta}_m)$ is also free generated by

$$\{b_j: 1 \le j \le r\} \cup \{ \left[\bar{h}_p^{\eta}(S^1 \times 0) \right]; p = 1, \dots, t_{\eta}, 1 \le \eta \le M \}$$

$$\cup \{ \left[\bar{g}_q^{\theta}(S^1 \times 0) \right]; q = 1, \dots, u_{\theta}, 1 \le \theta \le |\mu| \}$$

where, as usual, [x] is the homotopy class of any loop x based on $u_0 = \gamma(0) \in U'$.

The framing $\bar{\nu}_m$ permits us to find [4, p. 573] a compact manifold Y which is a deformation retraction of $U' - d_m(\mathring{\Delta}_m)$ and with boundary $V_0 \cup V_1$, where $V_t \approx \Delta_m$, and where map $f_t \colon \Delta_m \hookrightarrow V_t \hookrightarrow Y$ is homotopic to ν_{-1} if t = 0 and to ν_1 if t = 1. If we assume $\gamma \subset Y$ then $z_0 \in V_1$ and f_t defines homomorphisms $f_t \colon \pi_1(V) \to \pi_1(Y)$ by

$$f_{1^{\bullet}}(h_p^{\eta}) = w_{1p}, \qquad f_{0^{\bullet}}(h_p^{\eta}) = \left[\gamma h_p^{\overline{\eta}}(S^1 \times 0)\gamma^{-1}\right],$$

$$f_{1^{\bullet}}(g_q^{\theta}) = \left[\bar{g}_q^{\theta}(S^1 \times 0)\right], \quad f_{0^{\bullet}}(g_q^{\theta}) = w_{\theta q}', \tag{3}$$

where we adopt the following conventions: $w_{\eta p}$ (resp. $w_{\theta q}'$) is a word in the free group $\pi_1(U'-d_\eta(\mathring{\Delta}_\eta))$ (resp. $\pi_1(U'-d_\theta(\mathring{\Delta}_\theta))$) which is part of a set of free generators for $H_{M-\eta}$ (resp. $H_{\mu+\theta}$). Thus, for example w_{1q}' is one of the w_α ($n_\alpha=\mu$) of II and w_{2p} is one of the w_β ($n_\beta=M-1$) of III. Since these $w_{\eta p}$, $w_{\theta q}'$ are free generators of $H_{M-\eta}$, $H_{\mu+\theta}$, the maps f_{t^*} are monomorphisms. Furthermore if $x=h_p^\eta$ or g_q^θ , the $[f_{1^*}(x)]^{-1}f_{0^*}(x)$ generate a free factor Φ in $\pi_1(Y)$ since they contain letter x only once. Thus $\pi_1(Y)=L*\Phi$.

V. To work with all r words $b_j B_j$ simultaneously, we repeat the above procedure on Δ_m using an embedding $S^1 \times D^3 \to U' - d_m(\mathring{\Delta}_m)$ representing $b_2 B_2$, etc.

VI. Summarizing: we have found a 3-manifold V obtained from Δ by attaching handles, that is V is of the form $S^1 \times S^2 \# \cdots \# S^1 \times S^2 - \mathring{D}^3$ and a framed embedding $d: \mathring{V} \to U'$. The embeddings $\psi_i: S^1 \times D^3 \to U'$ are

disjoint from $d(\mathring{V})$. If $\Phi = \pi_1(V)$, $\pi_1(U' - d(V)) = \pi_1(Y)$ has the form $L * \Phi$ and we have maps f_1 , f_0 : $\Phi \to L * \Phi$ where the $y_i = [f_1(x_i)]^{-1} f_0(x_i)$ generate the free factor Φ if the x_i do. Recall $U' = \partial W'$ (see I) and so we can find an embedding $\iota': S^2 \to \partial (D^5 + \Sigma h_i^1)$ such that U' is the complement of $\iota'(S^2)$; d: $\mathring{V} \to U'$ can be extended to an embedding $V \to U' \cup \iota(S^2)$. The $\overline{\psi_i}$ represent in $U' - d_m(\mathring{V})$ elements of the form $b_j w_{j0} v_{j1} \cdot \cdot \cdot v_{js} w_{js}$ $(w_{jl} \in L,$ $v_{il} \in \Phi$) where the w_{il} correspond to those factors $w_{\alpha n}$ with $n_{\alpha} = 0$. Fix j, by increasing the rank of Φ by 2 we may assume the ψ_i represent words $b_i v_i$ where v_i is in $\Phi_1 = \Phi * \langle c, d \rangle$ where $L * \Phi_1 = \pi_1(U' - d'(V'))$, V' is obtained from V by taking connected sum with $S^1 \times S^2 \# S^1 \times S^2$. In fact, write $xb_iB_ix^{-1} = xb_ix^{-1} \cdot xB_ix^{-1}$. To distinguish those four factors we write $x_1b_ix_2x_3B_ix_4$. Deform $\overline{\psi}_i$ to $\overline{\psi}_i'$ so that it represents $xb_iB_ix^{-1}$. Thus $\overline{\psi}_i'(S^1 \times I)$ D^3) intersects $d_m(V)$ and $\overline{\psi}_i^{-1}(\overline{\psi}_i(S^1 \times D^3) \cap d_m \mathring{V}) = \bigcup_{i=1}^4 p_i \times D^3$ where $p_i \in S^1$ corresponds to factor x_i (i = 1, 2, 3, 4). The p_i partition S^1 in four intervals, I_1 , I_2 , I_3 , I_4 , with $\dot{I}_1 = \{p_4, p_1\}$, $\dot{I}_2 = \{p_1, p_2\}$, etc. Finally, let $\frac{1}{2}D^2 = \{z \in \mathbb{R}^4: |z| < \frac{1}{2}\}.$ Define

$$\begin{split} V_0' &= V - \left\{ \bar{\psi_j'} \big(\dot{I}_1 \times \mathring{D}^3 \big) \cup \bar{\psi_j} \big(\dot{I}_3 \times \frac{1}{2} \mathring{D}^3 \big) \right\}, \\ V' &= V_0' \cup \left\{ \bar{\psi_j'} \big(I_1 \times \dot{D}^3 \big) \cup \bar{\psi_j'} \big((S^1 - \mathring{I}^3) \times \frac{1}{2} \dot{D}^3 \big) \right\}. \end{split}$$

This V' satisfies the desired condition. By doing this for all j, we obtain a manifold $V'' \subset U'$ of the form $\#(S^1 \times S^2) - \mathring{D}^3$ such that if Y_1 is a deformation retraction of U' - V'' which is a compact manifold with $\partial Y_1 = V_0'' \cup V_1''$, then

- (a) $\pi_1(V'') = \Phi$ is free; let $\{x_1, \ldots, x_n\}$ be a set of generators.
- (b) $\pi_1(Y_1) = L * \Phi$ and $V_i'' \subset Y_1$ define two monomorphisms $f_i : \pi_1(V'') \to \pi_1(Y_1)$ such that $y_i = f_1(x_i) f_0(x_i^{-1})$ are free generators of free factor Φ in $\pi_1(Y_1)$.
 - (c) The $\overline{\psi}_i$ represent words $b_i v_i$, $v_i \in \Phi$ in $\pi_1(Y_1)$.

Attaching the two handles h_j^2 to U' along the ψ_j adds the relations $b_j = \bar{v}_j^1$. Let $Y'' = \partial T - (Y_1 \cap T)$; then $\pi_1(Y'') = \Phi$.

VII. We have found an embedding d'': $V'' \to \partial T = \Sigma$ such that both V'' and Y'' ($\sim \Sigma - d''(V'')$) have free fundamental group Φ with generators $\{x_i\}$ and $\{y_i = f_1(x_i^{-1})f_0(x_i)\}$ respectively. We can present our group G by

$$\langle x, y_1, \dots, y_n : f_1(x_i^{-1}) x f_0(x_i) x^{-1}, i = 1, \dots, n \rangle.$$
 (4)

In fact $\Sigma - d''(S^2)$ has fundamental group G. On the other hand $\Sigma - d''(S^2)$ is obtained from Y'' by identifying \mathring{V}_0'' to \mathring{V}_1'' and so by the van Kampen theorem, G has presentation (4). Clearly presentation (4) satisfies condition (2).

The result in the introduction follows from this proof.

THEOREM (2). Let G be a group satisfying conditions (1), (2') and (3); then there exists a knot $f: S^2 \to S^4$ with associated group G.

PROOF. Repeat part I of the proof of Lemma (1) using a presentation that satisfies condition (2). Using the same notation we may assume that in T the attaching maps $\overline{\psi}_j$ isotope to maps so that $\overline{\psi}_j(S^1 \times 0)$ intersects the transversal disk of h_k^1 in one point if j = k or it is empty if $j \neq k$. This is the geometric meaning of condition (2). In particular ∂T is the standard sphere.

2. Commutator subgroup. In view of our above results we may write a structure theorem for G' = [G, G].

Let Φ_m be a group isomorphic to Φ $(m \in \mathbb{Z})$ and $a_m : \Phi \to \Phi_m$ an explicit isomorphism. Consider $P = \prod_m^* \Phi_m$, an infinite free product. Write

$$\dots * \Phi_{-1} * \Phi_0 * \Phi_1 * \dots$$

$$\Phi \Phi \Phi \Phi \Phi$$

for the quotient $P/N_P\{a_m f_1(x_i)[a_{m+1}f_0(x_i)]^{-1}: m \in \mathbb{Z}, i = 1, ..., n\}$, that is the infinite free product of copies of Φ with amalgamations by f_0 and f_1 ([6], as in [4] and [7]).

PROPOSITION (3). If G satisfies conditions (1), (2') and (3), G is isomorphic to the group presented by (5), where Φ , f_0 and f_1 are as in Lemma (1).

For the proof of this proposition construct \tilde{X} , the universal abelian (infinite cyclic) covering space of X by taking copies Y_m'' of Y'' (cf. Lemma 1) with boundary $V_0''(m) \cup V_1''(m)$. Then \tilde{X} is obtained by identifying $V_1''(m)$ to $V_0''(m+1)$ for all m. An application of the van Kampen theorem and a direct limit yield the desired result since $\pi_1(Y_m'') = \Phi_m$.

COROLLARY (4). G' has cohomological dimension ≤ 3 . If G' is finitely presented then G' is free.

Theorem (5). G' has cohomological dimension ≤ 2 .

PROOF. Let M be a (left) G'-module. Then (5) defines structures of Φ_m -module for M. If G is presented by (4) $x\Phi_m x^{-1} = w\Phi_{m+1} w^{-1}$ for some $w \in G'$ and so $H^*(\Phi_m; M)$ is canonically isomorphic to $H^*(\Phi_{m+1}; M)$ and so $H^*(\Phi; M)$ is independent of m ([1, p. 197], [3, Lemma 2]). Write J for the free group with generator x. As in [4], $H^*(G'; M)$ fits in a Mayer-Vietoris sequence of J-modules, where differentials d_0 and d_1 are both $f_1^* \otimes 1 - f_0^* \otimes x$:

$$0 \to H^0(G'; M) \to H^0(\Phi; M) \otimes ZJ \xrightarrow{d_0} H^0(\Phi; M) \otimes ZJ$$
$$\to H^1(G'; M) \to H^1(\Phi; M) \otimes ZJ \xrightarrow{d_1} H^1(\Phi; M) \otimes ZJ$$
$$\to H^2(G'; M) \to 0.$$

I. For $m \in H^0(\Phi; M) = M^{\Phi}$, $d_0(m \otimes 1) = m \otimes (1 - x)$ and so in coker d_0 we equate the actions of $f_0(x_i)$ and $f_1(x_i)$ (x_i generate Φ). Since $y_i = f_1(x_i^{-1})f_0(x_i)$ also generate Φ , coker $d_0 = M^{\Phi}$, and our sequence reduces to

 $0 \to M^{\Phi} \to H^1(G'; M) \to M_{\Phi} \otimes ZJ \xrightarrow{d_1} M_{\Phi} \otimes ZJ \to H^2(G'; M) \to 0$ (6) since $H^1(\Phi; M) = M_{\Phi} = M \otimes_{\Phi} Z$ (cf. [1, p. 197]). Tensoring (6) over J with Z we get

$$M_{\Phi} \xrightarrow{\bar{d}_1} M_{\Phi} \rightarrow H^2(G'; M)_J \rightarrow 0,$$
 (7)

an exact sequence of abelian groups.

II. To calculate \bar{d}_1 , let $R = Z\Phi$ and $I = \ker(R \to Z)$ [1, X.4]. If $\xi_i = x_i - 1$ and $\eta_i = y_i - 1$, I is a free R-module in the ξ_i or the η_i (i = 1, ..., n). For a left Φ -module M define ι^* : $M \to \operatorname{Hom}_{\Phi}(I, M)$ by $\iota^*(m)(w - 1) = wm - m$. Then (loc. cit.) $H^1(\Phi; M) = \operatorname{coker} \iota^*$.

Let $g \in \operatorname{Hom}_{\Phi}(I; M)$. Then

$$(f_1^* - f_0^*) g(\xi_i) = g(f_1(x_i) - f_0(x_i))$$

= $f_1(x_i) g(1 - f_1(x_i^{-1}) f_0(x_i)) = -f_1(x_i) g(\eta_i)$

and since $f_1(x_i)$ is a *unit* in R, $f_1^* - f_0^* = \bar{d}_1$ is an isomorphism $\operatorname{Hom}_{\Phi}(I; M) \to \operatorname{Hom}_{\Phi}(I; M)$ which induces an isomorphism $M_{\Phi} \to M_{\Phi}$ and so, by the exactness of (7)

$$H_2(G'; M)_I = 0.$$
 (8).

III. By the Lyndon spectral sequence [1, XVI. 7],

$$H^{3}(G; M) = H^{1}(J; H^{2}(G'; M)) = H^{2}(G'; M)_{J} = 0$$

by (8). Q.E.D.

COROLLARY (6). For a group G satisfying conditions (1), (2'), (3) and for all G'-modules M, $H_2(G'; M)_J = 0$.

PROPOSITION (7). A group satisfying conditions (1), (2') and (3) is never a nontrivial free product. (Compare with [3].)

PROOF. If it is, we may assume G = H * J. Then $G' = \prod_{m=1}^{\infty} H_m$ where $H_m \approx H$. For all H-modules M, $H^2(H; M) = H^2(G'; M)_J = 0$ by Corollary (6), so that c.d. $H \le 1$, that is, H is free [8, 0.3]. By condition (1), H/H' = 0 so H itself must be trivial.

- **3. Generalizations.** Let mS^2 be the disjoint union of m copies of S^2 : $mS^2 = S_1^2 + \cdots + S_m^2$. An m-link is an embedding $f: mS^2 \to S^4$. If $G = \pi_1(S^4 \text{Im } f)$ then [5, Theorem 3]
 - (4) $H_1(G; Z)$ is free of rank m with generators x_1, \ldots, x_m

- (5) $H_2(G; Z) = 0$,
- (6) $N_G\{x_1,\ldots,x_m\} = G$,

where the x_i are meridians for $f|S_i^2$.

Again if we change (5) by

(5') G has a presentation with r + m generators and r relations, we obtain

THEOREM (8). For any group G satisfying conditions (4), (5') and (6) there exists an embedding $f: mS^2 \to S^4$ with associated group G; the commutator subgroup G^1 has $c \cdot d \leq 2$ and G is never a nontrivial free product with m+1 factors.

REFERENCES

- 1. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N.J., 1956.
 - 2. M. Gutierrez, Homology of knot groups. I, Bol. Soc. Mat. Mexicana 16 (1971), 58-63.
 - 3. _____, Homology of knot groups. II (to appear).
- 4. _____, An exact sequence for the second homology of a knot, Proc. Amer. Math. Soc. 32 (1972), 571-577.
- 5. M. Kervaire, On higher dimensional knots, in Combinatorial and Differential Topology, Princeton Univ. Press, Princeton, N.J., 1962.
- 6. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- 7. L. Newwirth, *Knot groups*, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N.J., 1965.
- 8. J. Stallings, On torsion free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312-324.
 - 9. E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802

Current address: Department of Mathematics, Tufts University, Medford, Massachusetts 02155