DIXMIER'S REPRESENTATION THEOREM OF CENTRAL DOUBLE CENTRALIZERS ON BANACH ALGEBRAS

\mathbf{BY}

SIN-EI TAKAHASI

ABSTRACT. The present paper is devoted to a representation theorem of central double centralizers on a complex Banach algebra with a bounded approximate identity. In particular, our result implies the representation theorem of the ideal center of an arbitrary C^* -algebra established by J. Dixmier.

- 1. Introduction, R. C. Busby [2] has noted that every central double centralizer on any C*-algebra can be represented as a bounded continuous complex-valued function on its structure space, which is equivalent to Dixmier's representation theorem [6, Theorem 5]. Let A be a complex Banach algebra with a bounded approximate identity and Prim A the structure space of A. A central double centralizer T on A may be identified with a bounded linear operator T on A such that (Tx)y = x(Ty) for all $x, y \in A$. In this paper, we show that, if the ideal center of A has a Hausdorff structure space, every central double centralizer T on A can be represented as a bounded continuous complex-valued function Φ_T on Prim A such that Tx + P = $\Phi_{\tau}(P)(x+P)$ for all $x\in A$ and $P\in Prim\ A$. Here x+P for $P\in Prim\ A$ denotes the canonical image of x in A/P. In particular, if A is a C^* -algebra then our representation theorem implies the Busby's or, equivalently, Dixmier's. In this way we get a proof of Dixmier's theorem, quite different from that given in [6]. This was inspired by Davenport's representation theorem of multiplier algebras on Banach algebras with bounded approximate identity [5, Theorem 2.8]. We also obtain a similar representation theorem of central double centralizers on a quasi-central Banach algebra with a completely regular center.
- 2. Davenport's representation theorem of Z(M(A)). In this paper, a complex Banach algebra with a bounded approximate identity will be denoted by A and the central double centralizer-algebra on A will be denoted by Z(M(A)), that is the center of the double centralizer-algebra M(A) on A. Let $\{e_{\alpha}\}$ be the approximate identity on A and $A^{\#}$ the set of all elements f in the dual space $A^{\#}$ of A such that $\lim_{\alpha} ||f \cdot e_{\alpha} f|| = 0$, where $f \cdot a(x) = f(ax)$ for

Received by the editors March 8, 1978 and, in revised form, July 6, 1978.

AMS (MOS) subject classifications (1970). Primary 46H15, 46J10; Secondary 46L20, 46L05.

each $a, x \in A$ and $f \in A^*$. The set A^* is a closed subspace of A^* and $A^* = \{f \cdot a : f \in A^*, a \in A\}$ (cf. [3], [5]). Then the dual space $(A^*)^*$ of A^* becomes a Banach algebra under the restriction to A^* of the Arens product on the second dual space A^{**} of A. In fact, the restriction to A^* of the Arens product on A^{**} can be described as follows:

$$[G, f](a) = G(f \cdot a), \qquad F \cdot G(f) = F[G, f]$$

for each $a \in A$, $f \in A^{\#}$ and F, $G \in (A^{\#})^*$. Let π be the canonical embedding of A into A^{**} and i the inclusion map of $A^{\#}$ into A^{*} . Put $\tau = i^*\pi$, where i^* denotes the dual map induced by i. Then the map τ is a norm reducing isomorphism of A into $(A^{\#})^*$ [5, Lemma 2.5]. Furthermore, we can easily verify that $\|x\| \leq M \|\tau(x)\|$ for each $x \in A$, where M is the bound on $\{e_{\alpha}\}$. Then $\tau(A)$ is uniformly closed in $(A^{\#})^*$. We now define D(A) to be the set

$$D(A) = \{ F \in (A^{\#})^* : F \cdot \tau(A) + \tau(A) \cdot F \subset \tau(A) \}.$$

Then D(A) is a Banach subalgebra of $(A^{\#})^*$ and $\tau(A)$ is a closed two-sided ideal of D(A).

DEFINITION 2.1. Let Z(D(A)) be the center of D(A). The algebra Z(D(A)) is said to be the ideal center of A.

By Lemma 2.7 in [5], the algebra $(A^{\#})^*$ has an identity J. If A is a C^* -algebra, then $A^{\#} = A^*$ and so $(A^{\#})^* = A^{**}$ (cf. [5, Proof of Corollary 2.10]). Then Z(D(A)) becomes the ideal center of A in the sense of Dixmier [6].

J. Davenport has proved that there exists a continuous, algebraic isomorphism μ of Z(M(A)) into $(A^{\#})^*$ such that $\tau(Tx) = (\mu T) \cdot \tau x = \tau x \cdot (\mu T)$ for all $x \in A$ and $T \in Z(M(A))$ [5, Theorem 2.8]. In fact, the map μ is given by

$$\mu T = \text{weak}_{\alpha}^* - \lim_{\alpha} \tau(Te_{\alpha})$$

for each $T \in Z(M(A))$. We then, from this Davenport result, obtain the following

LEMMA 2.2. Let A be a Banach algebra with a bounded approximate identity $\{e_{\alpha}\}$ and μ the isomorphism of Z(M(A)) into $(A^{\#})^{*}$ given by Davenport. Then $\mu(Z(M(A))) = Z(D(A))$.

PROOF. Let $T \in Z(M(A))$. Since $\tau(A) \cdot (\mu T) = (\mu T) \cdot \tau(A) = \tau(T(A)) \subset \tau(A)$, we have $\mu T \in D(A)$. It is well known that $\pi(A)$ is weak*-dense in A^{**} . Moreover, i^* is a weak*-continuous map of A^{**} onto $(A^{\#})^*$. These facts imply that $\tau(A)$ is weak*-dense in $(A^{\#})^*$. Then for each $F \in (A^{\#})^*$, there exists a net $\{x_{\lambda}\}$ in A such that $F = \text{weak*-lim}_{\lambda}\tau(x_{\lambda})$. Let T^* be the dual map induced by T. Note that $T^*(f \cdot a) = f \cdot (Ta)$ for each $a \in A$ and $f \in A^*$, so

that
$$T^*(A^\#) \subset A^\#$$
. Put $T^\# = T^*|A^\#$. Then we have
$$\lim_{\lambda} \tau(Tx_{\lambda})(f) = \lim_{\lambda} \tau(x_{\lambda})(T^\#f) = F(T^\#f)$$

$$= \lim_{\alpha} F(T^\#(f \cdot e_{\alpha})) = \lim_{\alpha} \tau(Te_{\alpha})[F, f]$$

$$= (\mu T)[F, f] = (\mu T) \cdot F(f)$$

for all $f \in A^{\#}$. On the other hand, we have

$$\lim_{\lambda} \tau(Tx_{\lambda})(f) = \lim_{\lambda} \tau(x_{\lambda}) \cdot (\mu T)(f)$$

$$= \lim_{\lambda} \tau(x_{\lambda})[\mu T, f] = F[\mu T, f] = F \cdot (\mu T)(f)$$

for all $f \in A^{\#}$. We thus obtain $(\mu T) \cdot F = F \cdot (\mu T)$, so that $\mu T \in Z(D(A))$. Conversely, let $G \in Z(D(A))$. Put $\hat{G}(x) = \tau^{-1}(G \cdot \tau x)$ for each $x \in A$. Then \hat{G} is a bounded linear operator on A. Furthermore, $\hat{G} \in Z(M(A))$. In fact, for each $x, y \in A$, $\tau((\hat{G}x)y) = \tau(\tau^{-1}(G \cdot \tau x)y) = (G \cdot \tau x) \cdot \tau y = \tau x \cdot (G \cdot \tau y)$, so that $(\hat{G}x)y = x\tau^{-1}(G \cdot \tau y) = x(\hat{G}y)$. We also have

$$\mu \hat{G}(f) = \lim_{\alpha} \tau (\hat{G}e_{\alpha})(f) = \lim_{\alpha} G \cdot \tau e_{\alpha}(f)$$

$$= \lim_{\alpha} \tau e_{\alpha} \cdot G(f) = \lim_{\alpha} [G, f](e_{\alpha})$$

$$= \lim_{\alpha} G(f \cdot e_{\alpha}) = G(f)$$

for all $f \in A^{\#}$. We thus get $\mu \hat{G} = G$ and our result is proved.

Furthermore, the following stronger result can be proved, and it is similar to one established by K. Saito [7], in which he has given a characterization of double centralizer-algebras on Banach algebras under some conditions. This was pointed out by the referee.

PROPOSITION 2.3. Let A be a Banach algebra with a bounded approximate identity $\{e_{\alpha}: \alpha \in \Lambda\}$. Then there exists a continuous, algebraic isomorphism v of the double centralizer-algebra M(A) on A onto D(A) which is an extension of μ to M(A).

PROOF. Let $(T, S) \in M(A)$. Since $\{\tau(Te_{\alpha}): \alpha \in \Lambda\}$ is bounded, it has a weak*-convergent subnet $\{\tau(Te_{\alpha'}): \alpha' \in \Lambda'\}$ in $(A^{\#})^*$. We now define the map ν from M(A) to $(A^{\#})^*$ by

$$\nu(T, S) = \operatorname{weak}^*_{\alpha'} - \lim \tau(Te_{\alpha'})$$

for each $(T, S) \in M(A)$. Then ν is well defined. In fact, let $\{\tau(Te_{\alpha'}): \alpha' \in \Lambda'\}$ converge to F and $\{\tau(Te_{\alpha''}): \alpha'' \in \Lambda''\}$ converge to G, each in the weak*-topology. Then for each $x \in A$ and $f \in A^{\#}$, we have

$$F \cdot \tau x(f) = \lim_{\alpha'} \tau(Te_{\alpha'}) \cdot \tau x(f) \quad \text{(from [5, 2.6.1])}$$
$$= \lim_{\alpha'} \tau(T(e_{\alpha'}x))(f) = \lim_{\alpha'} f(T(e_{\alpha'}x))$$
$$= f(Tx) = \tau(Tx)(f).$$

Similarly, $G \cdot \tau x(f) = \tau(Tx)(f)$ for each $x \in A$ and $f \in A^{\#}$. Hence $(F - G) \cdot \tau x = 0$ for each $x \in A$. It follows by [5, 2.6.3] that F = G. Clearly, ν is linear. Also, since $\nu(T, S) \cdot \tau x = \tau(Tx)$ for each $x \in A$ as was seen in the above argument, we have $\nu(T, S) \cdot \tau(A) \subset \tau(A)$. Furthermore, we have

$$\tau x \cdot \nu(T, S)(f) = \lim_{\alpha} \tau x \cdot \tau(Te_{\alpha})(f) \quad \text{(from [5, 2.6.2])}$$

$$= \lim_{\alpha} \tau((Sx)e_{\alpha})(f) = \lim_{\alpha} f((Sx)e_{\alpha})$$

$$= f(Sx) = \tau(Sx)(f)$$

for each $x \in A$ and $f \in A^{\#}$. Then $\tau x \cdot \nu(T, S) = \tau(Sx)$ for each $x \in A$, so that $\tau(A) \cdot \nu(T, S) \subset \tau(A)$. In other words, $\nu(M(A)) \subset D(A)$. Now let (T, S), $(T', S') \in M(A)$. Set $F = \nu(T, S)$, $F' = \nu(T', S')$ and $F'' = \nu(TT', S'S)$. Then $F'' \cdot \tau x = \tau(TT'x)$ for each $x \in A$. On the other hand, for each $x \in A$, $F \cdot F' \cdot \tau x = F \cdot \tau(T'x) = \tau(TT'x)$, and hence $(F'' - F \cdot F') \cdot \tau x = 0$. It follows by [5, 2.6.3] that $F'' = F \cdot F'$. In other words, $\nu((T, S)(T', S')) = \nu(T, S) \cdot \nu(T', S')$. If F = F', then $\tau((T - T')x) = (F - F') \cdot \tau x = 0$ for each $x \in A$, and so T = T' (and hence S = S') since τ is one-to-one. Thus ν is an algebraic isomorphism of M(A) into D(A). To show that ν is onto, let $F \in D(A)$ and set

$$L_F(x) = \tau^{-1}(F \cdot \tau x), \qquad R_F(x) = \tau^{-1}(\tau x \cdot F)$$

for each $x \in A$. Then (L_F, R_F) is an element of M(A). We further have

$$(\nu(L_F, R_F) - F) \cdot \tau x = \tau(L_F x) - F \cdot \tau x = 0$$

for each $x \in A$. It follows that $\nu(L_F, R_F) = F$. Thus ν is onto. Let $(T, S) \in M(A)$. Since $\nu(T, S) = \text{weak*-}\lim_{\alpha} \tau(Te_{\alpha})$ and $\|\tau(Te_{\alpha})\| \le \|Te_{\alpha}\| \le M\|(T, S)\|$, it follows that $\|\nu(T, S)\| \le M\|(T, S)\|$.

Finally we can easily see that the restriction to Z(M(A)) of ν is equal to μ from the definition of ν .

REMARK 2.4. Let A be as in Proposition 2.3 and let (T, S) be any element of M(A). Then $\nu(T, S) \cdot \tau x = \tau(Tx)$ and $\tau x \cdot \nu(T, S) = \tau(Sx)$ as was seen in the proof of Proposition 2.3. Therefore $\|(T, S)\| \le M\|\nu(T, S)\|$ since τ is norm reducing and $\|x\| \le M\|\tau x\|$ for all $x \in A$. If M = 1, then ν is isometric (cf. [5, Corollary 2.9]).

3. Main theorems. If B is any algebra, then Prim B will always denote the structure space of B, that is the set of all primitive ideals in B, with hull-kernel topology. Let $P \in \text{Prim } A$. Then by Theorem 2.6.6 in [8], there exists a unique element P' in Prim D(A) such that $P' \cap \tau(A) = \tau(P)$. If $T \in Z(M(A))$, then $\mu T \in Z(D(A))$ from Lemma 2.2, so that $\mu T + P'$ belongs to the center of D(A)/P'. Notice that D(A)/P' is a primitive Banach algebra and so its center reduces to the complex field. Therefore there exists a unique complex number $\Phi_T(P)$ such that $\mu T + P' = \Phi_T(P)(J + P')$.

Moreover,

$$|\Phi_T(P)| \le ||\Phi_T(P)(J+P')|| = ||\mu T + P'||$$

 $\le ||\mu T|| \le ||\mu|| ||T||.$

We thus obtain a bounded complex-valued function Φ_T on Prim A for each T in Z(M(A)). Let R(A) be the radical of A, that is the intersection of all primitive ideals in A, and $ZM_R(A)$ the set of all $T \in Z(M(A))$ such that $T(A) \subset R(A)$. Then $ZM_R(A)$ is a closed two-sided ideal of Z(M(A)). Let $C^b(\operatorname{Prim} A)$ be the algebra of all bounded continuous complex-valued functions on $\operatorname{Prim} A$.

The following result can be seen in the proof of Theorem 2.7.5 in [8].

LEMMA 3.1. Let A be a Banach algebra and Z(A) its center. Then for each $P \in \text{Prim } A \text{ with } Z(A) \not\subset P, P \cap Z(A) \in \text{Prim } Z(A)$. If A has an identity, then $P \to P \cap Z(A)$ is a continuous map of Prim A into Prim Z(A).

We are now in a position to state and prove our main theorems.

THEOREM 3.2. Let A be a complex Banach algebra with a bounded approximate identity. If the ideal center of A has a Hausdorff structure space, then the map $T \to \Phi_T$ is a continuous homomorphism of Z(M(A)) into $C^b(\operatorname{Prim} A)$ such that $Tx + P = \Phi_T(P)(x + P)$ for all $x \in A$ and $P \in \operatorname{Prim} A$, the kernel of the homomorphism being equal to $ZM_R(A)$.

PROOF. By the construction of Φ_T , the map $T \to \Phi_T$ is a continuous homomorphism of Z(M(A)) into the algebra of all bounded complex-valued functions on Prim A. We first show that $\Phi_T \in C^b(\text{Prim } A)$ for each $T \in$ Z(M(A)). By Theorem 2.6.6 in [8], the map $P \to P'$ is a homeomorphism of Prim A into Prim D(A). Moreover, $M \to M \cap Z(D(A))$ is a continuous map of Prim D(A) into Prim Z(D(A)) by Lemma 3.1. Since Prim Z(D(A)) is Hausdorff, Z(D(A)) is completely regular (cf. [8, Definition 2.7.1]). It follows by Theorem 3.7.1 in [8] that the map $Q \rightarrow \chi_Q$ is a homeomorphism of Prim Z(D(A)) onto Hom Z(D(A)). Here χ_Q denotes the nonzero homomorphism of Z(D(A)) onto the complex field induced by $Q \in Prim Z(D(A))$ and Hom Z(D(A)) denotes the carrier space of Z(D(A)) with Z(D(A))topology. We thus observe the map $P \to \chi_{P' \cap Z(D(A))}(z)$ is continuous on Prim A for each $z \in Z(D(A))$. Let $T \in Z(M(A))$ and $P \in Prim A$. Since $\mu T +$ $P' = \Phi_T(P)(J + P')$, we have $\mu T - \Phi_T(P)J \in P' \cap Z(D(A))$. It follows that $\Phi_T(P) = \chi_{P' \cap Z(D(A))}(\mu T)$. Then $\Phi_T \in C^b(\text{Prim } A)$ by the above argument.

We next show that if $T \in Z(M(A))$, then $Tx + P = \Phi_T(P)(x + P)$ for all $x \in A$ and $P \in \text{Prim } A$. Let $T \in Z(M(A))$, $x \in A$ and $P \in \text{Prim } A$. Then we have

$$\tau(Tx) + P' = (\mu T) \cdot \tau x + P' = (\mu T + P')(\tau x + P')$$

= $\Phi_T(P)(J + P')(\tau x + P') = \Phi_T(P)(\tau x + P').$

It follows that $\tau(Tx - \Phi_T(P)x) \in P' \cap \tau(A) = \tau(P)$. Since τ is injective, we obtain that $Tx + P = \Phi_T(P)(x + P)$.

Finally we can easily see that the kernel of the map $T \to \Phi_T$ is equal to $ZM_R(A)$ from the equation $Tx + P = \Phi_T(P)(x + P)$, $x \in A$.

REMARK 3.3. Let A be as in Theorem 3.2. If the approximate identity of A is uniformly bounded by one, then the map μ is isometric [5, Corollary 2.9] and so $T \to \Phi_T$ is a norm reducing homomorphism of Z(M(A)) into $C^b(\operatorname{Prim} A)$. If A is semisimple, then the map $T \to \Phi_T$ is injective. Furthermore, if A is arbitrary C^* -algebra, then the ideal center Z(D(A)) of A has necessarily a Hausdorff structure space because Z(D(A)) is also a commutative C^* -algebra.

The following result is equivalent to the Dixmier's representation theorem [6, Theorem 5].

COROLLARY 3.4. If A is an arbitrary C^* -algebra, then the map $T \to \Phi_T$ is an isometric *-isomorphism of Z(M(A)) onto $C^b(\operatorname{Prim} A)$.

PROOF. Note that the map $T \to \Phi_T$ is isometric from Remark 3.3. The map is also surjective because the Dauns and Hofmann theorem [4] has showed that every function in $C^b(\text{Prim }A)$ can be realized uniquely in this way.

The following definition can be seen in the Archbold's paper [1], in case that A is a C^* -algebra.

DEFINITION 3.5. Let A be a Banach algebra and Z(A) its center. Then A is said to be quasi-central if hull $Z(A) = \emptyset$. Here hull Z(A) denotes the set of all primitive ideals P in A such that $Z(A) \subset P$.

THEOREM 3.6. Let A be a quasi-central Banach algebra with a bounded approximate identity and Z(A) its center. If Z(A) is completely regular, then the map $T \to \Phi_T$ is a continuous homomorphism of Z(M(A)) into $C^b(\text{Prim }A)$.

PROOF. As in the proof of Theorem 3.2, we only show that $\Phi_T \in C^b(\text{Prim } A)$ for each $T \in Z(M(A))$. To see this, we first show that each $P \in \text{Prim } A$ and $T \in Z(M(A))$ satisfy the following properties:

$$\chi_{P' \cap Z(D(A))} \tau | Z(A) = \chi_{P \cap Z(A)}, \tag{1}$$

$$\Phi_T(P) = \chi_{P' \cap Z(D(A))}(\mu T), \tag{2}$$

$$\Phi_T(P)\chi_{P\cap Z(A)} = \chi_{P\cap Z(A)}T|Z(A). \tag{3}$$

In fact, let $z \in Z(A)$. Since hull $Z(A) = \emptyset$, it follows that there exists $z_0 \in Z(A)$ with $z_0 \notin P$, and hence $\chi_{P \cap Z(A)}(z_0) \neq 0$. Note that $\tau(Z(A)) \subset Z(D(A))$, so that $\tau(\chi_{P' \cap Z(D(A))}(\tau z)z_0 - zz_0) \in P' \cap \tau(Z(A))$. Since $P' \cap \tau(Z(A)) = \tau(P \cap Z(A))$, we have $\chi_{P' \cap Z(D(A))}(\tau z)z_0 - zz_0 \in P \cap Z(A)$ and

so $\chi_{P'\cap Z(D(A))}(\tau z)=\chi_{P\cap Z(A)}(z)$. Hence (1) holds. Notice that $\mu T-\Phi_T(P)J\in P'\cap Z(D(A))$. Then $\chi_{P'\cap Z(D(A))}(\mu T)=\Phi_T(P)\chi_{P'\cap Z(D(A))}(J)=\Phi_T(P)$ and hence (2) holds. Note that $T(Z(A))\subset Z(A)$. Then, by (1) and (2), we have

$$\chi_{P \cap Z(A)}(Tz) = \chi_{P' \cap Z(D(A))}(\tau(Tz))$$

$$= \chi_{P' \cap Z(D(A))}(\mu T) \chi_{P' \cap Z(D(A))}(\tau z)$$

$$= \Phi_T(P) \chi_{P \cap Z(A)}(z).$$

Thus (3) has been shown.

By Theorem 2.7.5 in [8], $P \to P \cap Z(A)$ is a continuous map of Prim A into Prim Z(A). Moreover, $I \to \chi_I$ is a homeomorphism of Prim Z(A) onto Hom Z(A) by Theorem 3.7.1 in [8]. Therefore, by (3), $P \to \Phi_T(P)\chi_{P \cap Z(A)}(z)$ is a continuous complex-valued function on Prim A for each $z \in Z(A)$. Suppose that Φ_T is discontinuous at some point P_0 in Prim A. Then there exists a positive number ε_0 and a net $\{P_\lambda \colon \lambda \in \Lambda\}$ in Prim A which converges to P_0 such that

$$|\Phi_T(P_\lambda) - \Phi_T(P_0)| \ge \varepsilon_0 \tag{4}$$

for all $\lambda \in \Lambda$. Since A is quasi-central, we can choose an element z_0 in Z(A) such that $\chi_{P_0 \cap Z(A)}(z_0) = 1$. By the above argument, the complex-valued function $P \to \chi_{P \cap Z(A)}(z_0)$ and $P \to \Phi_T(P)\chi_{P \cap Z(A)}(z_0)$ on Prim A are continuous. Then for any $\varepsilon > 0$, there exists a neighbourhood U_{P_0} of P_0 such that

$$|\chi_{P \cap Z(A)}(z_0) - 1| \le \varepsilon \tag{5}$$

and

$$|\Phi_T(P)\chi_{P\cap Z(A)}(z_0) - \Phi_T(P_0)| \le \varepsilon \tag{6}$$

for all $P \in U_{P_0}$. In particular, choose ε such that

$$\varepsilon = \min\{1/2, (4 + 4|\Phi_T(P_0)|)^{-1}\varepsilon_0\}.$$

Furthermore, choose $\lambda_0 \in \Lambda$ such that $P_{\lambda_0} \in U_{P_0}$ and set $\delta = \chi_{Q_0}(z_0)$, where $Q_0 = P_{\lambda_0} \cap Z(A)$. Note that $|\delta| \ge 1/2$ by (5). We then have

$$\begin{split} |\Phi_T(P_{\lambda_0}) - \Phi_T(P_0)| &\leq |\delta|^{-1} (|\Phi_T(P_{\lambda_0})\delta - \Phi_T(P_0)| + |\Phi_T(P_0) - \Phi_T(P_0)\delta|) \\ &\leq |\delta|^{-1} (\varepsilon + |\Phi_T(P_0)|\varepsilon) \quad \text{(from (5) and (6))} \\ &\leq \varepsilon_0/2. \end{split}$$

This contradicts (4). We thus obtain that Φ_T is continuous on Prim A and the proof is complete.

The author wishes to thank the referee for his helpful comments.

REFERENCES

- 1. R. J. Archbold, Density theorems for the center of a C*-algebra, J. London Math. Soc. 10 (1975), 185-197. MR 52 # 1331.
- 2. R. C. Busby, On structure spaces and extensions of C*-algebras, J. Functional Analysis 1 (1967), 370-377. MR 37 #771.
- 3. P. Curtis and Figa-Talamanca, Factorization theorems for Banach algebras, Function Algebras, (F. T. Birtel, ed.), Scott, Foresman and Co., Chicago, Ill., 1966, pp. 169–185. MR 34 #3350.
- 4. J. Dauns and K. H. Hofmann, Representations of rings by continuous sections, Mem. Amer. Math. Soc. No. 83, 1968. MR 40 #752.
- 5. J. W. Davenport, Multipliers on a Banach algebra with a bounded approximate identity, Pacific J. Math. 63 (1976), 131-135. MR 54 #931.
- 6. J. Dixmier, Ideal center of a C*-algebra, Duke Math. J. 35 (1968), 375-382. MR 37 #5703.
- 7. K. Saito, A characterization of double centralizer algebras of Banach algebras, Sci. Rep. Niigata Univ. Ser A. 11 (1974), 5-11. MR 49 #5844.
- 8. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N.J., 1960. MR 22 #5903.

DEPARTMENT OF MATHEMATICS, IBARAKI UNIVERSITY, MITO, IBARAKI 310, JAPAN