A 3-LOCAL CHARACTERIZATION OF $L_7(2)$

BY

LARRY FINKELSTEIN AND DANIEL FROHARDT²

ABSTRACT. Recent work of Gorenstein and Lyons on finite simple groups has led to standard form problems for odd primes. The present paper classifies certain simple groups which have a standard 3-component of type $L_5(2)$.

Introduction. D. Gorenstein and R. Lyons [8] have recently shown that any "minimal unknown" simple group G of characteristic 2 type with e(G) > 4 must satisfy one of three specific conditions. In [3], we consider a special case of one of those conditions. Here, we obtain characterizations of groups with e(G) = 3 which satisfy hypotheses analogous to those in that case.

We are concerned with the following hypothesis.

 \mathfrak{K}_n : G is a group, b is an element of G of order 3, and $J = O^{3'}(E(C(b)))$. Furthermore, the following conditions hold.

- (a) $J/Z(J) \cong L_n(2)$;
- (b) C(J) has cyclic Sylow 3-subgroups;
- (c) $\langle b \rangle$ is not strongly closed in C(b); and
- (d) $m_{2,3}(G) = m_3(C(b))$.

Briefly, \mathcal{H}_n says that G has a standard 3-component of type $L_n(2)$ satisfying the Gorenstein-Lyons conditions. In the general case, the statement of the Gorenstein-Lyons conditions is somewhat more technical.

We also remark that by results of Schur [12] and Steinberg [13], either $J \cong L_n(2)$ or n = 3 or 4 and J is the unique central extension $L_n(2)$ of $L_n(2)$ by \mathbb{Z}_2 .

The two main results in this paper are:

THEOREM A. Let G satisfy \mathcal{H}_4 or \mathcal{H}_5 and assume that $F^*(G)$ is simple and that $b \notin_G J$. Then $b \notin F^*(G)$ and $F^*(G)$ has Sylow 3-subgroups of type $Z_9 \times Z_9$. In particular, G is not simple.

THEOREM B. Let G be a finite simple group of characteristic 2 type which satisfies \mathcal{H}_5 . Then $G \cong L_7(2)$.

Received by the editors August 9, 1977 and, in revised form, February 27, 1978.

AMS (MOS) subject classifications (1970). Primary 20D05.

¹Supported in part by NSF Grant MCS 76-06997.

²Supported in part by a Wayne State University faculty research award.

- 1. Preliminary lemmas. In this section we collect some properties of $L_4(2)$ and $L_5(2)$ which will be useful in the proofs of Theorems A and B. We also derive some elementary consequences of \mathcal{H}_4 and \mathcal{H}_5 .
- LEMMA 1.1. Let $G \cong L_n(2)$, $n \ge 4$, and let t be an involution in the center of a Sylow 2-subgroup of G. Then the following statements hold.
- (a) C(t) = TL where $T = O_2(C(t))$ is extra-special of type 2^{2n-3}_+ and $L \cong L_{n-2}(2)$;
- (b) T contains 2 elementary abelian L-invariant subgroups U and V of rank n-1;
 - (c) L acts decomposably on U and on V;
- (d) C(t) acts on Inv(T) with the following orbits: $\{t\}$, $U \setminus \langle t \rangle$, $V \setminus \langle t \rangle$, $Inv(T) \setminus [Inv(U) \cup Inv(V)]$;
 - (e) $t^G \cap T = U^{\sharp} \cup V^{\sharp} \cup \{t\};$
 - (f) if H = Aut G, then $T = O_2(C_H(t))$.

Proof. See Suzuki [14].

- LEMMA 1.2. Let $H = Aut(L_n(2))$, n = 4 or 5, and set G = H'. Then $G \cong L_n(2)$ and the following conditions hold:
 - (a) G contains a Sylow 3-subgroup P of type E_9 ;
- (b) $C_H(P) = P \times \langle \tau \rangle$ where $\tau \in H \setminus G$ is an involution, $C_G(\tau) \cong \Sigma_6$, and $H = G\langle \tau \rangle$;
 - (c) $N_G(P) = PD$ where D is dihedral of order 8;
 - (d) G has 2 classes of elements of order 3.

Letting α and β be representatives of the two conjugacy classes of elements of order 3,

- (e) $N_H(\langle \alpha \rangle) = \langle \alpha, s \rangle \times K \langle \tau \rangle$ where $\langle \alpha, s \rangle \cong L_2(2)$, $K \cong L_2(4)$, and $\langle \alpha, s \rangle = {}_G C_K(\tau)$;
- (f) $N_H(\langle \beta \rangle) = \langle \beta, t \rangle \times L\langle \tau \rangle$ where $\langle \beta, t \rangle \cong L_2(2)$, $L \cong L_{n-2}(2)$ and $\langle \beta, t \rangle = {}_G C_L(\tau)$; and
- (g) $C_G(t)$ contains a Sylow 2-subgroup of G and $C_G(s)$ does not contain a Sylow 2-subgroup of G.
 - (h) $\langle \alpha \rangle$ and $\langle \beta \rangle$ are each contained in a subgroup of G of type $L_2(4)$.

PROOF. These results all follow from routine computations.

- LEMMA 1.3. Assume that G, b, and J satisfy \mathfrak{R}_n where n=4 or 5. Let $B \in \operatorname{Syl}_3(C(b))$ and set $B_0 = B \cap J$. Then $B = \langle b \rangle \times B_0$ and one of the following is true.
 - (i) $b \notin_G J$, $N(B)/C^*(B) \cong \Sigma_3 \sim Z_2$ and $\langle b \rangle^{N(B)} = \mathcal{E}_1(B) \setminus \mathcal{E}_1(B_0)$.
- (ii) $b \in_G J$, $N(B)/C^*(B) \cong \Sigma_4$ and elements $b_1, b_2 \in B_0$ can be chosen so that $B_0 = \langle b_1, b_2 \rangle$ and N(B)/C(B) acts as the full monomial group on B with respect to the basis $\{b, b_1, b_2\}$.

Furthermore, in case (ii), N(B) controls fusion in B.

PROOF. $B = B_0 \times C_B(J)$ because $J \triangleleft C(b)$ and Out J is a 3'-group. Setting $B_1 = C_B(J)$, we need to show that $B_1 = \langle b \rangle$. By assumption B_1 is cyclic, and B_0 is elementary abelian. Therefore B is abelian and $\mathfrak{T}^1(B) = \mathfrak{T}^1(B_1)$. If $|B_1| > 3$, then $\langle b \rangle = \Omega_1(\mathfrak{T}^1(B))$ is strongly closed in B, contrary to hypothesis. Therefore $B_1 = \langle b \rangle$, and $B \cong E_{27}$.

Set N = N(B) and $\overline{N} = N/C^*(B)$. Then there is a natural injection $\overline{N} \to PGL(3,3) \cong SL(3,3)$ so we can identify \overline{N} with its image in SL(3,3). Let $\tau \in N_J(B)$ be an involution which inverts B_0 , so that $\langle b \rangle = C_B(\tau)$. We have $C_{\overline{N}}(\overline{\tau}) \leqslant N_{\overline{N}}(\langle b \rangle) = \overline{C(b) \cap N(B)}$, so that $C_{\overline{N}}(\overline{\tau}) \cong D_8$. Inspection of 2-local and 3-local subgroups of SL(3,3) yields that either $\overline{N} \cong E_9 \cdot D_8 \cong \Sigma_3 \sim Z_2$ or $\overline{N} \cong \Sigma_4$. In the former case \overline{N} is the stabilizer of a hyperplane of B which must be B_0 , whence (a) holds.

Assume for the rest of the proof that $\overline{N} \cong \Sigma_4$. Then $|\overline{N}: C_{\overline{N}}(b)| = 3$, so $\langle b \rangle$ has 3 N-conjugates. $C_{\overline{N}}(b)$ has orbits of lengths 1, 2, 2, 4, and 4 on $\mathcal{E}_1(B)$ so $\langle b \rangle$ must fuse to exactly one of the orbits of length 2. Letting $\langle b_1 \rangle$ and $\langle b_2 \rangle$ be the groups in that orbit, we have $B_0 = \langle b_1, b_2 \rangle$. Since $C_N(b)/C(B)$ acts as the full monomial group on B_0 with respect to $\{b_1, b_2\}$, we conclude that N/C(B) acts as the full monomial group on B with respect to $\{b, b_1, b_2\}$.

It remains to show that N(B) controls fusion in B. If $P \in \text{Syl}_3(N(B))$, then $P \cong Z_3 \sim Z_3$ by the above paragraph, so B = J(P). Therefore B is weakly closed in P and $N(P) \leq N(B)$. It follows that $P \in \text{Syl}_3(G)$ and that N(B) controls fusion in B with respect to G.

LEMMA 1.4. Assume that G, b, and L satisfy \mathfrak{R}_n , where n=4 or 5. Let $B \in \operatorname{Syl}_3(C(b))$, and set $X=O_3(C(b))$. Assume that X has odd order and that either |C(B)| is odd or n=5. Then X is a normal Hall $\{2,3\}'$ -subgroup of C(B) and $X=O_3(C(A))$ for every group A < B with $b \in_G A$. Finally, one of the following holds:

- (i) $C(b) = \langle b \rangle \times J \times X$, or
- (ii) C(B) has even order.

PROOF. It follows from Lemma 1.2(b) that $[C(B):BX] \le 2$. Therefore X is a normal $\{2,3\}$ -complement for C(B) and $X = O_{3'}(C(a))$ for every $a \in b^G \cap C(b)$. To verify the second assertion, it suffices to assume that A is an E_9 -subgroup of B containing $\langle b \rangle$. Then C(A) normalizes J and $O_{3'}(C(A)/C(A) \cap C(J)) = 1$ by Lemma 1.2(b), (e), (f). Since $X = O_{3'}(C(A) \cap C(J))$, we have $X = O_{3'}(C(A))$. For the last assertion, set C = C(b) and assume that C(B) has odd order. Then $C_C(J) = \langle b \rangle \times X$ by transfer, so $C = N_C(J) = J \times \langle b \rangle \times X$ by Lemma 1.2(b).

LEMMA 1.5. Let $J \cong L_5(2)$ act faithfully on $U \cong E_{2^6}$ with $C_U(J) \neq 1$. Then $U = [U, J] \times C_U(J)$.

PROOF. Assume the contrary. Then $C_U(J) = \langle t \rangle$ has order 2 and J acts semiregularly on the set Ω of complements to $\langle t \rangle$ in U. As $|\Omega| = 32$ and J has a subgroup of order 31, it follows that J is doubly transitive on Ω . But $L_5(2)$ has no doubly transitive representations of degree 32 by [2], a contradiction.

LEMMA 1.6. Assume that $J \cong L_5(2)$, that $\beta \in J$ has order 3 and that J acts on the 2-group T so that $C_T(\beta) \leq T_0$ where T_0 is J-invariant. Then $T = T_0$.

PROOF. It suffices to assume that $T_0 = 1$. By Lemma 1.2(h), we can choose $\gamma \in J$ of order 5 so that $\langle \beta, \gamma \rangle \cong L_2(4)$. Then T is the direct product of natural $L_2(4)$ -modules by [10], so $C_T(\gamma) = 1$. Since $\langle \gamma \rangle$ acts fixed point-free on a subgroup D of J of order 31, we have [D, T] = 1. Thus J centralizes T and T = 1.

2. Groups of small 3-rank. In this section, we derive two propositions about configurations which arise in the proofs of Theorems A and B.

PROPOSITION 2.1. Assume that G = LB is a finite group such that $L = F^*(G)$ is simple and $B \le L$ has order 3. Assume further that

- (i) $C(B) = B \times K \times O_{3'}(C(B))$ where $K \cong L_2(4)$.
- (ii) If $A \in Syl_3(K)$, then C(A) has odd order.
- (iii) If $P = \langle B, A \rangle \in \text{Syl}_3(C(B))$ and $B_1 \in \mathcal{E}_1(P) \{A\}$, then $C(B_1) \cong C(B)$.
- (iv) $m_{2,3}(L) = 1$. Then $L \cong L_2(125)$, $L_2(64)$ or $L_3(4)$.

PROOF. Let $\mathcal{E}_1(P) = \{A, B, B_1, B_2\}$, let $U \in \mathcal{M}_K^*(P; 2)$ and let $U \leqslant T \in \mathcal{M}_G^*(P; 2)$. Then $C_T(A) = 1$ so $T = C_T(B)C_T(B_1)C_T(B_2)$. Hypotheses (i) and (ii) imply that $U \in \text{Syl}_2(C(B))$, so $U = C_T(B)$ and $|C_T(B_i)| \leqslant 4$ for i = 1, 2 by hypothesis (iii). Either $U \leqslant Z(T)$ or $1 \neq C_T(B_i) \leqslant Z(T)$ for i = 1, 2. In the latter case, we may relabel B and B_i without affecting the hypotheses of the theorem to obtain $U \leqslant Z(T)$.

By the Frattini argument, $N(U) = C(U) \cdot (C(B) \cap N(U)) = C_L(U)(C(B) \cap N(U))$. Setting $C = C_L(U)$, we have $3 \nmid |C|$ because $C_C(B)$ has 3'-order. Therefore $T \in \text{Syl}_2(C)$ and in fact $T \in \text{Syl}_2(N(U))$. By the preceding paragraph, $|T| = 4^n$ for n = 1, 2, or 3. We consider each possibility in turn.

Case 1. n = 1. Then $U = T \in \text{Syl}_2(L)$, so $L \cong L_2(q)$ for some $q \equiv 3$ or 5 (mod 8) by Walter [15]. By elementary properties of $\text{Aut}(L_2(q))$, $C_L(B) \cong L_2(q^{1/3})$. Therefore q = 125, and the proposition holds.

Case 2. n=2. Then T is elementary abelian of order 16 because $C_T(A)=1$. Set $N_1=N(T)\cap N(P)$. Then $A\vartriangleleft N_1$ and $|C_{N_1}(A)|$ is odd by hypothesis, so $|N_1:P|\leqslant 2$. Inspecting the subgroups of $L_4(2)$, we then have $|N(T):C(T)|_2\leqslant 2$. Let $S\in \mathrm{Syl}_2(N(T))$. Then either S=T or $S\cong E_4 \sim Z_2$. In the latter case, T=J(S), so $S\in \mathrm{Syl}_2(L)$ in either case. But no simple group has Sylow 2-subgroup of type $E_4\sim Z_2$ by Corollary 6 of [6], so S=T. But then [15] forces $L\cong L_2(16)$, a contradiction as B must act as a group of outer automorphisms of L. Thus Case 2 does not occur.

Case 3. n=3. We argue that $T \in \operatorname{Syl}_2(L)$. It suffices to show that N(T) is 3-nilpotent since $T \in \operatorname{M}^*(P; 2)$. Set N=N(T). By hypothesis (i), $N_N(B) \leq C(B) \cap N(U)$ has a normal 3-complement. Similarly, $N_N(B_i)$ is 3-nilpotent for i=1,2 because $C_T(B_i) \neq 1$. This implies that $\operatorname{Aut}_N(P)$ is a 3-group, so $N_N(P)$ is 3-nilpotent. If $P \leq Q \in \operatorname{Syl}_3(N)$, then $Q \cap L$ is cyclic by hypothesis (iv). It follows that $P = \Omega_1(Q)$. Since $A = \Omega_1(Q \cap L)$, $N_N(A) \cap L$ is 3-constrained and $N_N(A) = O_3(N_N(A))(N_N(A) \cap N_N(P))$ by the Frattini argument. Therefore $N_N(A)$ is 3-nilpotent and N is 3-nilpotent by the Frobenius transfer theorem.

If T is abelian, then $G \cong L_2(64)$ by Walter [15]. Otherwise T is of type $L_3(4)$ [7, p. 16] in which case $L \cong L_3(4)$ by Collins [1]. The proof is complete.

LEMMA 2.2. Let R be a solvable group with a normal subgroup S of index 2 such that $O_{3'}(R) \leq S$. Assume that $T \cong Z_3$ is a Sylow 3-subgroup of S and that $x \in Inv(R) \setminus Inv(S)$. Then $x \in_R N(T)$.

PROOF. Let R be a counterexample of minimal order and let N be a minimal normal subgroup of R. Then N is an elementary abelian p-group for some $p \neq 3$ as R is solvable and $O_3(R) = 1$ by assumption. Setting $\overline{R} = R/N$ and applying induction, $\overline{x} \in_{\overline{R}} N(\overline{T})$. That is $x \in_R N \cdot N(T)$, so $R = N \cdot N(T)$ by choice of R. Furthermore p = 2, as otherwise N(T) contains a Sylow 2-subgroup of R. Let x = nh for $n \in N$ and $h \in N(T) \setminus N_S(T)$. Our choice of R implies that $R = \langle T, x \rangle = NT\langle h \rangle$. Evidently, $h^2 \in N$, so $R/N \cong \Sigma_3$. Therefore $N \cong E_4$ and $R \cong \Sigma_4$ is not a counterexample.

PROPOSITION 2.3. Let G be a finite group with an elementary abelian Sylow 3-subgroup $P = \langle A, B \rangle$ of order 9. Assume that the following conditions are satisfied:

- (i) $E(C(B)) = K \cong L_2(4)$ with $A \leqslant K$.
- (ii) $O_3(C(B))$ has odd order.
- (iii) One of the following holds:
 - $(\alpha) N(A) \leq N(B)$ and C(P) has odd order.
 - $(\beta) N(A) \leq N(B)$ and $O_{3}(C(B)) = 1$.
- (γ) $E(C(A)) \cong L_3(2)$ and $O_{3'}(C(A)) = O_{3'}(C(B))$. Then $G = O_{3'}(G)N(K)$.

PROOF. We first observe that A and B are strongly closed in P with respect to G. In fact, it is evident from hypothesis (iii) that $A \neq_G B$. Also, C(B) has 3 orbits on $\mathcal{E}_1(P)$. As N(P)/P is a 3'-group, it then follows that A and B are each normal in N(P). But N(P) controls fusion in P, so the assertion is proved.

Let G be a counterexample of minimal order. Then $O_{3'}(G) = 1$. It follows easily from assumption (i) that $O_3(G) = 1$. Thus $F^*(G) = E(G)$ is the direct product of simple groups. Set E = E(G).

We now show that E is simple. If not, then $E = E_1 \times E_2 \times \cdots \times E_n$, with $2 \le n$ and E_i simple, $1 \le i \le n$. As C(P) is 3-solvable by hypotheses (i) and (ii), $E = E_1 \times E_2$ with $P \cap E_i \ne 1$, i = 1, 2. As $P \cap E_i$ is inverted in E_i , i = 1, 2, it follows from $N_{E_i}(B) \triangleleft C_E(B)$, i = 1, 2, together with $O^3(C(B)) = C_E(B) = B \times K$ that, without loss, we may set $P \cap E_1 = A$ and $P \cap E_2 = B$. But then $E_1 = K$ and therefore $E_1 \triangleleft G$ by hypothesis (iii) which contradicts our choice of G. We conclude that E is simple. Therefore E = G by choice of G.

We shall now apply a result of G. Higman [7] to contradict the simplicity of G. Let $D \in \mathcal{E}_1(P) \setminus \{A, B\}$ and for every subgroup X of G, let $\mathcal{G}(X)$ denote the set of involutions of G which invert X. Higman's result asserts that if $t \in \text{Inv}(G)$, then two of the following three sets are nonempty: $\mathcal{G}(A)^G \cap \{t\}$, $\mathcal{G}(B)^G \cap \{t\}$. In order to apply this result, we require some information about $\mathcal{G}(A)$, $\mathcal{G}(B)$ and $\mathcal{G}(D)$.

We first claim that $\mathcal{G}(D) \subseteq \mathcal{G}(P)^G$. To see this, set H = N(D), $H_0 = C(D)$ and $\overline{H} = H/D$. By the first paragraph, $N_{H_0}(P) \leq N(B)$, so our hypothesis forces $N_{H_0}(P) = C_{H_0}(P)$. In particular, H_0 has a normal 3-

complement F. If F is not solvable, then F has a chief section which is the direct product of one or more Suzuki groups. Therefore $C_F(A) = C_F(P)$ involves $S_z(2)$. But C(P) contains no elements of order 4 by hypothesis, so F is solvable and hence F is solvable. As $F = O_3(\overline{H})$, it follows from Lemma 2.2 that $\overline{x} \in \overline{H} N(\overline{P})$ for every $\overline{x} \in \mathcal{G}(D)$. This in turn yields $\mathcal{G}(D) \subseteq \mathcal{G}(P)^G$ as claimed.

Let $r \in \mathcal{G}(A) \cap K$ and $s \in \mathcal{G}(B) \cap C(A)$ with [r, s] = 1. If C(P) has even order, let $t \in Inv(C(P))$, otherwise, set t = 1. Then $\langle t \rangle \in Syl_2(C(P))$ by hypothesis (ii) and we may choose t so that $\langle t, r, s \rangle$ is abelian. Observe that $K\langle s, t \rangle \cong \Sigma_5$, $A_5 \times Z_2$ or $\Sigma_5 \times Z_2$ and $K\langle s, t \rangle$ covers $N(B)/O_3(C(B))B$. By inspection, $B \in Syl_3(C(B) \cap C(r))$, hence $B \in Syl_3(C(r))$. Similarly $A \in Syl_3(C(s))$ and $P \in Syl_3(C(t))$. Since $A \neq_G B$, we see that r, s and t belong to different G-conjugacy classes. In particular $\mathcal{G}(D)^G = \mathcal{G}(P)^G = (rs)^G \cup (rst)^G \neq Inv(G)$.

As $K\langle s, t \rangle$ contains a Sylow 2-subgroup of N(B), every involution of $K\langle s, t \rangle$ is K-conjugate to an element of N(P). Therefore $y \in_{N(B)} N(P)$ for every $y \in \mathcal{G}(B)$. Similarly $x \in_{N(A)} N(P)$ for every $x \in \mathcal{G}(A)$. It follows that $\mathcal{G}(A)^G = r^G \cup (rt)^G \cup (rs)^G \cup (rst)^G$ and $\mathcal{G}(B)^G = s^G \cup (st)^G \cup (rs)^G \cup (rst)^G$.

If |C(P)| is even, then $K\langle t\rangle \cong \Sigma_5$ by hypothesis (i), so $t = {}_G rt$ and $st = {}_G rst$. It follows that ${}^g(A)^G \cap {}^g(B)^G = {}^g(D)^G$ in any case. Let $x \in Inv(G) \setminus {}^g(D)^G$. Then x belongs to at most one of ${}^g(A)^G$, ${}^g(B)^G$, ${}^g(D)^G$ contradicting Higman's result. Therefore our counterexample G does not exist.

- **3. Proof of Theorem A.** In this section, G, b and J satisfy the hypotheses of Theorem A. That is, G is a finite group with $F^*(G)$ simple and $b \in G$ is an element of order 3 such that the following hold:
 - (a) J is a normal subgroup of C(b) of type $L_4(2)$, $L_4(2)$, or $L_5(2)$;
 - (b) C(J) has cyclic Sylow 3-subgroups;
 - (c) $\langle b \rangle$ is not strongly closed in C(b);
 - (d) $m_{2,3}(G) = 3$; and
 - (e) $b \notin_G J$.

Choose $B \in \text{Syl}_3(C(b))$ and set $B_0 = B \cap J$. Then $B_0 \triangleleft N(B)$ by Lemma 1.3. We set N = N(B) and $\overline{N} = N/O_3(N) \cdot B_0$.

LEMMA 3.1. $\overline{N} = \langle \overline{b} \rangle \times \overline{AD}$ or $\langle \overline{b}, \overline{t} \rangle \times \overline{AD}$ where $\langle b, A \rangle = P \in \text{Syl}_3(N)$, A is homocyclic abelian of order 3^4 , $D \in \text{Syl}_2(N \cap J)$ is dihedral of order 8, \overline{A} is isomorphic to B_0 as a $GF(3)\overline{D}$ -module and t, if it exists, is an involution which inverts B.

PROOF. By Lemma 1.3, $\langle \bar{b} \rangle \lhd \overline{N}$ and $C_{\overline{N}}(\bar{b})/\langle \bar{b} \rangle \cong N/C^*(B) \cong \Sigma_3 \sim Z_2$. Let $P \in \text{Syl}_3(N)$ so that $\overline{P} = O_3(\overline{N})$. The action of \overline{D} on \overline{P} implies that \overline{P} is

either elementary abelian or extra-special of exponent 3. In the latter case, $\operatorname{Aut}_{C(\bar{b})}(\bar{P})$ is isomorphic to a subgroup of $SL_2(3)$ whereas \bar{D} acts faithfully on \bar{P} . Therefore $\bar{P} \cong E_{3^3}$ and we may set $\bar{P} = \langle \bar{b} \rangle \times \bar{A}$ where $\bar{A} = [\bar{P}, Z(\bar{D})]$. Clearly \bar{D} acts faithfully on \bar{A} . Since $[b, P] = B_{0^*} \bar{A}$ and B_0 are isomorphic as $GF(3)\bar{D}$ -modules. Also $Z(\bar{D})$ acts regularly on \bar{A} and B_0 then yields that \bar{A} is homocyclic of order 3^4 . Finally if b is inverted in \bar{G} , hence necessarily in \bar{N} , then t may be chosen as described.

LEMMA 3.2. Either G satisfies the conclusion of Theorem A or the following conditions hold:

- (a) $A \simeq E_{34}$;
- (b) C(B) has odd order, in particular $|O_{3}(C(b))|$ is odd;
- (c) $J = O^{2'}(C(b))$; and
- (d) P has exponent 3.

PROOF. By Lemma 3.1, \underline{A} is homocyclic abelian of order 3^4 . Assume first that $A \cong Z_9 \times Z_9$. Since \overline{A} and B_0 are isomorphic as $GF(3)\overline{D}$ modules, an easy argument yields $B = \Omega_1(P)$. Therefore B is weakly closed in P with respect to G and consequently $P \in \operatorname{Syl}_3(G)$. Suppose $b = G b^{-1}$ so that $\overline{N} = \langle \overline{b}, \overline{t} \rangle \times \overline{AD}$ as in Lemma 3.1. Then, assuming that $t \in N(A)$, as we may, t centralizes A/B_0 and inverts B_0 , an obvious contradiction. Hence $b \notin N'$. But N(P) < N, and P has no $Z_3 \sim Z_3$ homomorphic image. A recent transfer theorem of Yoshida [16] implies that $A = P \cap N(P)'$. Thus $A \in \operatorname{Syl}_3(F^*(G))$ because A = [A, D], and G satisfies the conclusion of Theorem A.

Now assume that A is elementary abelian of rank 4. By Burnside's transfer theorem, C(B) has a normal 3-complement X. Clearly $A \le N(X)$. Since $m_{2,3}(G) = 3$, we have $|X|_2 = |C(B)|_2 = 1$, so (b) holds. By Lemma 1.4, this implies that $J = O^2(C(b))$. Finally, P has exponent 3 since $P = \Omega_1(P)$ and P has class 2. This completes the proof of Lemma 3.2.

Now assume until a contradiction is reached that G does not satisfy the conclusion of Theorem A. Therefore conditions (a), (b), (c) and (d) of Lemma 3.2 hold.

LEMMA 3.3. Choose $A^* \in \text{Syl}_3(C(A))$ so that $b \in N(A^*)$. Then A^* is abelian and $A^*\langle b \rangle \in \text{Syl}_3(G)$.

PROOF. Set $N_1 = N(A)$. By Lemma 3.1, we may assume that $C_{N_1}(b) = O_{3'}(C_{N_1}(b))(\langle b \rangle \times B_0 D)$. Set $Y = C_{N_1}(Z(D))$. Then the regular action of Z(D) on B_0 implies that $\langle b \rangle$ is a Sylow 3-subgroup of Y. As $m_{2,3}(G) = 3$, C(A) has odd order, and Z(D) must act regularly on some Sylow 3-subgroup of C(A). Therefore A^* is abelian. As Z(D) inverts A, $C(A)Z(D) \triangleleft N_1$;

hence, by the Frattini argument, we have that $N_1 = C(A)Y$. Thus $A^*\langle b \rangle \in \operatorname{Syl}_3(N_1)$. Now Z(D) normalizes $\langle C(A), b \rangle$, so Z(D) normalizes a Sylow 3-subgroup of $\langle C(A), b \rangle$ containing $\langle b \rangle$. Without loss, we may then assume that Z(D) normalizes $\langle A^*, b \rangle$. If $Y^* = C_{N(A^*)}(Z(D))$, then we may argue as before to conclude that $N(A^*) = C(A^*)Y^*$ where $\langle b \rangle \in \operatorname{Syl}_3(Y^*)$. But $C(A^*) \leqslant C(A)$ yields $A^*\langle b \rangle \in \operatorname{Syl}_3(N(A^*))$ and as A^* is characteristic in $A^*\langle b \rangle$, we conclude that $A^*\langle b \rangle \in \operatorname{Syl}_3(G)$.

LEMMA 3.4. Choose $a \in B_0$ so that $K = E(C_J(a)) \cong L_2(4)$. Then $C_A(K) \cap N(\langle a,b\rangle) = U \cong E_9$, $b \in N(U)$ and $O_{3',E}(C(U))/O_3(C(U)) \cong L_3(4)$.

PROOF. Set $V = N_A(\langle a, b \rangle)$. Then $V \cong E_{3^3}$ as $[A, b] = B_0$ and $A \cong E_{3^4}$. V normalizes $K = E(C(\langle a, b \rangle))$, so $U = C_V(K) \cong E_9$. Clearly $[b, U] \leq [b, V] = \langle a \rangle$, so $b \in N(U) \setminus C(U)$.

Set M = N(U), C = C(U) and $\tilde{M} = M/O_3(C)$. For the proof of this lemma, we are interested only in the structure of \tilde{M} ; therefore we shall abuse notation and identify elements and subgroups of M with their images in \tilde{M} . If $R = O_3(C)$, then $C_R(b) = \langle a \rangle$. Since [a, K] = 1, the $P \times Q$ lemma applied to $\langle b \rangle \times K$ acting on R shows that [R, K] = 1. This implies that $E = E(C) \neq 1$. By Lemma 3.3, $A^* \in \text{Syl}_3(C)$; so $O_3(E) = 1$, and the components of E are all simple. As $m(R) \geqslant 2$ and $m_{2,3}(G) = 3$, E has at most 2 components, each of which must be normalized by E. Since E is simple, and E and E is simple, and E is simple, E is simple, and E is E in E in E is simple.

We argue that $E\langle b\rangle$ satisfies the hypotheses of Proposition 2.1. Since $U\leqslant C(E),\ m_{2,3}(E)=1$. Furthermore, if $\langle a^*\rangle\in \mathrm{Syl}_3(K)$, then $\langle a^*\rangle\in \mathrm{Syl}_3(C_E(b))$. As $N_A(\langle b,a^*\rangle)$ acts transitively on $\mathcal{E}_1(\langle b,a^*\rangle)\setminus \{\langle a^*\rangle\},\ C_E(\beta)\cong C_E(b)$ for $\beta\in \langle b,a^*\rangle-\langle a^*\rangle$. It remains to verify that $C^*=C_E(a^*)$ has odd order. Since $A\leqslant N(C^*),\ O_3(C^*)$ has odd order. Also $C(b)\cap O_{3',E}(C^*)$ is a 3'-group, so C^* is 3-constrained. In particular, if R^* is a $\langle b\rangle$ -invariant Sylow 3-subgroup of C^* , then R^* is abelian, and $O_{3',3}(C^*)=O_3(C)R^*$. Since $C_{R^*}(b)=\langle a^*\rangle,\ m(R^*)\leqslant 3$. Since $C^*/O_3(C)R^*$ acts faithfully on $\Omega_1(R^*)$ and fixes $\langle a^*\rangle$, it follows that C^* is 3-nilpotent. This implies that $|C^*|$ is odd and hence $E\langle b\rangle$ satisfies the hypotheses of Proposition 2.1.

We conclude that $E \cong L_2(125)$, $L_2(64)$ or $L_3(4)$. If $E \cong L_2(125)$ or $L_2(64)$, let $a^* \in S \in \text{Syl}_3(E)$ where S is $\langle b \rangle$ -invariant. Then S is cyclic of order 9 and $[S, b] = \langle a^* \rangle$. But this implies that $S \leqslant N(B)$ contradicting Lemma 3.2. Hence $E \cong L_3(4)$ as required.

LEMMA 3.5. A contains E_9 subgroups U_1 an and U_2 satisfying

- (i) $b \in N(U_1) \cap N(U_2)$;
- (ii) If $L_i = O_{3',E}(C(U_i))$, then $L_i/O_{3'}(L_i) \cong L_3(4)$ and $U_i \leq L_{3-i}$ for i = 1, 2: and
 - (iii) $C_{L_i}(b) = O_3(C_{L_i}(b)) \times K_i$ where $O^2(C_{L_i}(b)) = K_i \cong A_5$, i = 1, 2.

PROOF. Choose a and U as in Lemma 3.4 and set $U_1 = U$ and $L_1 = O_{3',E}(C(U_1))$. Let $U_2 = A \cap L_1$ so that $U_2 \in \operatorname{Syl}_3(L_1)$ and $A = U_1 \times U_2$. By properties of $L_3(4)$, U_2 is inverted by $\sigma \in \operatorname{Inv}(C(\langle U_1, b \rangle))$. Recall from Lemmas 3.1 and 3.2 that a Sylow 2-subgroup D of $C(b) \cap N(A)$ is dihedral of order 8 and $Z(D) = \langle z \rangle$ inverts A. Assume that $\sigma \in D$, as we may. Then for some $d \in \operatorname{Inv}(D)$, $\sigma^d = \sigma z$. As $U_2 = [A, \sigma]$ and z inverts A, $U_2^d = [A, \sigma^d] = [A, \sigma z] \leq U_1$; hence, $U_2^d = U_1$. Since $N(U_1)$ satisfies (iii) and d interchanges U_1 and U_2 under conjugation, the result follows.

We are now in position to obtain our final contradiction. Let $L_i^* = \langle L_i, b \rangle$ and set $\overline{L_i^*} = L_i^*/O_{3'}(L_i)$. Then $N\overline{L_i^*}(\overline{U_j}) = \overline{U_j}\overline{Q_j}\langle \overline{b} \rangle$, $i \neq j$, where $Q_j \cong Q_8$. As $C_{\overline{L_i}}(\overline{b}) = \overline{K_i} \cong A_5$ and all involutions of $\overline{L_i}$ are conjugate, we may assume that \overline{b} normalizes $\overline{Q_j}$. Now $O_3(L_i)$ is a $\{2,3\}'$ -group, so we may assume that $N_{L_i}(U_j)$ contains a Q_8 -subgroup Q_j and that b normalizes Q_j , $1 \leq i \neq j \leq 2$. Let $M_i = L_i Q_i \langle b \rangle$ and set $\overline{M_i} = M_i/O_{3'}(L_i) = \overline{L_i}\overline{Q_i}\langle \overline{b} \rangle$. Since $\overline{Q_i}$ normalizes $\overline{L_i}$ and $[Q_i, U_j] = 1$, $i \neq j$, it follows from $|C_{\operatorname{Aut}(\overline{L_i})}(\overline{U_j})| = 2 \cdot 3^2$ that $[\overline{Q_i} : C_{\overline{Q_i}}(\overline{L_i})] \leq 2$. But \overline{b} acts regularly on $\overline{Q_i}/Z(\overline{Q_i})$ then yields $\overline{Q_i}\overline{L_i} = \overline{Q_i} \times \overline{L_i}$. Therefore $C_{\overline{Q_i}\overline{L_i}}(\overline{b}) = Z(\overline{Q_i}) \times \overline{K_i} \cong Z_2 \times L_2(4)$ and this in turn implies that $O^2(C(b))$ contains a subgroup isomorphic to $Z_2 \times L_2(4)$. But by Lemma 3.2, $O^2(C(b)) = J \cong L_4(2)$ or $L_5(2)$ and no involution of J centralizes an $L_2(4)$ -subgroup. With this contradiction, the proof of Theorem A is complete.

- **4. Proof of Theorem B.** In this section, G, b, and J satisfy the hypotheses of Theorem B. Thus G is a finite simple group of characteristic 2 type such that:
 - (a) $b \in G$ has order 3;
 - (b) J is a normal subgroup of C(b) of type $L_5(2)$;
 - (c) $\langle b \rangle$ is not strongly closed in C(b); and
 - (d) C(J) has cyclic Sylow 3-subgroups.

By Theorem A, we may assume that $b \in_G J$. As before, we choose $B \in \operatorname{Syl}_3(C(b))$ and set $B_0 = B \cap J$. By Lemma 1.3, $B_0 = \langle b_1, b_2 \rangle$ where $\langle b \rangle^{N(B)} = \{\langle b \rangle, \langle b_1 \rangle, \langle b_2 \rangle\}$. We shall show that $G \cong L_7(2)$ by constructing the centralizer of a central involution. In order to do this, we show in Lemma 4.2 that the 3-fusion pattern in G is the same as that in $L_7(2)$. First, we show that $O_3(C(b))$ has odd order.

LEMMA 4.1. $O_{3'}(C(b))$ has odd order.

PROOF. Set $X = O_{3'}(C(b))$ and let $V \in \text{Syl}_2(X)$. Since G has characteristic 2 type, it suffices to show that $\langle b \rangle$ centralizes $V^* = O_2(N(V))$.

By Lemma 1.2, $X = O_3 \cdot (C(\langle b, b^* \rangle))$ for every $b^* \in J$ of order 3. Since $b^{N(B)} = \langle b \rangle^{\sharp} \cup (b^{N(B)} \cap J)$, it follows that $X = O_3 \cdot (C(b^*))$ for all $b^* \in b^{N(B)}$. Therefore $X \triangleleft N(B)$, so that $N(B) = X \cdot N_{N(B)}(V)$ by the Frattini argument. This implies that $b = N(V) \cdot b_1$, so $C_{V^*}(b) = V = C_{V^*}(b_1)$ Since

 $J \le N(V)$, we have that $V^* = V$ by Lemma 1.6. Thus $\langle b \rangle$ centralizes V^* , as required.

Now set $\beta = b_1 b_2$ and $\gamma = b_1^2 b_2$, so that $B_0 = \langle \beta, \gamma \rangle$. Also set $H^* = C(\beta)$ and $H = O^3(H^*)$. We use Proposition 2.3 to determine the structure of H.

LEMMA 4.2. $H^* = \langle \beta \rangle \times H$ and H has the following properties:

- (i) $\langle b, \gamma \rangle \in \text{Syl}_3(H)$.
- (ii) If $K = E(C_H(b))$ and $L = E(C_H(\gamma))$, then $K \cong L_2(4)$, $L \cong L_3(2)$, $b \in L$ and $\gamma \in K$.
- (iii) H = C(B)E(H) where $E(H) = K \times L$ and C(B) is 2-nilpotent with $O_3(C(B)) = O_3(H) = O_3(C(b))$.

PROOF. We first argue that H satisfies the hypotheses of Proposition 2.3. By Lemma 1.3, $B \in \text{Syl}_3(N_{H^\bullet}(B))$ and $\langle b, \gamma \rangle = B \cap N_{H^\bullet}(B)'$, so Grün's theorem implies that $\langle b, \gamma \rangle \in \text{Syl}_3(H)$. Now $B_0 = G \langle b, b_1 \rangle$. Thus $L = E(C_H(\gamma)) \cong E(C(\langle b, b_1 \rangle))$ and $b \in L$. Furthermore $K = E(C_H(b)) = E(C(\langle b, \beta \rangle))$ and $\gamma \in K$. Also, by Lemma 1.4, $O_3(C_H(\gamma)) = O_3(C(b)) = O_3(C_H(b))$ has odd order. Since either $K \cong L_2(4)$, $L \cong L_3(2)$ or $K \cong L_3(2)$, $L \cong L_2(4)$, it follows from Proposition 2.3, that $H = N_H(K)O_3(H)$ or $N_H(L)O_3(H)$ according to whether $K \cong L_2(4)$ or $L \cong L_2(4)$, respectively.

Assume first that $K \cong L_2(4)$. Set $H_0 = O_3(H)$. Then $C_{H_0}(b) \leq O_3(C(b))$ = $O_{3'}(C(B_0))$ implies that $C_{H_0}(b) = C_{H_0}(L)$. As $L \cong L_3(2)$, we have $[L, H_0]$ = 1 whereupon $H_0 \leq O_{3'}(C(b))$. But then $[K, H_0] = 1$, and $K \leq H$. An easy argument shows that $H_0 = O_{3'}(C(b))$ and $E(H) = K \times L$. By the Frattini argument, H = C(B)E(H) proving (iii). On the other hand, if $K \cong L_3(2)$, then $C_{H_0}(\gamma) \leq O_{3'}(C(B_0)) = O_{3'}(C(b))$; hence, $C_{H_0}(K) = C_{H_0}(\gamma)$. Therefore $[K, H_0] = 1$ and $H_0 \leq O_{3'}(C(B_0))$. This in turn yields $[L, H_0] = 1$, whereupon $L \leq H$. As before, $H_0 = O_{3'}(C(b))$, $E(H) = K \times L$ and H = C(B)E(H). Thus (iii) is true in either case.

In order to complete the proof of (ii), assume that $K \cong L_3(2)$ and $L \cong L_2(4)$ for purpose of a contradiction. Let U be a B-invariant fours subgroup of L and set $V = O_2(N(U))$. Then [B, U] = U gives $U \leq Z(V)$. Now $C_V(\beta) = V \cap H \leq O_2(C_H(U))$, so $[K, C_V(\beta)] \leq K \cap O_2(C_H(U)) = 1$. But $C_H(K) \leq C(B_0)$, and $C(B_0)$ has dihedral Sylow 2-subgroups. It follows that $U = C_V(\beta)$. As $\beta = N(B_0) \gamma$ and $C(B_0) = C(C_0) \gamma$, an application of the Frattini argument yields $\beta = N(B_0) \gamma$. Hence $\gamma = C_V(\gamma) = C_V(K) \gamma$ whereupon $\gamma = 1$. This contradicts $\gamma = 0$. This contradicts $\gamma = 0$.

LEMMA 4.3. $C(\beta) = \langle \beta \rangle \times O_{3'}(C(\beta)) \times K \times L$ and $C(b) = \langle b \rangle \times O_{3'}(C(b)) \times J$.

PROOF. By Lemma 4.2(iii) and Lemma 1.4, it suffices to show that C(B) has odd order. Assume not and let $\tau \in Inv(C(B))$. Then $J(\tau) \cong Aut(L_5(2))$,

so $O_2(C(\langle b, \tau \rangle)) = \langle \tau \rangle$ by Lemma 1.2(b). Since $b = O_{N(B)} b_i$, i = 1, 2, and $\langle \tau \rangle \in \operatorname{Syl}_2(C(B))$, we have $O_2(C(\langle b_i, \tau \rangle)) = \langle \tau \rangle$ for i = 1, 2. By Lemma 1.2(e), (f), $O_2(C_K(\tau)) = O_2(C_L(\tau)) = 1$, so $O_2(C_{KL}(\tau)) = 1$. As $KL\langle \tau \rangle$ contains a Sylow 2-subgroup of $C(\beta)$ and $\beta = O_2(C(\langle \tau \rangle)) = 0$, we have $O_2(C(\langle \tau \rangle)) = O_2(C(\langle \tau \rangle)) = \langle \tau \rangle$. It follows from the action of $O_2(C(\tau)) = \langle \tau \rangle$, a contradiction since $O_2(T(\tau)) = \langle \tau \rangle$, a contradiction since $O_2(T(\tau)) = \langle \tau \rangle$.

For the remainder of the section, let t be an involution in $C(B_0)$ which inverts b. Set C = C(t) and $T = O_2(C)$. We shall show that C is isomorphic to the centralizer of an involution in $L_7(2)$.

LEMMA 4.4. $J \leq C$, $T = C_T(b_1) \cdot C_T(b_2)$ and T is extra-special of type 2^{11}_+ . Furthermore $C_T(b_1) = O_2(C(t) \cap E(C(b_1)))$.

PROOF. By Lemmas 4.2 and 4.3, $C(\langle b_1, t \rangle)$ contains a subgroup isomorphic to $L_3(2)$ which is centralized by b. Therefore t centralizes J by Lemma 1.2(b), whence $J \leq C$.

Observe that $T = \langle C_T(x) : x \in B_0^{\sharp} \rangle \leq \langle O_2(C(\langle x, t \rangle)) : x \in B_0^{\sharp} \rangle$. Setting $D = O_2(C(\langle \beta, t \rangle))$, it follows from Lemma 4.3 that $D \leq C(B_0)$ and that D is dihedral of order 8. This implies that $C_T(\beta) = C_T(B_0) = D \cap T$. Since $\beta = \int_T \gamma$, we have that $T = C_T(b_1) \cdot C_T(b_2)$.

We now show that T is extra-special. Set $T_i = C_T(b_i)$ and $R_i = O_2(C(\langle b_i, t \rangle))$ so that $T_i = T \cap R_i$, i = 1, 2. By Lemma 1.2(g), $C \cap E(C(b_i)) = R_i L_i$ where $L_i \cong L_3(2)$, $b_i \in L_{3-i}$, R_i is extra-special of type 2_+^7 and $D \leq R_1 \cap R_2$. Setting $\overline{C} = C/\langle t \rangle$ and observing that $\overline{T} = F^*(\overline{C})$, we have $\overline{R_i}$ is abelian, hence $\overline{D} \leq C_{\overline{C}}(\overline{T}) = Z(\overline{T})$. Since $\overline{D} = C_{\overline{T}}(\beta)$, Lemma 1.6 implies that \overline{T} is elementary abelian. As $C(\beta) \cap Z(T) = \langle t \rangle$, we have $Z(T) = \langle t \rangle$ by the same lemma. Thus T is extra-special.

By Lemma 4.3, K centralizes D, so γ acts regularly on the K-invariant section T/D. Therefore $|T/D| = 2^{4r}$ for some r > 1. But $|T| = |T_1T_2| = |T_1| |T_2|/|D| \le |R_1| |R_2|/|D| = 2^{11}$ gives $r \le 2$. On the other hand, J acts faithfully on T forcing r > 1. We conclude that r = 2 whereupon $|T| = 2^{11}$ and $T_i = R_i$, i = 1, 2.

Since T_1 is extra-special, $T = T_1 * C_T(T_1)$. As $C_T(T_1) \cap C(b_1) = C_T(T_1) \cap T_1 = \langle t \rangle$, we have $C_T(T_1) \leqslant T_2$. But $C_T(T_1) = [C_T(T_1), b_1] \leqslant [T_2, b_1]$ which is extra-special of type 2_+^5 so that $T = T_1 * [T_2, b_1]$ is extra-special of type 2_+^{11} . This completes the proof.

LEMMA 4.5. TJ is isomorphic to the centralizer of a central involution of $L_7(2)$.

PROOF. Recall from Lemma 4.4, that $C \cap E(C(b_i)) = T_i L_i$ where $T_i = C_T(b_i)$ is extra-special of type 2_+^7 , $L_i \cong L_3(2)$ and $b_j \in L_i$, $1 \le i \ne j \le 2$. If we set $S_i = [T_{3-i}, b_i]$, then $T = T_i * S_i$, $S_i = [T, b_i]$ and S_i is extra-special of

type 2_+^5 , i = 1, 2. Also L_i may be chosen so that $L_i \le J$ whereupon $J = \langle L_1, L_2 \rangle$. We shall use the action of L_i on T to prove that TJ has the required isomorphism type.

As S_i does not admit the faithful action of L_i , we have $[S_i, L_i] = 1$, i = 1, 2. By Lemma 1.1(b), T_i contains precisely 2 L_i -invariant E_{16} -subgroups, say U_i and V_i , with $U_i \cap V_i = \langle t \rangle$. Recall from the proof of Lemma 4.4 that $D = C_T(B_0)$ is dihedral of order 8 and $D = T_1 \cap T_2$. It is easy to check that $D \cap U_i = C_{U_i}(b_{3-i})$ has order 4. Relabelling U_2 and V_2 , if necessary, we may assume that $D \cap U_1 = D \cap U_2$. Set $U = U_1U_2$ and $W_i = [U_i, b_{3-i}]$. Then $U_i = W_i \times (D \cap U_i)$ implies that U has order 2^6 and that $U = U_1W_2 = U_2W_1$. Since $W_{3-i} \leq S_i$, $L_i \leq C(W_{3-i}) \cap N(U_i) \leq N(U)$. Therefore $J = \langle L_1, L_2 \rangle \leq N(U)$. As $|U| = 2^6$, it follows immediately that U is elementary abelian. Similarly $V = V_1V_2$ is a J-invariant E_{2^6} -subgroup of T. Furthermore J acts trivially on $U \cap V$ then gives T = UV and $U \cap V = \langle t \rangle$.

By Lemma 1.5, $U = \langle t \rangle \times U_0$ where U_0 is *J*-invariant. Clearly $U_0 \cap C_T(V) = U_0 \cap V = 1$, so U_0J acts faithfully on V. Since $L_7(2)$ contains a subgroup isomorphic to the split extension of V by $\operatorname{Aut}(V)$, we may embed $VU_0J = TJ$ in $L_7(2)$. But then consideration of orders verifies that TJ is isomorphic to the centralizer of a central involution of $L_7(2)$.

Proposition 4.6. C(t) = TJ.

PROOF. As in the proof of the previous lemma, let U and V be the J-invariant E_{2^6} -subgroups of T. Then $N_C(U) = C_C(U)TJ$ because $\operatorname{Aut}_C(U) = \operatorname{Aut}_{TJ}(U)$. Furthermore, the $P \times Q$ lemma applied to $O^2(C_C(U)) \times U$ acting on T gives $O^2(C_C(U)) \leqslant T$ since $C_T(U) = U$. Therefore $C_C(U)$ is a 2-group and $O_2(N_C(U)) = C_C(U)T$. We shall argue that $N_C(U) = TJ$ and that $N_C(U) \triangleleft C$.

We claim that $t^G \cap T = U^\sharp \cup V^\sharp$. First, we show that $U^\sharp \cup V^\sharp \subseteq t^G \cap T$. In fact, TJ has 2 orbits on U^\sharp , namely $\{t\}$ and $U \setminus \langle t \rangle$. Since $D \cap U$ is a fours group and $Inv(D) \subseteq t^G$ (recall that $D \leqslant E(C(B_0)) \cong L_3(2)$ by Lemma 4.3), we have $U^\sharp \subseteq t^G$. Similarly $V^\sharp \subseteq t^G$. As $C_T(b_1) = T_1 = O_2(C \cap E(C(b_1)))$ by Lemma 4.4, it follows from Lemma 1.1(e) that T contains an involution x with $x \in_G C(\langle b_1, bb_2 \rangle)$. Certainly $x \neq_G t$ because $\langle b_1, bb_2 \rangle \neq_G B_0 \in Syl_3(C)$. But an easy argument shows that TJ acts transitively on $Inv(T) \setminus (U^\sharp \cup V^\sharp)$. Hence $t^G \cap T = U^\sharp \cup V^\sharp$ as claimed.

If $W=U^g\leqslant T$, then U and V are the unique E_{2^6} -subgroups of T generated by conjugates of t implies that W=U or W=V. Therefore $[C:N_C(U)]\leqslant 2$ and $N_C(U) \lhd C$. Thus $T=O_2(N_C(U))$, $U=C_C(U)$ and $N_C(U)=TJ$. We have $C=TJ\cdot N_C(B_0)$ by the Frattini argument. Also, by Lemmas 4.3 and 4.4, $C_C(B_0)$ is 2-closed and $O_2(C_C(B_0))\leqslant T$. As $|\operatorname{Aut}_C(B_0)|\leqslant |\operatorname{Aut}_G(B_0)|=8$ by Lemma 1.4 and $|\operatorname{Aut}_J(B_0)|=8$ by Lemma 1.2(c), TJ contains a Sylow

2-subgroup of $N_C(B_0)$. Therefore C = TJ, as required.

By Suzuki's theorem [14], we conclude from Proposition 4.6 that $G \cong L_7(2)$. This completes the proof of Theorem B.

REFERENCES

- 1. M. Collins, The characterization of finite groups whose Sylow 2-subgroups are of type $L_3(q)$, q even, J. Algebra 25 (1973), 490-512.
- 2. C. Curtis, W. Kantor and G. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59.
- 3. L. Finkelstein and D. Frohardt, Groups with a standard 3-component of type $A_n(2)$, n > 5 (to appear).
- 4. L. Fletcher, B. Stellmacher and W. Stewart, Endliche Gruppen die kein Element der Ordnung sechs enhalten (to appear).
- 5. G. Glauberman, Factorizations in local subgroups of finite groups, CBMS Regional Conference Monograph, Duluth, 1976.
 - 6. D. Goldschmidt, 2-fusion in finite groups, Ann. of Math. 99 (1974), 70-117.
- 7. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc. 147 (1974).
- 8. D. Gorenstein and R. Lyons, Odd standard form in groups of characteristic 2 type, Mem. Amer. Math. Soc. (to appear).
- 9. G. Higman, Some p-local conditions for odd p, Mimeographed notes, Oxford University, 1972.
- 10. _____, Odd characterizations of finite simple groups, Mimeographed notes, University of Michigan, 1968.
 - 11. D. Page, Some problems in the theory of finite groups, Ph.D. Thesis, Oxford University, 1969.
- 12. I. Schur, Über Darstellung der symmetrischen und alternierenden Gruppen durch gebrochenen linearen Substitutionen, Crelle J. 139 (1911), 155–250.
- 13. R. Steinberg, Générateurs, relations, et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Libraire Universitaire, Louvain, Gauthier-Villars, Paris, 1962, pp. 113–127.
 - 14. M. Suzuki, Characterizations of linear groups, Bull. Amer. Math. Soc. 75 (1969), 1043-1091.
- 15. J. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. 89 (1969), 405-514.
 - 16. T. Yoshida, Character-theoretic transfer (to appear).

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202