ERRATUM TO "GENERALIZED SUPER-SOLUTIONS OF PARABOLIC EQUATIONS"

BY

NEIL EKLUND

It has been brought to my attention that two terms were not defined correctly. The necessary changes will be made in Definitions 2, 3, and 6 and this will require a slight modification in the statement of Theorem 3. However, the content of Theorem 3 will not be changed.

DEFINITION 2. u = u(x, t) is called a super-solution of Lu = 0 in Q if $u \in L^2[0, T; H^{1,2}(\Omega)]$ and, for all $v \in C_0^1(Q^i)$ with v > 0,

$$\iint\limits_{O} \left[a_{ij}u, {}_{i}v, {}_{j} + d_{j}v, {}_{j}u - b_{j}u, {}_{j}v - cuv - uv_{t} \right] dx dt \geq 0. \tag{7}$$

Definition 3. Let $u \in L^2[0, T; H^{1,2}(\Omega)]$.

- (a) u is nonnegative on $\partial \Omega \times [0, T]$ if there is a sequence of functions $\{u^k(x, t)\}\subset C(\overline{Q})$ with u^k Lipschitz continuous in x on $\overline{\Omega}$ uniformly in t, $u^k>0$ on $\partial \Omega \times [0, T]$, and $u^k\to u$ in $L^2[0, T; H^{1,2}(\Omega)]$.
 - (b) u is nonnegative on $\Omega \times (0)$ if, for each function $v \in C_0(\Omega \times [0, T))$,

$$\lim_{t\to 0}\inf_{0}\int_{\Omega}u(x,t)v(x,t)\,dx\geqslant 0.$$

In particular, if u has initial values $u_0(x) \in L^2(\Omega)$ on $\Omega \times (0)$, then u is nonnegative on $\Omega \times (0)$ if $\int_{\Omega} u_0(x)v(x) dx \ge 0$ for all $v \in C_0(\Omega)$ with $v \ge 0$.

(c) u is nonnegative on $\partial_p Q$ if u is nonnegative on $\partial \Omega \times [0, T]$ and on $\Omega \times (0)$.

Then Theorem 3 should be restated as follows:

THEOREM 3 (MINIMUM PRINCIPLE). Let u be a super-solution of Lu = 0 in Q and assume u > 0 on $\partial_{\nu}Q$ with initial values $u_0 \in L^2(\Omega)$. Then u > 0 a.e. in Q.

The proof of Theorem 3 is as stated in the paper. We now define S_o .

Definition 6. (i) $S_Q = \{u \text{ lower semicontinuous super-solution on } Q\}$.

(ii) $\delta'_Q = L_Q \cap \{u; u \text{ is SMV}\}.$

(iii) $\tilde{S}_{Q}'' = \tilde{L}_{Q} \cap \{u; \text{ for each cylinder } W, \ \overline{W} \subset Q, \text{ and } v \leq u \text{ on } \partial_{p}W, v \leq u \text{ on } W\}.$

Received by the editors March 3, 1978.

AMS (MOS) subject classifications (1970). Primary 35K20, 31B05; Secondary 35R05.

(iv)
$$S_O''' = L_O \cap \{u; u \text{ is LSMV}\}.$$

It may be of interest to the reader to state the counterexample to Theorem 3 using Definition 3 in the original article. It was sent to me by Dr. Filippo Chiarenza of the University of Catania, Italy. Consider $Lu = u_t - u_{xx}$ in $Q = (-1, 1) \times (0, 1)$ and let $u(x, t) = x^2 + 2t - 1$. Then Lu = 0 in Q. Now let $\{u^k(x, t)\}$ be defined by

$$u^{k}(x,t) = \begin{cases} kt(x^{2} + 2t - 1) + 1/k, & 0 \le t < 1/k, \\ x^{2} + 2t - 1 + 1/k, & 1/k \le t \le 1. \end{cases}$$

Then $u^k > 0$ on $\partial_p Q$, $u^k \in C(\overline{Q})$, and u^k is lipschitz continuous in x on Ω uniformly in t. Since $u^k \to u$ in $L^2[0, T; H^{1,2}(\Omega)]$ we should have u > 0 on Q. Since $u(x, t) = x^2 + 2t - 1 < 0$ in a neighborhood of (0, 0), we have the desired counterexample.

REFERENCES

Neil A. Eklund, Generalized super-solutions of parabolic equations, Trans. Amer. Math. Soc. 220 (1976), 235-242.

DEPARTMENT OF MATHEMATICS, CENTRE COLLEGE OF KENTUCKY, DANVILLE, KENTUCKY 40422