STRONG DIFFERENTIABILITY OF LIPSCHITZ FUNCTIONS

RY

C. J. NEUGEBAUER

ABSTRACT. Let F be a differentiation basis in R^n , i.e., a family of measurable sets S contracting to 0 such that $\|M_Ff\|_p < A_p\|f\|_p$, where M_F is the Hardy-Littlewood maximal operator. For $f \in \Lambda_\alpha^{pq}$, we let $E_F(f)$ be the complement of the Lebesgue set of f relative to F, and we show that E_F has L_α^{pq} -capacity 0, where L_α^{pq} is a capacity associated with Λ_α^{pq} in much the same way as the Bessel capacity $B_{\alpha p}$ is associated with L_α^p .

1. With the Bessel potential space $L^p_{\alpha}(R^n)$ there is associated the Bessel capacity $B_{\alpha p}$ which is defined for $E \subset R^n$ by

$$B_{\alpha p}(E) = \inf\{\|g\|_p^p : g \in L^p, g \ge 0, G_\alpha * g \ge 1 \text{ on } E\},\$$

where G_{α} is the Bessel kernel given by $\widehat{G_{\alpha}}(x) = (1 + 4\pi^2|x|^2)^{-\alpha/2}$ [5, p. 132]. The capacity $B_{\alpha p}$ is an outer measure on R^n and its relation to H^r , Hausdorff measure of dimension r, is given by the following [4]. If p > 1, $\alpha p < n$, then $H^{n-\alpha p}(E) = 0$ implies $B_{\alpha p}(E) = 0$, and $B_{\alpha p}(E) = 0$ implies $H^{n-\alpha p+\epsilon}(E) = 0$ for every $\epsilon > 0$.

Let F be a family of measurable sets $S \subset R^n$ with $0 < |S| < \infty$, and let $S \to 0$ stand for the generic notation for the limit as $j \to \infty$ of any sequence $\{S_j\} \subset F$ such that, for any $\varepsilon > 0$, $S_j \subset \{|x| < \varepsilon\}$, $j \ge j(\varepsilon)$. With such a family we associate the Hardy-Littlewood maximal operator

$$M_{F}f(x) = \sup \left\{ \frac{1}{|S|} \int_{S+x} |f(y)| \, dy \colon S \in F \right\}.$$

The behavior of $M_F f$ is decisive in the study of the differentiability of the integral. If, for example, $||M_F f||_p \le A_p ||f||_p$ (there are many interesting families F with this property [3]), then the set

$$E_F(f) = \left\{ x: \ \frac{1}{|S|} \int_{S+x} |f(y) - f(x)| \ dy \to 0 \text{ as } S \to 0 \right\}$$

has measure 0 for $f \in L^p$. If $f \in L^p_\alpha$, then as shown in [2] the exceptional set $E_F(f)$ has even $B_{\alpha p}$ -capacity 0.

The purpose of this paper is to prove an analogous result for the Lipschitz spaces $\Lambda_{\alpha}^{pq}(R^n)$ (see [5], [6]), using instead of $B_{\alpha p}$ a "Lipschitz" capacity L_{α}^{pq} .

Received by the editors February 20, 1976.

AMS (MOS) subject classifications (1970). Primary 26A54, 26A16; Secondary 46E35.

Key words and phrases. Lipschitz spaces, Lipschitz capacity, differentiation.

C American Mathematical Society 1978

In view of the inclusion relations

$$L_{\alpha}^{p} \subset \Lambda_{\alpha}^{pr} \subset \Lambda_{\alpha}^{pq} \subset L_{\alpha}^{p}, \quad p > 1,$$

 $r = \max(p, 2), q > r, \beta < \alpha$ [6, pp. 441, 452] our differentiability result lies then intermediate to those of [2].

We recall that, if F is the family of all oriented rectangles, a nonregular family, then $\|M_F f\|_p \leq A_p \|f\|_p$, 1 [5]. For regular families <math>F, i.e., those for which there is c > 0 such that every $E \in F$ lies in a sphere S with |S| < c|E|, the size of $E_F(f)$ for $f \in \Lambda^{pq}_\alpha$ can be studied with the techniques developed in [8], especially the mean value property $\int_{|y| < r} G_\alpha(x - y) \, dy \leq cG_\alpha(x)r^n$. One sees easily that this tool is no longer available for nonregular families, and its substitute $\|M_F f\|_p \leq A_p \|f\|_p$, which is not a condition on the kernel G_α , requires one to study the interplay between Λ^{pq}_α and M_F .

2. Let F be a family as in §1, and let $tF = \{tS: S \in F\}$, $0 < t \le 1$, where $tS = \{ts: s \in S\}$. Let

$$M_{t}f(x) = \sup \left\{ \frac{1}{|tS|} \int_{tS+x} |f(y)| \, dy \colon S \in F \right\}.$$

Lemma 1. If $\|M_F f\|_p \le A_p \|f\|_p$, $f \in L^p$, then $\|M_t f\|_p \le A_p \|f\|_p$, $0 < t \le 1$.

PROOF. $|tS|^{-1} \int_{tS+x} |f(u)| du = |s|^{-1} \int_{S+x/t} |f(tv)| dv \le M_F(\delta_t f)(x/t)$, where $(\delta_t f)(x) = f(tx)$. Hence

$$||M_{t}f||_{p} \leq \left\{ \int_{R^{n}} M_{F}(\delta_{t}f) \left(\frac{x}{t}\right)^{p} dx \right\}^{1/p}$$

$$= \left\{ t^{n} \int_{R^{n}} M_{F}(\delta_{t}f) (u)^{p} du \right\}^{1/p} \leq t^{n/p} A_{p} \left\{ \int_{R^{n}} |(\delta_{t}f)(x)|^{p} dx \right\}^{1/p}$$

$$= A_{p} ||f||_{p}.$$

We note that A_p is independent of t.

For $0 < \alpha \le 1$, the Lipschitz space $\Lambda_{\alpha}^{pq}(R^n)$ consists of all functions $f \in L^p(R^n)$ for which the norm

(i)
$$||f||_p + \left\{ \int_{R^n} \frac{||f(x+t) + f(x-t) - 2f(x)||_p^q}{|t|^{n+\alpha q}} dt \right\}^{1/q} = ||f||_{\Lambda_a^{pq}}$$

is finite [5, p. 151]; here $1 \le p$, $q \le \infty$. If $0 < \alpha < 1$, the above norm is equivalent to

(ii)
$$||f||_p + \left\{ \int_{R^n} \frac{||f(x+t) - f(x)||_p^q}{|t|^{n+\alpha q}} \ dt \right\}^{1/q}$$

[5, p. 153]. If $\alpha > 1$, Λ_{α}^{pq} is the collection of $f \in L^p(\mathbb{R}^n)$ for which the norm $\|f\|_p + \sum_{j=1}^n \|\partial f/\partial x_j\|_{\Lambda_{\alpha-1}^{pq}} < \infty$ [5, p. 153], where $\partial f/\partial x_j$ is taken in the sense of distribution.

LEMMA 2. Let $0 < \alpha < 1$ and $||M_F f||_p \le A_p ||f||_p$, $f \in L^p$. Then $||M_t f||_{\Lambda_p^{pq}} \le A_p ||f||_{\Lambda_p^{pq}}$.

PROOF. By Lemma 1 we only need to show that $||M_F f||_{\Lambda_a^{pq}} \le A_p ||f||_{\Lambda_a^{pq}}$. If $f_t(x) = f(x+t)$, one easily verifies that $|M_F f(x+t) - M_F f(x)| \le M_F (f_t - f)(x)$, and the result follows from (ii).

3. If G_{α} is the Bessel potential of order $\alpha > 0$, and if $J_{\alpha}f = G_{\alpha} * f$, then J_{α} : $\Lambda_{\beta}^{pq} \to \Lambda_{\alpha+\beta}^{pq}$ is an isomorphism and the norms $||f||_{\Lambda_{\beta}^{pq}}$, $||J_{\alpha}f||_{\Lambda_{\alpha+\beta}^{pq}}$ are equivalent [5, Chapter 5]. This result will be used frequently in the sequel.

For $0 < \alpha < \infty$, $1 \le p$, $q \le \infty$, we define, for $E \subset R^n$,

$$L_{\alpha}^{pq}(E) = \inf\{\|g\|_{\Lambda^{pq}}: g > 0 \text{ and } g > 1 \text{ on } E\}.$$

For $0 < \gamma < \alpha$ we define, for $E \subset \mathbb{R}^n$,

$$B_{\gamma}^{pq}(E) = \inf\{\|g\|_{\Lambda_{\gamma}^{pq}}: g \geqslant 0 \text{ and } G_{\alpha-\gamma} * g \geqslant 1 \text{ on } E\}.$$

It is easily verified that L^{pq}_{α} , B^{pq}_{γ} are capacities, i.e., they are monotone, countably subadditive, and assign 0 to $E = \emptyset$ (see [4, p. 251]).

The usefulness of B_{γ}^{pq} is exhibited in the following lemma.

LEMMA 3. $L^{pq}_{\alpha}(E) = 0$ if and only if there exists $0 < \gamma < \alpha$ such that $B^{pq}_{\gamma}(E) = 0$.

PROOF. (\rightarrow) Let $0 < \gamma < \alpha$ and let $\varepsilon > 0$. Choose $g \in \Lambda^{pq}_{\alpha}$ so that g > 0, g > 1 on E, and $\|g\|_{\Lambda^{pq}_{\alpha}} \le \varepsilon$. If $g = G_{\alpha-\gamma} * \psi$, $\psi \in \Lambda^{pq}_{\gamma}$, then $\|\|\psi\|\|_{\Lambda^{pq}_{\gamma}} < K\varepsilon$, and $B^{pq}_{\gamma}(E) = 0$.

 (\leftarrow) If $B_{\gamma}^{pq}(E) = 0$, then there is g > 0 in Λ_{γ}^{pq} with $G_{\alpha-\gamma} * g > 1$ on E and $\|g\|_{\Lambda_{\gamma}^{pq}} < \varepsilon$. As before $\|G_{\alpha-\gamma} * g\|_{\Lambda_{\alpha}^{pq}} < K\varepsilon$, and $L_{\alpha}^{pq}(E) = 0$.

LEMMA 4. Let $1 . The relation between the Bessel capacity <math>B_{\alpha p}$ and the Lipschitz capacity L_{α}^{pq} is given by

- (i) $B_{\alpha p}(E) = 0$ implies $L^{pq}_{\alpha}(E) = 0$ $q > \max(p, 2)$.
- (ii) $L^{pq}_{\alpha}(E) = 0$ implies $B_{\gamma p}(E) = 0, 0 < \gamma < \alpha$.

PROOF. (i) We use Lemma 3 and verify that $B_{\gamma}^{pq}(E) = 0$ for $0 < \gamma < \alpha$. Since $B_{\alpha p}(E) = 0$, there is g > 0 in L^p such that $\|g\|_p < \varepsilon$ and $G_{\alpha} * g(x) > 1$, $x \in E$. If $\psi = G_{\gamma} * g$, then $\|\psi\|_{\Lambda_{\varepsilon}^p} < M \|g\|_p < M \cdot \varepsilon$ [6, p. 452].

(ii) If $0 < \gamma < \alpha$, we have $B_{\alpha-\gamma}^{pq}(E) = 0$, and hence there is g > 0 with $\|g\|_{\Lambda_{\alpha-\gamma}^{pq}} \le \varepsilon$ and $G_{\gamma} * g(x) > 1$, $x \in E$. Since $\|g\|_{p} \le \varepsilon$, we get $B_{\gamma p}(E) = 0$.

COROLLARY. If $L^{pq}_{\alpha}(E) = 0$ and $\alpha p > 1$, then $H^{n-1}(E) = 0$.

PROOF. Let $0 < \gamma < \alpha$ with $\gamma p > 1$. Since $B_{\gamma p}(E) = 0$, we see from [4, Theorem 22] that $H^{n-1}(E) = 0$.

The next lemma shows that $f \in \Lambda^{pq}_{\alpha}$ can be defined absolutely modulo sets of L^{pq}_{α} -capacity 0.

LEMMA 5. Let $f \in \Lambda^{pq}_{\alpha}$, $0 < \gamma < \alpha$, and $f = G_{\alpha-\gamma} * \psi$, $\psi \in \Lambda^{pq}_{\gamma}$. Then $G_{\alpha-\gamma} * |\psi|(x) < \infty$ for L^{pq}_{α} -a.e. x.

PROOF. Let
$$E = \{x : G_{\alpha-\gamma} * |\psi|(x) = \infty\}$$
. Then
$$B_{\gamma}^{pq}(E) \leqslant B_{\gamma}^{pq} \left\{x : G_{\alpha-\gamma} * |\psi|(x) \geqslant k\right\}$$
$$= B_{\gamma}^{pq} \left\{x : G_{\alpha-\gamma} * \frac{|\psi|}{k}(x) \geqslant 1\right\} \leqslant \frac{1}{k} \|\psi\|_{\Lambda_{\gamma}^{pq}} \to 0 \quad \text{as } k \to \infty.$$

The result now follows from Lemma 3.

LEMMA 6. Let $\psi_j \to f(\Lambda_{\alpha}^{pq})$. Then there exists a subsequence $\{j_i\}$ such that $\psi_{i,j} \to f$ for L_{α}^{pq} -a.e. x.

PROOF. The proof is standard and we give it for the sake of completeness. Let $0 < \gamma < \alpha, f = G_{\alpha-\gamma} * g, \psi_i = G_{\alpha-\gamma} * \phi_i, g, \phi_i \in \Lambda^{pq}_{\gamma}$. Then

$$B_{\gamma}^{pq}\left\{x\colon |\psi_{j}-f|(x)\geqslant\varepsilon\right\} \leqslant B_{\gamma}^{pq}\left\{x\colon G_{\alpha-\gamma}*(|\phi_{j}-g|/\varepsilon)(x)\geqslant1\right\}$$

$$\leqslant \|\phi_{j}-g\|_{\Lambda_{\varepsilon}^{pq}}/\varepsilon\rightarrow0 \quad \text{as } j\rightarrow\infty.$$

If we select now $\{j_i\}$ such that for $A_i = \{x: |\psi_{j_i} - f|(x) \ge 1/2^i\}$ we have $B_{\gamma}^{pq}(A_i) \le 1/2^i$, then on $A = \bigcap_{k \ge 1} \bigcup_{i \ge k} A_i, \psi_i \to f$ and $B_{\gamma}^{pq}(A) = 0$.

LEMMA 7. If $||M_F f||_p \le A_p ||f||_p$ and $0 < \alpha < 1$, then $||f_0^1 M_t g(x)| dt||_{\Lambda_p^{eq}} \le A_p ||g||_{\Lambda_p^{eq}}$ where M_F and M_t are the maximal operators associated with F and tF

PROOF. Let $\psi(x) = \int_0^1 M_t g(x) dt$. Then $\|\psi\|_p \le A_p \|g\|_p$ (Lemma 1), and

$$\|\psi(x+\tau) - \psi(x)\|_{p} \le \int_{0}^{1} \|M_{t}(g_{\tau} - g)\|_{p} dt$$

$$\le A_{p} \|g(x+\tau) - g(x)\|_{p},$$

where $g_{\tau}(x) = g(x + \tau)$.

From Lemma 5 we deduce that for $g \in \Lambda^{pq}_{\alpha}$, $M_{t}g(x) \in L^{1}(dt, [0, 1])$ for $L^{pq}_{\alpha} = \text{a.e. } x$.

4. We are now ready to state and prove our differentiability results. We let F be a family of sets as in §1, and we let $tF = \{tS: S \in F\}$, $0 < t \le 1$.

THEOREM 1. Assume that for $f \in L^p(\mathbb{R}^n)$, $||M_F f||_p \leq A_p ||f||_p$. For $f \in \Lambda^{pq}_n(\mathbb{R}^n)$, let

$$E_{t}(f) = \left\{ x : \limsup_{S \to 0} \frac{1}{|tS|} \int_{tS+x} |f(y) - f(x)| \, dy > 0 \right\}.$$

Then $L_{\alpha}^{pq}(E_t)=0$.

PROOF. We have to verify that, for $\sigma > 0$, $L_{\alpha}^{pq}(E_{\sigma}) = 0$, where

$$E_{\sigma} = \left\{ x \in E_{t} : \limsup_{S \to 0} \frac{1}{|tS|} \int_{tS+x} |f(y) - f(x)| \, dy > \sigma \right\}.$$

Let $0 < \beta < \min(1, \alpha)$. By Lemma 3 we need to show that $B_{\beta}^{pq}(E) = 0$. Let $\eta > 0$ be given.

Let $C_0^{\infty}(R^n)$ be the space of infinitely differentiable functions with compact support. By [6, p. 444] there is a sequence $\{\psi_j\} \subset C_0^{\infty}$ such that $\psi_j \to f(\Lambda_{\alpha}^{pq})$. Choose now ψ_j^{β} , $f^{\beta} \in \Lambda_{\beta}^{pq}$ with $G_{\alpha-\beta} * \psi_j^{\beta} = \psi_j$ and $G_{\alpha-\beta} * f^{\beta} = f$. Then $\psi_j^{\beta} \to f^{\beta}(\Lambda_{\beta}^{pq})$, and from this we get that

$$B_{\beta}^{pq}\left\{x\colon |\psi-f|(x)>\delta\right\}\leqslant \|\psi^{\beta}-f^{\beta}\|_{\Lambda_{\alpha}^{pq}}/\delta=o(1)\quad \text{as } j\to\infty.$$

If $\Sigma = tS$, we have

$$\begin{split} \frac{1}{|\Sigma|} \int_{\Sigma + x} |f(y) - f(x)| \, dy &\leq \frac{1}{|\Sigma|} \int_{\Sigma + x} |f(y) - \psi_j(y)| \, dy \\ &+ \frac{1}{|\Sigma|} \int_{\Sigma + x} |\psi_j(y) - \psi_j(x)| \, dy \\ &+ |\psi_j(x) - f(x)| \\ &= A_{ij}(x) + A_{2i}(x) + A_{3i}(x). \end{split}$$

(i) Since $\{x: M_t(f-\psi_j)(x) \ge \sigma/3\} \subset \{x: G_{\alpha-\beta} * M_t(f^\beta-\psi_j^\beta)(x) \ge \sigma/3\}$, we see that

$$\begin{split} B_{\beta}^{pq} \left\{ x \colon M_{t}(f - \psi_{j})(x) > \sigma/3 \right\} &\leq (3/\sigma) \left\| M_{t} \left(f^{\beta} - \psi_{j}^{\beta} \right) \right\|_{\Lambda_{\delta}^{pq}} \\ &\leq (3/\sigma) A_{p} \left\| f^{\beta} - \psi_{j}^{\beta} \right\|_{\Lambda_{\delta}^{pq}} \leq \eta/2, \quad \text{if } j > j_{1}(\eta). \end{split}$$

The next to the last inequality follows from Lemma 2 (applicable since $\beta < 1$). Since $A_{1j}(x) \le M_t(f - \psi_j)(x)$, there is a set E_{1j} such that $B_{\beta}^{pq}(E_{1j}) \le \eta/3, j \ge j_1(\eta)$, and $x \notin E_{1j}$ implies $A_{1j}(x) < \sigma/3$.

- (ii) Since $B_{\beta}^{pq}\{x: A_{3j}(x) > \sigma/3\} \leq (3/\sigma) \|\psi_j^{\beta} f^{\beta}\|_{\Lambda_{\beta}^{pq}}$, there is $j_3(\eta)$ such that for $j > j_3(\eta)$, $A_{3j}(x) < \sigma/3$ except for $x \in E_{3j}$ with $B_{\beta}^{pq}(E_{3j}) \leq \eta/2$.
- (iii) Let now $j_0 > \max[j_1(\eta), j_3(\eta)]$. Then there is $\tau(\sigma)$ such that $S \subset B(0, \tau)$ implies $|\psi_{j_0}(y) \psi_{j_0}(x)| < \sigma/3$, $y \in tS + x$. If then $x \notin E_{1j_0} \cup E_{3j_0}$ and $S \subset B(0, \tau)$, we get $|\Sigma|^{-1} \int_{\Sigma + x} |f(y) f(x)| dy < \sigma$, $\Sigma = tS$, and hence $E_{\sigma} \subset E_{1j_0} \cup E_{3j_0}$. Then $B_B^{pq}(E_{\sigma}) < \eta$, and the proof is complete.

THEOREM 2. Under the same hypothesis as for Theorem 1, we have for L_{α}^{pq} -a.e. x,

(i)
$$\lim_{S \to 0} \frac{1}{|tS|} \int_{tS+x} |f(y) - f(x)| \, dy = 0, \ a.e. \ t, \ 0 < t \le 1.$$

(ii)
$$\lim_{S \to 0} \int_0^1 \frac{1}{|tS|} \int_{tS+x} |f(y) - f(x)| \, dy \, dt = 0.$$

Proof. (i) Let

$$E = \left\{ (t, x) : \limsup_{S \to 0} \frac{1}{|tS|} \int_{tS+x} |f(y) - f(x)| \, dy > 0 \right\},\,$$

and let $E_x = \{t: (t, x) \in E\}$. We must show that $|E_x| = 0$ for L_{α}^{pq} -a.e. x.

Let $A_{\sigma} = \{x : |E_x| > \sigma\}$. Let $0 < \beta < \min(1, \alpha)$ and choose $\{\psi_j\} \subset C_0^{\infty}$ so that $\psi_j \to f(\Lambda_{\alpha}^{pq})$. By Lemma 6 we may assume that $\psi_j(x) \to f(x)$ for L_{α}^{pq} -a.e. x. Let E_1 be the exceptional set, i.e., $L_{\alpha}^{pq}(E_1) = 0$ and $x \notin E_1$ implies $\psi_j(x) \to f(x)$.

We need another exceptional set E_2 . Since $M_i(f - \psi_j)(x) \le G_{\alpha-\beta} * M_i(f^{\beta} - \psi_j^{\beta})(x)$ (notation as in the proof of Theorem 1), and $\psi_j^{\beta} \to f^{\beta}(\Lambda_{\beta}^{pq})$, we see that

$$\int_0^1 M_t(f-\psi_j)(x) dt \leq G_{\alpha-\beta} * \int_0^1 M_t(f^{\beta}-\psi_j^{\beta})(x) dt \equiv \Psi_j(x).$$

By Lemma 7, $\int_0^1 M_t(f^{\beta} - \psi_j^{\beta})(x) dt \in \Lambda_{\beta}^{pq}$, and hence $\Psi_j \in \Lambda_{\alpha}^{pq}$.

$$\left\{x: \int_0^1 M_t(f-\psi_j)(x) \ dt > \varepsilon\right\} \subset \left\{x: G_{\alpha-\beta} * \frac{1}{\varepsilon} \int_0^1 M_t(f^\beta - \psi_j^\beta)(x) \ dt > 1\right\},$$

and hence

$$B_{\beta}^{pq}\left\{x:\int_{0}^{1}M_{t}(f-\psi_{j})(x)\ dt>\varepsilon\right\} \leq \frac{1}{\varepsilon}\left\|\int_{0}^{1}M_{t}(f^{\beta}-\psi_{j}^{\beta})(x)\ dt\right\|_{\Lambda_{\beta}^{pq}}$$

$$\leq \frac{A_{p}}{\varepsilon}\left\|f^{\beta}-\psi_{j}^{\beta}\right\|_{\Lambda_{\beta}^{pq}}=o(1) \quad \text{as } j\to\infty.$$

We can now choose a subsequence $\{j_i\}$ so that $\int_0^1 M_i(f - \psi_j)(x) dt \to 0$ for L_{α}^{pq} -a.e. x (see e.g. the proof of Lemma 6). We may assume that $\{j_i\} = \{j\}$. Let

$$E_2 = \left\{ x : \int_0^1 M_t (f - \psi_j)(x) dt \nrightarrow 0 \right\}.$$

Then $L^{pq}_{\alpha}(E_2) = 0$.

We return now to the set A_{σ} introduced at the beginning of the proof, and we claim that, for every $\sigma > 0$, $A_{\sigma} \subset E_1 \cup E_2$.

If we deny this, then there is $x_0 \in A_{\sigma}$ and $x_0 \notin E_1 \cup E_2$. Then $|E_{x_0}| > \sigma$. If

$$E_{x_0\lambda} = \left\{ t: \limsup_{S \to 0} \frac{1}{|tS|} \int_{tS+x_0} |f(y) - f(x_0)| \, dy > \lambda \right\},\,$$

then there is $\lambda > 0$ with $|E_{x,\lambda}| > \sigma$. We choose now j_0 so large that

(i)
$$\int_0^1 M_t(f-\psi_0)(x_0) dt < \sigma \lambda/3$$
,

(ii)
$$|\psi_{i_0}(x_0) - f(x_0)| < \lambda/3$$
,

and we choose $\tau_0 > 0$ such that $S \subset B(0, \tau_0)$ implies

(iii) $|\psi_{j_0}(y) - \psi_{j_0}(x_0)| < \lambda/3, y \in tS + x_0, 0 < t \le 1$. Since for $t \in E_{x,\lambda}$,

$$\lambda \leq M_t(f-\psi_{j_0})(x_0)+\frac{2\lambda}{3}, \quad S\subset B(0,\tau_0),$$

we see that $E_{x_0\lambda} \subset \{t: M_t(f - \psi_{j_0})(x_0) > \lambda/3\}$. From this $|E_{x_0\lambda}| < (3/\lambda) \int_0^1 M_t(f - \psi_{j_0})(x_0) dt < \sigma$, a contradiction.

To prove (ii), we first observe that $\int_0^1 M_t f^{\beta}(x) dt \in \Lambda_{\beta}^{pq}$ (Lemma 7), and hence $G_{\alpha-\beta} * \int_0^1 M_t f^{\beta}(x) dt < \infty$ for L_{α}^{pq} -a.e. x (Lemma 5). Since $M_t f(x) \le G_{\alpha-\beta} * M_t f^{\beta}(x)$, we see that $M_t f(x) \in L^1(dt, [0, 1])$ for L_{α}^{pq} -a.e. x. Finally,

$$|f(x)| + M_t f(x) > \frac{1}{|tS|} \int_{tS+x} |f(y) - f(x)| dt \to 0 \text{ as } S \to 0,$$

and we only need to apply the Lebesgue dominated convergence theorem to obtain (ii).

COROLLARY. Under the same hypothesis,

$$\lim_{S \to 0} \int_0^1 \cdots \int_0^1 \frac{1}{|t_1 t_2 \cdots t_k S|} \int_{t_1 t_2 \cdots t_k S + x} |f(y) - f(x)| \, dy \, dt_1 \cdots dt_k = 0$$
for L_α^{pq} -a.e. x .

5. In this section we will study higher order differentiability. Let F be a differentiation basis as in §1, and let $\delta(S)$ denote the diameter of S. We say that a function $f \in L^p(\mathbb{R}^n)$ is in $t_k^p(x_0)$ with respect to F if there exists a polynomial $\Pi_{x_0}(y)$ of degree $\leq k$ such that

$$\left\{ \frac{1}{|S|} \int_{S+x_0} |f(y) - \Pi_{x_0}(y)|^p \, dy \right\}^{1/p} = o(\delta(S)^k), \text{ as } S \to 0.$$

If F is the family of all balls centered at the origin, this notion is due to Calderón and Zygmund [1], and for a general F was introduced in [2].

THEOREM 3. Let $||M_F f||_p \le A_p ||f||_p$. If $f \in \Lambda_{\alpha}^{pq}(\mathbb{R}^n)$, and k is a nonnegative integer $< \alpha$, then $f \in t_k^1(x)$ with respect to F for L_{n-k}^{pq} -a.e. x.

Of course, the special case k = 0 is Theorem 1. The proof of Theorem 3 proceeds along the lines of the corresponding theorem for L^p_α [2]. We shall see that with the help of Theorem 2 it is possible to omit the hypothesis $tF \subset F$, $0 < t \le 1$, made in [2]. We need

LEMMA 8. Let $f \in \Lambda^{pq}_{\alpha}(\mathbb{R}^n)$, $1 < \alpha < \infty$. Then for L^{pq}_{α} -a.e. x, f is absolutely

continuous on H^{n-1} -a.e. ray from x, and on such a ray fix $f(x+z) - f(x) = \int_0^1 \nabla f(x+tz) \cdot z \, dt$.

PROOF. The proof is precisely the same as the proof of the corresponding lemma for L^p_α [2] as soon as we establish the existence of a sequence $\{f_i\} \subset C_0^\infty$ such that for L^{pq}_α -a.e. x,

$$G_1 * |\nabla f_i - \nabla f|(x) \to 0 \text{ as } j \to \infty.$$

Let $0 < \gamma < \min(1, \alpha - 1)$, and choose $g \in \Lambda_{\gamma}^{pq}$ such that $f = G_{\alpha - \gamma} * g$. Let $\{f_i\} \subset C_0^{\infty}$ such that $f_i \to f(\Lambda_{\alpha}^{pq})$, and let $g_i \in \Lambda_{\gamma}^{pq}$ with $f_i = G_{\alpha - \gamma} * g_i$. Then $g_i \to g(\Lambda_{\gamma}^{pq})$. By Lemma 6, $f_k(x) \to f(x)$ for L_{α}^{pq} -a.e. x, for some subsequence $\{f_k\}$. Since $\alpha > 1$, $\nabla f_k \to \nabla f(\Lambda_{\alpha-1}^{pq})$, and hence $\nabla f_k - \nabla f = G_{\alpha - \gamma - 1} * h_k$, $h_k \to 0$ (Λ_{γ}^{pq}) . Since $\gamma < 1$, we easily see that $|h_k| \to 0$ (Λ_{γ}^{pq}) , and hence for some subsequence $\{h_i\}$, $G_{\alpha - \gamma} * |h_j|(x) \to 0$ for L_{α}^{pq} -a.e. x. Since $G_1 * G_{\alpha - \gamma - 1} * |h_j|(x) = G_{\alpha - \gamma} * |h_j|(x)$, the sequence $\{f_j\}$ has the desired property.

PROOF OF THEOREM 3. Since $\alpha \le 1$ is Theorem 1, we may assume that $1 < \alpha$. Let $f \in \Lambda^{pq}_{\alpha}$, and let $\Pi_x(y) = \sum_{0 < |\beta| < k} (D^{\beta} f(x)/\beta!)(y-x)^{\beta}$; we observe that $D^{\beta} f \in \Lambda^{pq}_{\alpha-|\beta|}$.

Set $R_x(y) = f(y) - \Pi_x(y)$, and let $|\gamma| = k$. Then $D^{\gamma}R_x(y) = D^{\gamma}f(y) - D^{\gamma}f(x)$. By Theorem 1, for $L_{\alpha-k}^{pq} - \text{a.e. } x$,

$$\frac{1}{|S|} \int_{S+x} |D^{\gamma} R_x(y)| \, dy \to 0 \quad \text{as } S \to 0,$$

and by Theorem 2,

$$\int_0^1 \frac{1}{|tS|} \int_{tS+x} |D^{\gamma} R_x(y)| \, dy \, dt \to 0.$$

Let now $|\nu| = k - 1$. For $L^{pq}_{\alpha-k}$ -a.e. x, $D^{\nu}f$ is AC on H^{n-1} -a.e. ray from x, and on such a ray $D^{\nu}R_{x}(y)$ is also AC from which

$$\left|D^{\nu}R(x+z)-D^{\nu}R_{x}(x)\right| \leq \int_{0}^{1} \left|\nabla (D^{\nu}R_{x})(x+tz)\cdot z\right| dt.$$

We note that $D^{\nu}R_{\nu}(x) = 0$. As in [2] for any S (not necessarily in F)

(i)
$$\frac{1}{\delta(S)} \frac{1}{|S|} \int_{S+x} |D^r R_x(z)| dz \le \int_0^1 \frac{1}{|tS|} \int_{tS+x} |\nabla (D^r R_x)(z)| dz dt$$
.

If $S \in F$ and $S \to 0$, the integral goes to 0 for $L^{pq}_{\alpha-k}$ -a.e. x. For the next step of the proof we need

(ii)
$$\int_0^1 \frac{1}{\delta(\tau S)} \frac{1}{|\tau S|} \int_{\tau S+x} |D^{\nu} R_x(z)| dz d\tau \to 0$$

as $S \to 0$, $S \in F$, for $L_{\alpha-k}^{pq}$ -a.e. x. From (i), replacing S by τS , we obtain

$$\int_{0}^{1} \frac{1}{\delta(\tau S)} \frac{1}{|\tau S|} \int_{\tau S + x} |D^{\nu} R_{x}(z)| dz d\tau$$

$$\leq \int_{0}^{1} \int_{0}^{1} \frac{1}{|t\tau S|} \int_{t\tau S + x} |\nabla (D^{\nu} R_{x})(z)| dz dt d\tau$$

and the corollary to Theorem 2 proves (ii).

If now η is a mutli-index, $|\eta| = k - 2$, we get as before

$$|D^{\eta}R_{x}(x+z)| \leq \int_{0}^{1} |\nabla (D^{\eta}R_{x})(x+tz) \cdot z| dt$$

and hence for any S,

$$\frac{1}{\delta(S)} \frac{1}{|S|} \int_{S+x} |D^{\eta} R_x(z)| \ dz \le \int_0^1 \frac{1}{|tS|} \int_{tS+x} |\nabla (D^{\eta} R_x)(z)| \ dz \ dt.$$

If we divide this by $\delta(S) \ge \delta(tS)$, we finally obtain

$$\frac{1}{\delta(S)^2} \frac{1}{|S|} \int_{S+x} |D^{\eta} R_x(z)| dz$$

$$\leq \int_0^1 \frac{1}{\delta(tS)} \frac{1}{|tS|} \int_{tS+x} |\nabla (D^{\eta} R_x)(z)| dz.$$

We apply now (ii).

For the step treating a multi-index of length k-3, we need to know that for $L_{\alpha-k}^{pq}$ -a.e. x

$$\int_0^1 \frac{1}{\delta (\sigma S)^2} \frac{1}{|\sigma S|} \int_{\sigma S + x} |D^{\eta} R_x(z)| dz d\sigma \to 0$$

as $S \rightarrow 0$, $S \in F$. This integral is majorized by

$$\int_0^1 \int_0^1 \frac{1}{\delta(t\sigma S)} \frac{1}{|t\sigma S|} \int_{t\sigma S+x} |\nabla (D^{\eta} R_x)(z)| dz dt d\sigma$$

$$\leq \sum \int_0^1 \int_0^1 \int_0^1 \frac{1}{|\tau t\sigma S|} \int_{\tau t\sigma S+x} |\nabla (D^{\rho} R_x)(z)| dz dt d\sigma d\tau,$$

where Σ extends over all ρ with $|\rho| = k - 1$. By the corollary to Theorem 2 this is o(1) as $S \to 0$, $S \in F$, for $L^{pq}_{\alpha-k}$ -a.e. x. The proof of Theorem 3 is now complete.

6. We let F be a family as in §1 and we shall assume now that

(i)
$$||M_F f||_p \le A_p ||f||_p$$
, $1 .$

The family of all oriented rectangles is an example satisfying (i). If (i) holds, then for a.e. x,

$$\lim_{S \to 0} \frac{1}{|S|} \int_{S+x} |f(y) - f(x)|' dy = 0,$$

 $f \in L^p$ and $1 \le r < p$. This is no longer true if r = p as the example due to Saks [7] shows.

If $f \in \Lambda^{pq}_{\alpha}$, then $f \in L^p_{\beta}$, $\alpha > \beta$, and hence by Sobolov's theorem $f \in L^r$, where $1/r = 1/p - \beta/n > 1/p - \alpha/n$. Here, of course, we assume that $\alpha p < n$. As in Theorem 1, we wish to study the size of the exceptional set (for which (ii) does not hold) under the hypothesis that $f \in \Lambda^{pq}_{\alpha}$. For this purpose we need a lemma.

LEMMA 9. Let $f \in \Lambda^{pq}_{\alpha}$, $0 < \alpha < 1$, and let $1 \le r \le p$. Then

$$\left\|\left|f\right|^r\right\|_{\Lambda^{p/rq}_\alpha} \leq A_r \|f\|_p^{r-1} \|f\|_{\Lambda^{pq}_\alpha}.$$

PROOF. Recall that

$$||f||_{\Lambda_{\alpha}^{pq}} = ||f||_{p} + \left\{ \int_{R^{n}} \frac{||f(x+t) - f(x)||_{p}^{q}}{|t|^{n+\alpha q}} dt \right\}^{1/q}.$$

Now $|f(x+t)|^r - |f(x)|^r = (|f(x+t)| - |f(x)|)r \cdot \chi^{r-1}$, where χ is between |f(x+t)|, |f(x)|. Hence, if $\psi(x,t) = \max(|f(x+t)|, |f(x)|)$, we get

$$||f(x+t)|^r - |f(x)|^r| \le r|f(x+t) - f(x)|\psi(x,t)^{r-1}.$$

For $\beta \leq p$ we have

$$|||f(x+t)|^{r}-|f(x)|^{r}||_{\beta} \leq r \left\{ \int |f(x+t)-f(x)|^{\beta} \psi(x,t)^{\beta(r-1)} dx \right\}^{1/\beta}.$$

If we let $s = p/\beta$, $1/t = 1 - 1/s = (p - \beta)/p$, and apply Hölder's inequality, we get

$$\begin{aligned} \big\| |f(x+t)|^r - |f(x)|^r \big\|_{\beta} \\ & \leq r \Bigg[\left\{ \int |f(x+t) - f(x)|^p \ dx \right\}^{\beta/p} \left\{ \int \psi(x,t)^{\beta(r-1) \cdot p/(p-\beta)} \right\}^{(p-\beta)/p} \Bigg]^{1/\beta}. \end{aligned}$$

We let now $\beta = p/r$. Then $\beta(r-1)p/(p-\beta) = p$, and $p \cdot (p-\beta)/p\beta = r-1$, and hence

$$|||f(x+t)|^r - |f(x)|^r||_{\rho/r} \le r||f(x+t) - f(x)||_{\rho} ||\psi(x,t)||_{\rho}^{r-1}.$$

Since $\psi(x, t) < |f(x)| + |f(x + t)|$, we see that $\|\psi(x, t)\|_p < 2\|f\|_p$. Since, clearly, $\||f|^r\|_{p/r} = \|f\|_p \|f\|_p^{r-1}$, the proof of the lemma is complete.

Let C_1 , C_2 be two capacities on R^n , and let $[C_1, C_2](E) = \inf\{C_1(E') + C_2(E'')\}$, where the inf is extended over all E', E'' with $E = E' \cup E''$. It is easy to check that this is a capacity, and that $[C_1, C_2](E) \le \min(C_1(E), C_2(E))$. If $\{C_\alpha\}$ is a collection of capacities on R^n , then $C(E) = \sup_{\alpha} C_{\alpha}(E)$ is also a capacity on R^n .

Let $f \in \Lambda_{\alpha}^{pq}$, $\alpha p < n$. As we have seen, $f \in L^r$ for $1/r > 1/p - \alpha/n$. If p < r < s, $1/s = 1/p - \alpha/n$, let for r < t < s, $\alpha_t = \alpha - n/p + n/t$. We

define now the capacity $C_{r\alpha}$ by

$$C_{r\alpha}(E) = \begin{cases} \left[L_{\alpha}^{pq}, L_{\alpha}^{p/rq} \right](E), & 1 \leq r < p, \\ \sup_{t > r} \left[L_{\alpha_t}^{tq}, L_{\alpha}^{t/rq} \right](E), & p \leq r < s. \end{cases}$$

THEOREM 4. Assume that $||M_F f||_p \le A_p ||f||_p$, $1 . Let <math>f \in \Lambda^{pq}_{\alpha}$, $0 < \alpha < 1$, $\alpha p < n$, and let $1/r > 1/p - \alpha/n$. Then for $C_{r\alpha}$ -a.e. x,

$$\frac{1}{|S|} \int_{S+x} |f(y) - f(x)|^r \, dy \to 0 \quad \text{as } S \to 0.$$

PROOF. We assume first that $1 \le r < p$. Let

$$E = \left\{ x : \limsup_{S \to 0} \frac{1}{|S|} \int_{S+x} |f(y) - f(x)|' dy > 0 \right\},\,$$

and let $0 < \beta < \alpha$. By Lemma 3 it suffices to show that there exists a decomposition $E = E' \cup E''$ such that $B_B^{pq}(E') = 0$ and $B_B^{p/r}(E'') = 0$.

Let $\{\psi_i\} \subset C_0^{\infty}$ such that $\psi_i \to f(\Lambda_{\alpha}^{pq})$. Then for each j

$$\left\{ \frac{1}{|S|} \int_{S+x} |f(y) - f(x)|^r dy \right\}^{1/r} \le \left\{ M_F (|f - \psi_j|^r)(x) \right\}^{1/r}$$

$$+ \left\{ \frac{1}{|S|} \int_{S+x} |\psi_j(y) - \psi_j(x)|^r dy \right\}^{1/r} + |\psi_j(x) - f(x)|$$

$$= A_{1j}(x) + A_{2j}(x) + A_{3j}(x).$$

We claim that there is $j_1 < j_2 < \cdots$ such that $M_F(|f - \psi_{j_i}|^r)(x) \to 0$ as $i \to \infty$ for $B_B^{p/r}$ q-a.e. x.

By Lemma 9 $|f-\psi_i|^r \in \Lambda_{\alpha}^{p/rq}$, and hence $|f-\psi_j|^r = G_{\alpha-\beta} * g_j$, $g_j \in \Lambda_{\beta}^{p/rq}$. Since

$$\{x: A_{ij}(x) \geq \varepsilon'\} \subset \{x: G_{\alpha-\beta} * M_F g_j(x) \geq \varepsilon'\},$$

we obtain

$$B_{\beta}^{p/rq} \left\{ x : A_{1j}(x) \ge \varepsilon^r \right\} \le \frac{1}{\varepsilon^r} \| M_F g_j \|_{\Lambda_{\delta}^{p/rq}} \le \frac{A}{\varepsilon^r} \| g_j \|_{\Lambda_{\delta}^{p/rq}} \quad \text{(Lemma 2)}.$$

By Lemma 9, $|f - \psi_j|^r \to 0$ $(\Lambda_{\alpha}^{p/rq})$, and hence $g_j \to 0$ $(\Lambda_{\beta}^{p/rq})$. The claim now follows (see Lemma 6).

Let $E'' = \{x: \limsup_{i\to\infty} M_F(|f-\psi_i|')(x) > 0\}$. Then $B_{\beta}^{p/r}q(E'') = 0$. We may assume that $\psi_i(x) \to f(x)$ for L_{α}^{pq} -a.e. x, and if E' is the exceptional set, we have $B_{\beta}^{pq}(E') = 0$. We show that $E \subset E' \cup E''$.

Let $x \notin E' \cup E''$, and let $\varepsilon > 0$. Choose j_0 such that $A_{1j_0}(x) \le \varepsilon/3$, $A_{3j_0}(x) \le \varepsilon/3$, and then choose τ_0 such that $S \subset B(0, \tau_0)$ implies $A_{2j_0}(x) \le \varepsilon/3$. It follows then that $x \notin E$.

If
$$p \le r < s$$
, $1/s = 1/p - \alpha/n$, let $r < t < s$, and let $\alpha_t = \alpha - n/p + 1$

n/t. By [6, p. 441], $f \in \Lambda_{\alpha}^{tq}$. Consequently by the first part of the proof, $[L_{\alpha}^{tq}, L_{\alpha}^{t/rq}](E) = 0$, and the proof of the theorem is complete.

REFERENCES

- 1. A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225. MR 25 #310.
- 2. D. J. Deignan and W. P. Ziemer, Strong differential properties of Bessel potentials, Trans. Amer. Math. Soc. 225 (1977), 113-122.
- 3. M. deGuzmán, Differentiation of integrals in Rⁿ, Lecture Notes in Math., no. 481, Springer-Verlag, Berlin and New York, 1975.
- 4. N. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292. MR 43 #3474.
- 5. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280.
- 6. M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space, J. Math. Mech. 13 (1964), 407-479. MR 29 #462.
- 7. S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math. 22 (1934), 257-261.
- 8. N. Aronszajn and K. T. Smith, *Theory of Bessel potentials*. 1, Ann. Inst. Fourier 11 (1961), 385-475. MR 26 #1485.

MATHEMATICAL SCIENCES DIVISION, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907