THE MINIMUM NORM PROJECTION ON C^2 -MANIFOLDS IN R^n

RY

THEAGENIS J. ABATZOGLOU

ABSTRACT. We study the notion of best approximation from a point $x \in \mathbb{R}^n$ to a \mathbb{C}^2 -manifold. Using the concept of radius of curvature, introduced by J. R. Rice, we obtain a formula for the Fréchet derivative of the minimum norm projection (best approximation) of $x \in \mathbb{R}^n$ into the manifold. We also compute the norm of this derivative in terms of the radius of curvature.

- 1. Introduction. Let $x \in R^n$ and M be a C^2 manifold of dimension k, k < n. The minimum norm projection, whenever it is defined, is the map P_M which takes x into the element of M closest to x, i.e. $\min_{m \in M} ||x m|| = ||x P_M(x)||$, where the norm is the Euclidean one. Define $A = \{y | y \in R^n, P_M(y) \text{ is multivalued}\}$. Let $U = (\overline{A})^c$.
- J. R. Rice has studied existence of the map P_M in terms of the radius of curvature and established continuity of P_M on general grounds. In [1], [2], [4] and [5], we have an investigation of the existence of P_M in a Banach space setting. The results use the notion of curvature.

In this paper we will examine the existence and differentiability properties of P_M around point x, in relation to the radius of curvature of M at m, where $m = P_M(x)$.

- **2. Definitions.** Let f be a local representation of the manifold M around m. We assume the following:
 - (1) f is an open map in its domain of definition, i.e. some open set in \mathbb{R}^k .
 - (2) f is C^2 .
 - $(3) f'(a) \cdot R^k = R^k.$

Furthermore, assuming f(a) = m, we define the tangent plane of M at m to be $T_m \equiv m + f'(a) \cdot R^k$.

A vector v = y - m is orthogonal to M at m if v is orthogonal to T_m .

3. Radius of curvature. Consider a vector v = (y - m)/||y - m|| orthogonal to M at m.

We then consider the ray m + tv, t > 0, and points $\mu \in M$ close to m such that $\|(m + tv) - m\| = \|(m + tv) - \mu\|$ holds for some $0 < t < \infty$. We solve for t and obtain

Received by the editors January 20, 1977 and, in revised form, June 10, 1977. AMS (MOS) subject classifications (1970). Primary 41A50; Secondary 53A05.

$$t^{2} = \|(m - \mu) + tv\|^{2} = \|m - \mu\|^{2} + 2t\langle v, m - \mu \rangle + t^{2},$$

$$t = \|m - \mu\|^{2} / 2\langle v, \mu - m \rangle.$$
(3.1)

We now define the radius of curvature of M at m in the direction v to be

$$\rho(m, v) = \liminf_{\mu \to m} \left\{ \left\| m - \mu \right\|^2 / 2 \langle v, \mu - m \rangle | \langle v, \mu - m \rangle > 0 \right\}.$$

REMARK. If $\langle v, \mu - m \rangle < 0$ for all μ near m in M then we define $\rho(m, v) = \infty$.

For Hilbert spaces, this definition is equivalent to that given in [1], [2], [4] and [5].

Since M is representable by a C^2 homeomorphism f near m, for μ sufficiently close to m we can write $\mu = f(b)$, and

$$\mu - m = f(b) - f(a) = f'(a)(b-a) + \frac{1}{2}f''(a)(b-a)^{(2)} + o(\|b-a\|^2).$$

Expressing (3.1) in terms of a, b, f we obtain

$$t = \frac{\left\|f'(a)(b-a) + \frac{1}{2}f''(a)(b-a)^{(2)}\right\|^2 + o(\|b-a\|^2)}{\left\langle v, f''(a)(b-a)^{(2)} \right\rangle + o(\|b-a\|^2)}.$$

We divide numerator and denominator by $||b - a||^2$ and get

$$\rho(m, v) = \min_{\|w\|=1} \left\{ \frac{\|f'(a)(w)\|^2}{\left\langle v, f''(a)(w)^{(2)} \right\rangle} \, \middle| \left\langle v, f''(a)(w)^{(2)} \right\rangle > 0 \right\}.$$

EXAMPLE. Let M be the unit sphere in R^3 with parametric representation $f(\theta, \phi) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$.

Let

$$x = r(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta), \quad r < 1,$$

and

$$v = \frac{x - f(\theta, \phi)}{\|x - f(\theta, \phi)\|} = -(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta).$$

Assume also that $w = (w_1, w_2)$; then

$$||f'(\theta, \phi)(w)||_2^2 = w_1^2 + \sin^2 \theta w_2^2$$

and

$$\langle v, f''(\theta, \phi)(w)^{(2)} \rangle = w_1^2 + \sin^2 \theta w_2^2 \rightarrow \rho(m, v) = 1$$

in this case.

4. The minimum norm projection P_M . We now examine the existence of P_M' in terms of the radius of curvature. Recall that by definition A is the set where P_M is multivalued. We have

LEMMA 4.1. Let $x \in A^c$; then

$$x \in (\overline{A})^{c} = U \leftrightarrow ||x - P_{M}(x)|| < \rho \left(P_{M}(x), \frac{x - P_{M}(x)}{||x - P_{M}(x)||}\right).$$

PROOF. Assume $x \in (\overline{A})^C$; then by Lemma 3.2 in [1],

$$||x - P_M(x)|| \le \rho(P_M(x), v)$$
 where $v = (x - P_M(x))/||x - P_M(x)||$.

Let $t_0 = \sup\{t | P_M(m + tv) = m = P_M(x)\}$; then by Theorem 4.8 in [3], $m + t_0v \notin (A)^C$. Combining these 2 results we obtain $||x - P_M(x)|| < \rho(P_M(x), v)$; then by Theorems 11-15 in [4] we have

$$x \in (\overline{A})^C = U.$$

We continue with a technical lemma:

LEMMA 4.2. Let $A = (a_{ii})$, $B = (b_{ii})$ be $k \times k$ matrices where

$$a_{ij} = \left\langle v, \frac{\partial^2 f(a)}{\partial t_i \partial t_j} \right\rangle, \quad b_{ij} = \left\langle \frac{\partial f(a)}{\partial t_i}, \frac{\partial f(a)}{\partial t_j} \right\rangle,$$

$$v = \frac{x - f(t_1, \dots, t_k)}{\|x - f(t_1, \dots, t_k)\|} \quad and \quad a = (t_1, \dots, t_k).$$

Then we have:

(a)

$$||f'(a)(w)||_2^2 = \langle Bw, w \rangle,$$

(b)

$$\langle v, f''(a)(w)^{(2)} \rangle = \langle Aw, w \rangle,$$

where $w = (w_1, \ldots, w_k)$.

Proof.

(a)

$$f'(a) = \left[\begin{array}{c|c} \frac{\partial f}{\partial t_1} & \cdots & \frac{\partial f}{\partial t_i} & \cdots & \frac{\partial f}{\partial t_k} \end{array}\right]$$

thinking of $\partial f/\partial t_i$ as a column vector. Also,

$$||f'(a)(w)||_2^2 = \langle f'(a)(w), f'(a)(w) \rangle = \langle (f'(a))^T f'(a)w, w \rangle.$$

But

$$(f'(a))^{T} f'(a) = \begin{bmatrix} \frac{\partial f/\partial t_{1}}{\vdots} \\ \frac{\partial f/\partial t_{j}}{\vdots} \\ \frac{\partial f}{\partial t_{k}} \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial t_{1}} & \cdots & \frac{\partial f}{\partial t_{i}} & \cdots & \frac{\partial f}{\partial t_{k}} \end{bmatrix}$$
$$= (\langle \partial f/\partial t_{i}, \partial f/\partial t_{j} \rangle)_{i,j};$$

so (a) is proved.

(b) Write f as (f_1, \ldots, f_n) and $w = (w_1, \ldots, w_k)$; then

$$f''(a)(w)^{(2)} = \left(\sum_{i,j} \frac{\partial^2 f}{\partial t_i \partial t_j} w_i w_j\right),\,$$

so that

$$\left\langle v, f''(a)(w)^{(2)} \right\rangle = \sum_{i,j} \left\langle v, \frac{\partial^2 f}{\partial t_i \partial t_j} \right\rangle w_i w_j = \left\langle Aw, w \right\rangle.$$

We now state our main theorem.

THEOREM 4.1. Let M be a closed C^2 manifold in R^n of dimension k < n. Let $x \in U = (\overline{A})^C$; then P_M is Fréchet differentiable at x and the derivative is given by the formula

$$P'_{M}(x) = f'(a)(B - rA)^{-1}f'(a)^{T},$$

where f is the parametric representation of M, $f(a) = P_M(x)$, $r = ||x - P_M(x)||$ and A, B are as defined in the previous lemma.

PROOF. Let $x \in U$, $y \in R^n$, and $t_0 \ni x + ty \in U$ for $|t| < t_0$. Consider a C^2 representation of M around $P_M(x)$, say $f: V \to M$, where V is open in R^k and a function

$$F(t, t_1, t_2, \ldots, t_k) = \frac{1}{2} ||x + ty - f(t_1, \ldots, t_k)||^2$$

F is obviously C^2 .

Let

$$G(t, t_1, \ldots, t_k) = (\partial F/\partial t_1, \ldots, \partial F/\partial t_k).$$

If $P_M(x + ty) = f(t_1, \ldots, t_k)$, then $\partial F/\partial t_i = 0$, $i = 1, \ldots, k$. Say $P_M(x) = f(t_1, \ldots, t_k)$; then we know that G is C^1 in a neighborhood of $(0, t_1, \ldots, t_k)$.

We now investigate the invertibility of the Jacobian matrix of G with respect to t_1, \ldots, t_k at the point $(\bar{t}_1, \ldots, \bar{t}_k)$.

$$J_G = \left(\frac{\partial^2 F}{\partial t_i \partial t_j}\right)_{i,j}.$$

By computation,

$$\frac{\partial^2 F}{\partial t_i \partial t_j} = -\left\langle x - f(\bar{t_1}, \ldots, \bar{t_k}), \frac{\partial^2 f}{\partial t_i \partial t_j} \right\rangle + \left\langle \frac{\partial f}{\partial t_i}, \frac{\partial f}{\partial t_j} \right\rangle.$$

Set

$$v = \frac{x - f(\bar{t_1}, \dots, \bar{t_k})}{\|x - f(\bar{t_1}, \dots, \bar{t_k})\|}$$
 and $r = \|x - f(\bar{t_1}, \dots, \bar{t_k})\|$;

then, according to the previous lemma,

$$J_G = B - rA$$
.

Recall that

$$\rho = \rho(m, v) = \min_{\|w\|=1} \{ \langle Bw, w \rangle / \langle Aw, w \rangle | \langle Aw, w \rangle > 0 \},$$

and, by Lemma 4.1, $0 < r < \rho \le \infty$.

If $\langle Aw, w \rangle \leq 0 \ \forall w \in ||w|| = 1$, then B - rA is invertible, being positive definite.

On the other hand.

$$\langle (B - rA)w, w \rangle = \langle Bw, w \rangle - r \langle Aw, w \rangle$$
$$= (r/\rho) [\langle Bw, w \rangle - \rho \langle Aw, w \rangle] + ((\rho - r)/\rho) \langle Bw, w \rangle > 0$$

for all w in $R^k \ni ||w|| = 1$. Therefore $(B - rA)^{-1}$ exists.

By the implicit function theorem, $t_i = t_i(t)$ in a neighborhood of $(0, \bar{t}_1, \ldots, \bar{t}_k)$, and

$$\left(\frac{\partial t_1}{\partial t}, \ldots, \frac{\partial t_k}{\partial t}\right) = -\left(\frac{\partial^2 F}{\partial t_i \partial t_j}\right)_{i,j}^{-1} \cdot \left(\frac{\partial^2 F}{\partial t \partial t_i}\right)_{i,j}^{-1}$$

where $\partial^2 F/\partial t \partial t_i = -\langle y, \partial f/\partial t_i \rangle$. Since $P_M(x+ty) = f(t_1(t), \ldots, t_k(t))$, using the chain rule we obtain

$$\frac{d}{dt} P_M(x + ty) \Big|_{t=0} = f'(a) [(B - rA)^{-1}] f'(a)^T(y).$$

This shows P_M has directional derivatives; also the assumption that M is closed implies the continuity of P_M on U. Also $f'(a)(B - rA)^{-1}f'(a)$ depends continuously on $a = (t_1, \ldots, t_k)$ and therefore varies continuously with x so that $f'(a)(B - rA)^{-1}f'(a)^T$ is the Fréchet derivative of P_M .

We now compute the norm of $P'_{M}(x)$.

COROLLARY 4.1. Let
$$P'_{M}(x) = f'(a)(B - rA)^{-1}f'(a)^{T}$$
; then

$$||P'_M(x)|| = \rho/(\rho - r) = -1/(1 - r/\rho),$$

where

$$1/\rho = \max_{\|w\|=1} \langle Aw, w \rangle / \langle Bw, w \rangle = 1/\rho(m, v).$$

PROOF. $P'_{M}(x)$ is selfadjoint and semipositive definite as we showed in the proof of Theorem 4.1. The rank of $f'(a)^{T}$ is k = rank of f'(a) by definition. Then we have the rank of $f'(a)(B - rA)^{-1}f'(a)^{T} = k$. Choose k mutually orthogonal eigenvectors, $\{v_1, \ldots, v_k\}$, of $P'_{M}(x)$ such that

$$||P'_M(x)|| = \lambda_1$$
 where $P'_M(x)(v_1) = \lambda_1 v_1$

for any $i, 1 \le i \le k$.

$$f'(a)(B - rA)^{-1}f'(a)^{T}(v_i) = \lambda_i v_i;$$
 (4.1)

therefore

$$f'(a)^T f'(a) (B - rA)^{-1} (f'(a)^T v_i) = \lambda_i (f'(a)^T v_i).$$

It is clear from (4.1) that $\{f'(a)^T(v_i)\}_{i=1}^k$ is a linearly independent set. Therefore, if w is an eigenvector of $f'(a)^T f'(a) (B - rA)^{-1}$, then we can write

$$w = \sum_{i=1}^{k} a_i f'(a)^T (v_i)$$
 and $f'(a)^T f'(a) (B - rA)^{-1} w = \lambda w$.

So

$$f'(a)^{T}f'(a)(B-rA)^{-1}\sum_{i=1}^{k}a_{i}f'(a)^{T}(v_{i})=\sum_{i=1}^{k}a_{i}\lambda_{i}f'(a)^{T}(v_{i}).$$

Thus

$$\sum_{i=1}^{k} a_{i} \lambda_{i} f'(a)^{T}(v_{i}) = \lambda \sum_{i=1}^{k} a_{i} f'(a)^{T}(v_{i}).$$

Hence

$$a_i\lambda_i = \lambda a_i$$
, $i = 1, ..., k$, and $\lambda_i = \lambda$ for $a_i \neq 0$.

This shows that the maximum eigenvalue of $f'(a)^T f'(a) (B - rA)^{-1}$ is $\lambda_1 = \|P'_M(x)\|$. Recall that, by definition, $f'(a)^T f'(a) = B$. Thus

$$f'(a)^T f'(a)(B-rA)^{-1} = B(B-rA)^{-1} = (I-rAB^{-1})^{-1}$$

which implies

$$1/\lambda_1$$
 = smallest eigenvalue of $I - rAB^{-1}$,

SO

$$1/\lambda_1 = 1 - r(\text{largest eigenvalue of } AB^{-1}),$$

and

$$1/\lambda_1 = 1 - r(\text{largest eigenvalue of } B^{-1}A).$$

Consider now $\max_{\|w\|=1} \langle Aw, w \rangle / \langle Bw, w \rangle = 1/\rho$. Therefore,

$$\langle Aw, w \rangle \leq \frac{1}{\rho} \langle Bw, w \rangle$$
, so $\left(\left(\frac{1}{\rho} B - A \right) w, w \right) > 0$.

Since $B/\rho^{-1} - A$ is selfadjoint, the min is attained at an eigenvector, and since this min = 0, $(B/\rho - A)w_0 = 0$, and $w_0/\rho = B^{-1}Aw_0$. We claim $1/\rho$ is the largest eigenvalue of $B^{-1}A$; if not, set $1/\rho' > 1/\rho \ni w_1/\rho' = B^{-1}Aw_1$. Then $(B/\rho' - A)w_1 = 0$ and

$$\left\langle \left(\frac{1}{\rho'}B - A\right)w, w \right\rangle = \left\langle \left(\frac{1}{\rho}B - A\right)w, w \right\rangle + \left\langle \left(\frac{1}{\rho'} - \frac{1}{\rho}\right)Bw, w \right\rangle > 0$$

$$\forall w \ni ||w|| = 1,$$

a contradiction.

5. Examples.

EXAMPLE 5.1. Let M be the sphere of radius ρ in R^3 . Let $x \in R^3 \ni ||x|| = d$. Set $r = |\rho - d|$. Then, by the previous corollary,

$$||P'_M(x)|| = \frac{\rho_0}{\rho_0 - r}$$
 where $\frac{1}{\rho_0} = \max_{||w||=1} \frac{\langle Aw, w \rangle}{\langle Bw, w \rangle}$.

By simple computations we obtain

$$\rho = \rho_0 \quad \text{if } d < \rho,$$

$$= -\rho_0 \quad \text{if } d > \rho,$$

so that

$$||P'_M(x)|| = \begin{cases} \rho/(\rho - r) & \text{if } d < \rho, \\ \rho/(\rho + r) & \text{if } d > \rho. \end{cases}$$

This result suggests the following observation: If M is a C^2 manifold with radius of curvature ρ at the point $m = P_M(x)$, and if $||x - P_M(x)|| = r$, then by the previous corollary, $||P'_M(x)|| = \rho/(\rho - r)$, which is exactly the same estimate for a sphere of radius ρ and point x whose distance from the sphere is r.

EXAMPLE 5.2. Let M be f(x, y) = (x, y, xy) and x = (0, 0, r) where 0 < r < 1. Then, from

$$\|(0, 0, r) - (x, y, xy)\|_{2}^{2} = x^{2} + y^{2} + (xy - r)^{2}$$

$$= x^{2} + y^{2} - 2rxy + x^{2}y^{2} + r^{2}$$

$$= (rx - y)^{2} + (1 - r^{2})x^{2} + x^{2}y^{2} + r^{2},$$

it is clear that $P_M(x) = (0, 0, 0)$. Computing,

$$f'(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $B = f'(0,0)^T f'(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Also v = (0, 0, 1) and

$$\langle v, \partial^2 f/\partial x^2 \rangle = \langle v, \partial^2 f/\partial y^2 \rangle = 0,$$

and

$$\langle v, \partial^2 f / \partial x \partial y \rangle = \langle v, \partial^2 f / \partial y \partial x \rangle = 1,$$

so that $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Therefore,

$$P'_{M}(x) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} 1 & -r \\ -r & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= \frac{1}{1 - r^{2}} \begin{bmatrix} 1 & r & 0 \\ r & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

and

$$||P'_M(x)|| = \frac{\rho}{\rho - r}$$
, where $\frac{1}{\rho} = \max_{||w|| = 1} \frac{\langle Aw, w \rangle}{\langle Bw, w \rangle} = 1$.

Thus $||P'_M(x)|| = 1/(1-r)$.

EXAMPLE 5.3. Let

$$M = \begin{cases} (x, 0), & x < 0, \\ (x, 1 - \sqrt{1 - x^2}), & x > 0, x \le 1; \end{cases}$$

then for $|\varepsilon| < \frac{1}{2}$ we have

$$P_M\left(\varepsilon, \frac{1}{2}\right) = (\varepsilon, 0) \quad \text{if } \varepsilon < 0,$$

$$= \left(\frac{2\varepsilon}{\sqrt{1 + 4\varepsilon^2}}, 1 - \frac{1}{\sqrt{1 + 4\varepsilon^2}}\right) \quad \text{if } \varepsilon > 0.$$

But $dP_M(\varepsilon, \frac{1}{2})/d\varepsilon|_{\varepsilon=0}$ does not exist. Our manifold M is C_1 at (0, 0) but not C^2 .

REFERENCES

- 1. C. K. Chui, E. R. Rozema, P. W. Smith and J. D. Ward, Metric curvature, folding and unique best approximation, SIAM J. Math. Anal. 7 (1976), 436-449.
- 2. Charles K. Chui and Philip W. Smith, *Unique best nonlinear approximation in Hilbert spaces*, Proc. Amer. Math. Soc. 49 (1975), 66-70.
 - 3. H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.
 - 4. J. R. Rice, Approximation of functions. II, Addison-Wesley, Reading, Mass., 1969.
- 5. Edward R. Rozema and Philip W. Smith, Nonlinear approximation in uniformly smooth Banach spaces, Trans. Amer. Math. Soc. 188 (1974), 199-211.

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50011