BASIC SEQUENCES AND SUBSPACES IN LORENTZ SEQUENCE SPACES WITHOUT LOCAL CONVEXITY

BY NICOLAE POPA¹

ABSTRACT. After some preliminary results (§1), we give in §2 another proof of the result of N. J. Kalton [5] concerning the unicity of the unconditional bases of l_p , 0 .

Using this result we prove in §3 the unicity of certain bounded symmetric block bases of the subspaces of the Lorentz sequence spaces d(w, p), 0 . In §4 we show that every infinite dimensional subspace of <math>d(w, p) contains a subspace linearly homeomorphic to l_p , 0 .

Unlike the case p > 1 there are subspaces of d(w, p), 0 , which contain no complemented subspaces of <math>d(w, p) linearly homeomorphic to l_p . In fact there are spaces d(w, p), $0 , which contain no complemented subspaces linearly homeomorphic to <math>l_p$. We conjecture that this is true for every d(w, p), 0 . The answer to the previous question seems to be important: for example we can prove that a positive complemented sublattice <math>E of d(w, p), $0 , with a symmetric basis is linearly homeomorphic either to <math>l_p$ or to d(w, p); consequently, a positive answer to this question implies that E is linearly homeomorphic to d(w, p). In §5 we are able to characterise the sublattices of d(w, p), $p = k^{-1}$ (however under a supplementary restriction concerning the sequence $(w_n)_{n=1}^{\infty}$), which are positive and contractive complemented, as being the order ideals of d(w, p).

Finally, in §6, we characterise the Mackey completion of d(w, p) also in the case $p = k^{-1}$, $k \in \mathbb{N}$.

- 1. Preliminary results. Let X be a real linear space and $0 . A function, denoted by <math>\| \|$, defined on X with the values in \mathbb{R}_+ , is called a *p-norm* (or briefly a *norm*) if the following conditions are verified.
 - 1. ||x|| = 0 if and only if x = 0.
 - 2. $\|\alpha x\| = |\alpha|^p \|x\|$ for $x \in X$ and $\alpha \in \mathbb{R}$.
 - 3. $||x + y|| \le ||x|| + ||y||$ for $x, y \in X$.

Then the subsets $U_n = \{x \in X : ||x|| \le n^{-1}\}$, for $n \in \mathbb{N}$, constitute a fundamental system of neighbourhoods of zero for a metric linear topology of X. If X is complete with respect to this topology we say that X is a p-Banach space.

A sequence $(x_n)_{n=1}^{\infty}$ in X is called a *basis* if for every $x \in X$ there is a unique sequence of scalars $(a_n)_{n=1}^{\infty}$ such that $x = \sum_{i=1}^{\infty} a_i x_i$.

The following lemma is essentially known (see Theorem III.6.1, Theorem 6.5 of [10]):

LEMMA 1.1. Let $(x_i)_{i=1}^{\infty}$ be a sequence in X. The following assertions are equivalent: 1. The series $\sum_{n=1}^{\infty} x_{\pi(n)}$ converges for every permutation π of the integers.

Received by the editors September 13, 1979 and, in revised form, December 4, 1979. AMS (MOS) subject classifications (1970). Primary 46A45, 46A10; Secondary 46A35.

Key words and phrases. p-Banach spaces, symmetric bases, complemented subspaces.

¹Supported by Alexander von Humboldt Foundation.

- 2. The series $\sum_{i \in A} x_i$ converges for every subset $A \subset \mathbb{N}$.
- 3. For every $\varepsilon > 0$ there exists an integer n such that $\|\sum_{i \in H} x_i\| \le \varepsilon$ for every finite set of integers H which satisfies $\min\{i \in H\} > n$.
- 4. For any bounded sequence of real numbers $(a_n)_{n=1}^{\infty}$, the series $\sum_{i=1}^{\infty} a_i x_i$ converges, when $\sum_{i=1}^{\infty} x_i$ converges.

The proof will be omitted.

A basis $(x_n)_{n=1}^{\infty}$ in X is said to be *unconditional* if for every $X \ni x = \sum_{i=1}^{\infty} a_i x_i$, the sequence $(a_n x_n)_{n=1}^{\infty}$ verifies one of the equivalent assertions of Lemma 1.1.

If $0 < \inf_n ||x_n|| \le \sup_n ||x_n|| < +\infty$, we say that the basis $(x_n)_{n=1}^{\infty}$ is bounded. The following corollary is also known.

COROLLARY 1.2. Let $(x_i)_{i=1}^{\infty}$ be an unconditional bounded basis of X. Then

$$\left|\left|\left|x\right|\right|\right| = \sup_{|b_i| < 1} \left\|\sum_{i=1}^{\infty} a_i b_i x_i\right\| < +\infty. \tag{1.1}$$

We have also

LEMMA 1.3. The space X with the p-norm $\| \| \|$ is a p-Banach space.

PROOF. Let $(x^k)_{k=1}^{\infty}$ be a Cauchy sequence in (X, || |||) and let $\varepsilon > 0$. Then there exists the sequence of integers $(n_k)_{k=1}^{\infty}$ so that $|||x^n - x^{n_1}||| < \varepsilon$ for $n > n_1$ and $|||x^{n_k} - x^{n_{k+1}}||| < \varepsilon/2^k$ for every $k \in \mathbb{N}$. Since (X, ||||) is a p-Banach space and $||x|| \le |||x|||$, there exists $x = \sum_{n=1}^{\infty} (x^{n_{k+1}} - x^{n_k}) + x^{n_1} \in X$ and $|||x - x^n||| \le 2\varepsilon$ for $n > n_1$. \square

COROLLARY 1.4. There exists a constant $0 < M < +\infty$ such that

$$\left\| \sum_{i=1}^{\infty} a_i b_i x_i \right\| \le M \left\| \sum_{i=1}^{\infty} a_i x_i \right\| \sup_{i \in \mathbb{N}} |b_i|^p \tag{1.2}$$

where $(x_i)_{i=1}^{\infty}$ is an unconditional bounded basis of X and $x = \sum_{i=1}^{\infty} a_i x_i \in X$.

PROOF. It follows by Lemma 1.3 and by the open mapping theorem.

Two bases $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ of X are equivalent and we write $(x_n) \sim (y_n)$, if for every sequence of scalars $(a_n)_{n=1}^{\infty}$, $\sum_{n=1}^{\infty} a_n x_n$ converges if and only if $\sum_{n=1}^{\infty} a_n y_n$ converges. A basis $(x_n)_{n=1}^{\infty}$ of X is called *symmetric* if every permutation $(x_{\pi(n)})_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ is a basis of X equivalent to $(x_n)_{n=1}^{\infty}$.

Let $w = (w_i)_{i=1}^{\infty} \in c_0 \setminus l_1$, where $1 = w_1 \ge w_2 \ge \cdots \ge w_n \ge \cdots \ge 0$. For a fixed p with 0 , let

$$d(w,p) = \left\{ a = (a_i)_{i=1}^{\infty} \in c_0 \colon \|a\|_{p,w} = \sup_{\pi} \sum_{i=1}^{\infty} |a_{\pi(i)}|^p \cdot w_i < +\infty \right\}$$

where π is an arbitrary permutation of the integers.

Then $X = (d(w, p), || ||_{p,w})$ is a p-Banach space and the canonical basis $(x_n)_{n=1}^{\infty}$, is a symmetric basis of X (see [4]). If $p \ge 1$ we can define analogously d(w, p), which is a Banach space under the norm

$$||a||_{p,w} = \sup_{\pi} \left(\sum_{i=1}^{\infty} |a_{\pi(i)}|^p \cdot w_i \right)^{1/p}, \quad a = (a_i)_{i=1}^{\infty} \in d(w, p).$$

A sequence $(y_n)_{n=1}^{\infty}$ in a p-Banach space with a basis $(x_n)_{n=1}^{\infty}$ is called a block basic sequence of $(x_n)_{n=1}^{\infty}$, if there is an increasing sequence of integers $(p_n)_{n=1}^{\infty}$ such that $y_n = \sum_{i=p_n+1}^{p_{n+1}} a_i x_i$ with $(a_n)_{n=1}^{\infty}$ scalars.

It is known that $(y_n)_{n=1}^{\infty}$ is a basis of $\overline{Sp}\{y_n: n \in \mathbb{N}\}$ (see II.5.6 of [10]).

If E and F are two Banach spaces and $0 < r < +\infty$, we say that the linear bounded operator $T: E \to F$ is r-absolutely summing if, for any finite set of elements $(x_i)_{i=1}^n$ of E, there is c > 0 such that

$$\left(\sum_{i=1}^{n} \|Tx_i\|^r\right)^{1/r} \le c \cdot \sup \left\{ \left(\sum_{i=1}^{n} |x'(x_i)|^r\right)^{1/r} : x' \in E', \|x'\| \le 1 \right\}. \tag{1.3}$$

Denote the set of all r-absolutely summing operators from E to F by $P_r(E, F)$.

If $T \in P_r(E, F)$ and $r \ge 1$ then $\pi_r(T) = \inf\{c > 0: c \text{ verifies } (1.3)\}$ is a norm on $P_r(E, F)$, which is a Banach space with respect to this norm.

We recall here two more theorems which we need:

If A is an infinite matrix of real numbers $(a_{ij})_{i,j=1}^{\infty}$ and 0 , then we denote by

$$||A||_{\infty,p} = \sup_{||x||_{\infty} \le 1} \left(\sum_{i} \left| \sum_{k} a_{jk} x_{k} \right|^{p} \right)^{1/p}$$

where $||x||_{\infty} = \sup_{k \in \mathbb{N}} |x_k|$.

THEOREM 1.5 (SEE THEOREM 2 OF [2]). Let $0 . For every matrix A such that <math>||A||_{\infty,p} < \infty$, we have the inequality

$$\inf\{\|d\|_{p/(1-p)}\cdot\|B\|_{\infty,1}: A = (\operatorname{diag} d) \circ B\} \leqslant K\|A\|_{\infty,p}$$
 (1.4)

where

$$d = (d_n)_{n=1}^{\infty} \in l_{p/(1-p)}, \qquad ||d||_{p/(1-p)} = \left(\sum_i |d_i|^{p/(1-p)}\right)^{(1-p)/p},$$

diag d is the matrix which has on the diagonal the numbers d_n , and K is a positive constant depending only on p.

THEOREM 1.6 (SEE THEOREM 94 OF [9]). Let (X, μ) be a measure space and H a Hilbert space. Then any linear bounded operator from $L^1(X, \mu)$ on H is p-absolutely summing for all 0 .

(In fact Maurey proved a stronger version of Theorem 1.6.)

2. The unicity of the unconditional bases of l_p , $0 . In this section we give a new proof of Kalton's result [5] concerning the unicity of unconditional bases of <math>l_p$, $0 . The proof follows the idea of Lindenstrauss and Pełczyński's proof concerning the unicity of unconditional bases of <math>l_1$ [7].

Theorem 2.1. Any two unconditional bounded bases of l_p , 0 , are equivalent.

PROOF. If $(e_n)_{n=1}^{\infty}$ is the canonical basis of l_p , $0 , let <math>(x_n)_{n=1}^{\infty}$, where $x_i = \sum_{j=1}^{\infty} b_{ij} e_j$ such that $\sum_{j=1}^{\infty} |b_{ij}|^p = 1$ for every $i \in \mathbb{N}$, another unconditional

(assumed normalized) basis and let $y = \sum_{i=1}^{\infty} a_i x_i$ an element of l_p , $0 . For any <math>x \in l_p$ we denote by $||x||_p = ||\sum_{i=1}^{\infty} \alpha_i e_i||_p = \sum_{i=1}^{\infty} ||\alpha_i||^p$, the norm of l_p for 0 .

Let $A: c_0 \to l_p$ be the operator defined by the infinite matrix $A = (a_i b_{ij})_{i,j=1}^{\infty}$. By (1.2) it follows that A is a continuous linear operator, and moreover

$$||A||_{\infty,p} = \sup_{|\lambda_i| \le 1} \left\| \sum_{i=1}^{\infty} \lambda_i a_i x_i \right\|_p^{1/p} \le M \left\| \sum_{i=1}^{\infty} a_i x_i \right\|_p^{1/p}. \tag{2.1}$$

Theorem 1.5 shows us that for every $\varepsilon > 0$ there are K = K(p) > 0, the diagonal matrix $D = (d_i \partial_{ij})_{i,j=1}^{\infty}$, where $d = (d_i)_{i=1}^{\infty} \in l_{p/(1-p)}$ and the matrix $C = (c_{ij})_{i,j=1}^{\infty}$ such that

$$\begin{cases}
A = D \cdot C, \\
\|C\|_{\infty,1} = \sup_{|\lambda_i| < 1} \left\| \sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} \lambda_i c_{ij} \right) e_j \right\|_1 < + \infty, \\
\|d\|_{p/(1-p)} \cdot \|C\|_{\infty,1} \le K \|A\|_{\infty,p} + \varepsilon.
\end{cases}$$
(2.2)

Theorem 2.b.7 of [8] says that each linear bounded operator $T: c_0 \rightarrow l_1$ is 2-absolutely summing, consequently

$$\pi_2(C) \le K_G \|C\|_{\infty,1}$$
 (2.3)

where C is the operator defined by the matrix C and K_G is a universal constant.

Note now that by Hölder's inequality we have

$$||D|| = \sup_{||b|| \le 1} \left(\sum_{i=1}^{\infty} |d_i b_i|^p \right)^{1/p} \le ||d||_{p/(1-p)}$$
 (2.4)

where $D: l_1 \to l_p$ is defined by the matrix D and $b = (b_i)_{i=1}^{\infty} \in l_1$. Hence

$$\left(\sum_{i=1}^{\infty} |a_{i}|^{2}\right)^{1/2} = \left(\sum_{i=1}^{\infty} \|a_{i}x_{i}\|_{p}^{2/p}\right)^{1/2}$$

$$= (\text{by } (2.2)) = \left(\sum_{i=1}^{\infty} \|DC(e_{i})\|_{p}^{2/p}\right)^{1/2}$$

$$\leq \|D\| \left(\sum_{i=1}^{\infty} \|Ce_{i}\|^{2}\right)^{1/2} \leq (\text{by } (2.3) \text{ and } (2.4))$$

$$\leq \|d\|_{p/(1-p)} \cdot K_{G} \|C\|_{\infty,1} \cdot \sup_{\sum_{i=1}^{\infty} |a_{i}| \leq 1} \left(\sum_{i=1}^{\infty} |a_{i}|^{2}\right)^{1/2} \leq (\text{by } (2.2))$$

$$\leq K_{G}(K\|A\|_{\infty,p} + \varepsilon) \leq (\text{by } (2.1))$$

$$\leq KK_{G}M \|\sum_{i=1}^{\infty} a_{i}x_{i}\|^{1/p} + \varepsilon K_{G}.$$

Since ε is arbitrarily small it follows that, for every $y = \sum_{i=1}^{\infty} a_i x_i \in l_p$,

$$\left(\sum_{i=1}^{\infty} |a_i|^2\right)^{1/2} \le MKK_G \left\|\sum_{i=1}^{\infty} a_i x_i\right\|_p^{1/p}.$$
 (2.5)

Consequently the operator $U: l_p \to l_2$ defined by $U(x_i) = e_i$, i = 1, 2, ..., is continuous and verifies

$$||U||_{p,2} = \sup\left\{\left\|\sum_{i=1}^{\infty} a_i e_i\right\| : a = \sum_{i=1}^{\infty} a_i x_i, ||a||_p \le 1\right\} \le KK_G M. \tag{2.6}$$

Denoting by S_q the unit ball of l_q , $0 < q < \infty$, and by $\overline{\Gamma}^{(1)}(S_p)$ the closure for the topology of l_1 of the convex and balanced hull of S_p , it is easy to see that $S_1 \subseteq \overline{\Gamma}^{(1)}(S_p)$. Then, by (2.6), it follows that

$$U(l_p \cap S_1) \subset U(\overline{\Gamma}^{(1)}(S_p) \cap l_p)$$

$$\subseteq (KK_GM)^{-1}\overline{\Gamma}^{(1)}(S_2) \subset (K_GKM)^{-1}S_2,$$

and this relation implies that U can be extended to an operator $V: l_1 \rightarrow l_2$ such that we have

$$||V|| \le K_G KM. \tag{2.7}$$

But Theorem 2.b.6 of [8] says that each linear bounded operator $V: l_1 \to l_2$ is a 1-absolutely summing operator and $\pi_1(V) \le K_G ||V|| \le K_G^2 KM$.

Applying Theorem 1.6 it follows that $V \in P_p(l_1, l_2)$, hence there is a positive constant M_1 depending only on p such that

$$\pi_n(V) \le K_G^2 K M M_1 = K_1. \tag{2.8}$$

(2.8) implies that

$$\left(\sum_{i=1}^{\infty} |a_{i}|^{p}\right)^{1/p} = \left(\sum_{i=1}^{\infty} \|V(a_{i}x_{i})\|^{p}\right)^{1/p}$$

$$\leq K_{1} \sup_{|\lambda_{i}| \leq 1} \left(\sum_{i=1}^{\infty} |a_{i}|^{p} \left|\sum_{j=1}^{\infty} \lambda_{j} b_{ij}\right|^{p}\right)^{1/p}.$$
(2.9)

On the other hand, denoting by C' the adjoint of the operator C, we have

$$\sup_{|\lambda_{j}| < 1} \left(\sum_{i=1}^{\infty} |a_{i}|^{p} \left| \sum_{j=1}^{\infty} \lambda_{j} b_{ij} \right|^{p} \right)^{1/p} = (\text{by } (2.2))$$

$$= \sup_{|\lambda_{j}| < 1} \left(\sum_{i=1}^{\infty} |d_{i}|^{p} \left| \sum_{j=1}^{\infty} \lambda_{j} c_{ij} \right|^{p} \right)^{1/p} < (\text{by H\"older's inequality})$$

$$\leq \sup_{|\lambda_{j}| < 1} \left(\sum_{i=1}^{\infty} \left| \sum_{j=1}^{\infty} \lambda_{j} c_{ij} \right| \right) \cdot ||d||_{p/(1-p)}$$

$$= ||d||_{p/(1-p)} \cdot ||C'||_{\infty,1} < (\text{by } (2.2)) < K||A||_{\infty,p} + \varepsilon$$

$$\leq (\text{by } (2.1)) \leq KM \left\| \sum_{i=1}^{\infty} a_{i} x_{i} \right\|_{p}^{1/p} + \varepsilon. \tag{2.10}$$

(2.9) and (2.10) imply that, for every $y = \sum_{i=1}^{\infty} a_i x_i \in l_p$,

$$\left(\sum_{i=1}^{\infty} |a_{i}|^{p}\right)^{1/p} \leq K_{1}KM \left\|\sum_{i=1}^{\infty} a_{i}x_{i}\right\|_{p}^{1/p} \leq K_{1}KM \left(\sum_{i=1}^{\infty} |a_{i}|^{p}\right)^{1/p}.$$

Thus $(x_i)_i \sim (e_i)_i$. \square

3. Symmetric basic sequences in d(w, p), 0 . In this section we prove the analogues of Theorem 3 and Lemma 1 [1] for <math>0 . We show moreover the unicity of the symmetric bases in <math>d(w, p) in the case that this space is not included in l_1 . Finally we state some open problems concerning the symmetric basic sequences in d(w, p), 0 .

In the proofs of the following two results the techniques of Altshuler, Cassaza and Lin [1] work almost unchanged.

LEMMA 3.1. Let $(x_n)_{n=1}^{\infty}$ be the canonical basis in d(w, p), $0 . If <math>y_n = \sum_{i=p_n+1}^{p_{n+1}} a_i x_i$, $n = 1, 2, \ldots$, is a bounded block basic sequence of $(x_n)_{n=1}^{\infty}$ such that $\lim_n a_n = 0$, then there is a subsequence of $(y_n)_{n=1}^{\infty}$ which is equivalent to the canonical basis of l_n .

PROOF. Since every change of signs and every permutation of the integers induces an isometry in d(w, p) we may assume, by switching to a subsequence if necessary, that $(a_i)_{i=1}^{\infty}$ is a nonincreasing sequence of positive numbers. Moreover we may assume that $||y_n||_{p,w} = 1$ for $n \in \mathbb{N}$.

Now let $0 < \varepsilon < 2^2(2^p - 1)^{1/p}(2^{p+1} - 1)^{-1/p}$. Using the facts that $\lim_n a_n = 0$ and $\|y_n\|_{p,w} = 1$ for every $n \in \mathbb{N}$, it is easy to construct by induction two increasing sequences of integers $(n_i)_{i=1}^{\infty}$ and $(r_i)_{i=1}^{\infty}$ such that

$$\begin{cases} p_{n_{j}} < r_{j} < p_{n_{j}+1}, \\ Q_{0} = 0, \\ Q_{j} = \sum_{k=1}^{j} (p_{n_{k}+1} - p_{n_{k}}) \le r_{j+1} - p_{n_{j+1}}, \quad j = 1, 2, \dots, \\ \left(\sum_{i=p_{n_{j}}+1}^{r_{j}} (a_{i})^{p} \cdot w_{i-p_{n_{j}}}\right)^{1/p} < \varepsilon/2^{j+1}. \end{cases}$$

$$(3.1)$$

For the sequence of scalars $(\lambda_i)_{i=1}^{\infty}$ we have

$$\left\| \sum_{j=1}^{\infty} \lambda_{j} y_{n_{j}} \right\|_{p,w} = \left\| \sum_{j=1}^{\infty} \lambda_{j} \left[\left(\sum_{i=p_{n_{j}}+1}^{r_{j}} a_{i} x_{i} \right) + \left(\sum_{i=r_{j}+1}^{p_{n_{j}+1}} a_{i} x_{i} \right) \right] \right\|_{p,w}$$

$$\geqslant \left\| \sum_{j=1}^{\infty} \lambda_{j} \left(\sum_{i=r_{j}+1}^{p_{n_{j}+1}} a_{i} x_{i} \right) \right\|_{p,w} - \left\| \sum_{j=1}^{\infty} \lambda_{j} \left(\sum_{i=p_{n_{j}}+1}^{r_{j}} a_{i} x_{i} \right) \right\|_{p,w}$$

$$\geqslant \left\| \sum_{j=1}^{\infty} \lambda_{j} \left(\sum_{i=r_{j}+1}^{p_{n_{j}+1}} a_{i} x_{i} \right) \right\|_{p,w} - \sum_{j=1}^{\infty} \left| \lambda_{j} \right|^{p} \left\| \sum_{i=p_{n_{j}}+1}^{r_{j}} a_{i} x_{i} \right\|_{p,w}$$

$$\geqslant \left(\text{since } \left\{ r_{k} - p_{n_{k}} + 1, \dots, p_{n_{k}+1} - p_{n_{k}} \right\} \right.$$

$$\cap \left\{ r_{j} - p_{n_{j}} + 1, \dots, p_{n_{j}+1} - p_{n_{j}} \right\} = \emptyset \text{ and }$$

$$\left\{ r_{k} + 1, \dots, p_{n_{k}+1} \right\} \cap \left\{ r_{j} + 1, \dots, p_{n_{k}+1} \right\} = \emptyset \text{ for } k \neq j$$

$$\geq \sum_{j=1}^{\infty} |\lambda_{j}|^{p} \left(\sum_{i=r_{j}+1}^{p_{n_{j}+1}} (a_{i})^{p} \cdot w_{Q_{j-1}-r_{j}+i} \right) - \sum_{j=1}^{\infty} (\varepsilon/2^{j+1})^{p} |\lambda_{j}|^{p}$$

$$\geq \sum_{j=1}^{\infty} |\lambda_{j}|^{p} \left(\sum_{i=r_{j}+1}^{p_{n_{j}+1}} (a_{i})^{p} \cdot w_{i-p_{n_{j}}} \right) - \left[\varepsilon^{p} 2^{-p} (2^{p}-1)^{-1} \right] \cdot \sup_{j} |\lambda_{j}|^{p}$$

$$\geq \sum_{j=1}^{\infty} |\lambda_{j}|^{p} \left[1 - \varepsilon^{p} 2^{-p(j+1)} - \varepsilon^{p} 2^{-p} (2^{p}-1)^{-1} \right]$$

$$\geq \left[1 - \frac{\varepsilon^{p} (2^{p+1}-1)}{2^{2p} (2^{p}-1)} \right] \sum_{j=1}^{\infty} |\lambda_{j}|^{p} .$$

On the other hand we have

$$\left\| \sum_{j=1}^{\infty} \lambda_j y_{n_j} \right\|_{p,w} \le \sum_{j=1}^{\infty} \left| \lambda_j \right|^p \left\| y_{n_j} \right\|_{p,w} = \sum_{j=1}^{\infty} \left| \lambda_j \right|^p. \quad \Box$$

We shall use forward a special block basic sequence. Let $(x_n)_{n=1}^{\infty}$ be a symmetric basis in the *p*-Banach space *X*. If $0 \neq a = \sum_{n=1}^{\infty} a_n x_n \in X$ and if $(p_i)_{i=1}^{\infty}$ is an increasing sequence of integers, let $y_n^{(a)} = \sum_{i=p_n+1}^{p_{n+1}} a_{i-p_n} x_i$, $n \in \mathbb{N}$. Then $(y_n^{(a)})_{n=1}^{\infty}$ is a bounded block basic sequence of $(x_n)_{n=1}^{\infty}$, and we shall call it a block of type I of $(x_n)_{n=1}^{\infty}$.

THEOREM 3.2. Every bounded block basic sequence of $(x_n)_{n=1}^{\infty}$ in d(w, p), $0 , has a subsequence equivalent either to the unit vector basis of <math>l_p$ or to a block basic sequence of type I of $(x_n)_{n=1}^{\infty}$.

PROOF. Let $y_n = \sum_{i=p_n+1}^{p_{n+1}} a_i x_i$, $n=1,2,\ldots$ We may assume that $\|y_n\|_{p,w} = 1$ and that $a_{p_n+1} \ge \cdots \ge a_{p_{n+1}} \ge 0$ for every $n \in \mathbb{N}$. If $\sup_n (p_{n+1} - p_n) < + \infty$, then it is clear that $(y_n)_n \sim (x_n)_n$, hence $(y_n)_{n=1}^{\infty}$ is equivalent to a block basic sequence of type I of $(x_n)_{n=1}^{\infty}$. Assume now that $\sup_n (p_{n+1} - p_n) = \infty$. Let $b_i = \sup_n |a_{p_n+i}|$ for $i \in \mathbb{N}$. It is easy to prove that $\lim_i b_i = 0$.

Case I. Assume that for every $\varepsilon > 0$ there exists m such that $\|\sum_{i=p_n+m}^{p_{n+1}} a_i x_i\|_{p,w} \le \varepsilon$ for every n so that $p_{n+1} - p_n \ge m$. Since $\sup_n (p_{n+1} - p_n) = +\infty$, we may assume that $p_{n+2} - p_{n+1} \ge p_{n+1} - p_n$ for every $n \in \mathbb{N}$. Define now $z_n = \sum_{i=1}^{p_{n+1}-p_n} a_{i+p_n} x_i$, $n \in \mathbb{N}$. Then $\|z_n\|_{p,w} = \|y_n\|_{p,w} = 1$ for $n \in \mathbb{N}$. By hypothesis and using the fact that there is a subsequence $(n_k)_{k=1}^{\infty}$ such that the sequences $(a_{i+p_{n_k}})_{k=1}^{\infty}$ converge simultaneously for $i \le m$, we can find a Cauchy subsequence of $(z_n)_{n=1}^{\infty}$. Hence we may assume that $\lim_n z_n = z = \sum_{i=1}^{\infty} c_i x_i \in d(w, p)$. It is clear that $z \ne 0$.

Since $(y_n)_{n=1}^{\infty}$ is a bounded block basic sequence of $(x_n)_{n=1}^{\infty}$ it is well known that $K = \sup_n ||P_n|| < +\infty$, where $P_n(\sum_{i=1}^{\infty} a_i y_i) = \sum_{i=1}^n a_i y_i$ (see III.2.11 of [10]). Consequently we can find a subsequence $(z_n)_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} ||z_{n_i} - z||_{p,w} < 1/2K$. Define now

$$u_i = \sum_{k=p_n+1}^{p_{n_i+1}} c_{k-p_{n_i}} x_k, \qquad i = 1, 2, \ldots$$

Then $(u_i)_{i=1}^{\infty}$ is a block basic sequence of type I of $(x_n)_{n=1}^{\infty}$ and $\sum_{i=1}^{\infty} ||y_{n_i} - u_i||_{p,w} \le \sum_{i=1}^{\infty} ||z_{n_i} - z||_{p,w} < 1/2K$, hence by the Krein-Milman-Rutman Theorem (see Theorem III.2.13 of [10]) it follows that $(y_{n_i})_{i=1} \sim (u_i)_{i=1}$.

Case II. There exists an $\varepsilon > 0$ such that for every $m \in \mathbb{N}$ there exists n(m) such that $p_{n+1} - p_n \ge m$ and $\|\sum_{i=p_n+m}^{p_{n+1}} a_i x_i\|_{p,w} > \varepsilon$. Then there exists an increasing sequence of integers $(n_i)_{i=1}^{\infty}$ such that

$$p_{n_i+1} - p_{n_i} > i$$
 and $\left\| \sum_{j=p_{n_i}+i}^{p_{n_i+1}} a_j x_j \right\|_{p,w} > \varepsilon$ for some $i \in \mathbb{N}$.

Since $\lim_i b_i = 0$ we may assume that $(a_j)_{j=1}^{\infty}$ is a decreasing sequence. Let

$$z_i = \sum_{j=p_n+1}^{p_{n+1}} a_j x_j \quad \text{for } i \in \mathbb{N}.$$

Then $\varepsilon \leqslant \|z_i\|_{p,w} \leqslant \|y_i\|_{p,w} = 1$ for $i \in \mathbb{N}$, also $(z_i)_{i=1}^{\infty}$ is a bounded block basic sequence of $(x_n)_{n=1}^{\infty}$ and the coefficients of z_i converge to zero. By Lemma 3.1 it follows that there exists a subsequence $(t_i)_{i=1}^{\infty}$ of $(z_i)_{i=1}^{\infty}$ which is equivalent to the canonical basis $(e_i)_{i=1}^{\infty}$ of l_p . Since $(y_n)_{i=1}^{\infty}$ dominates $(t_i)_{i=1}^{\infty}$ (i.e. $\|\Sigma_{i=1}^{\infty} b_i y_{n_i}\|_{p,w} < +\infty$ implies that $\|\Sigma_{i=1}^{\infty} b_i t_i\|_{p,w} < \infty$ for every sequence $(b_i)_{i=1}^{\infty}$) then $\|\Sigma_{i=1}^{\infty} d_i y_{n_i}\|_{p,w} < \infty$ implies that $\sum_{i=1}^{\infty} |d_i|^p < \infty$ for every sequence of scalars $(d_i)_{i=1}^{\infty}$. On the other hand, since $\|y_{n_i}\|_{p,w} = 1$ for every $i \in \mathbb{N}$, $\sum_{i=1}^{\infty} |d_i|^p < \infty$ implies that $\|\Sigma_{i=1}^{\infty} d_i y_n\|_{p,w} < \infty$, hence $(y_{n_i})_i \sim (e_i)_i$. \square

In the remainder of this section we study the unicity of the symmetric bases of the subspaces of d(w, p), 0 . We shall often use the following notion. Let <math>X be a p-Banach space with a separating dual X (this is the case whenever X has a basis). We consider on X the finest locally convex topology weaker than the original one i.e. the *Mackey topology* on X. It is easy to see that the Mackey topology on X is generated by the neighbourhoods $((1/n)\cos(S))_{n=1}^{\infty}$, where $S = \{x \in X: ||x|| \le 1\}$. Then the completion of X in the Mackey topology, \tilde{X} , is a Banach space. It is interesting that $\widetilde{d(w,p)}$, $0 , may be exactly <math>l_1$. The routine proof of the following proposition will be omitted.

PROPOSITION 3.3. A bounded set $A \subset d(w, p)$, $0 , is precompact if and only if for every <math>\varepsilon > 0$ there is $n \in \mathbb{N}$ such that

$$\sup_{\pi} \sum_{i=n}^{\infty} |a_{\pi(i)}|^{p} \cdot w_{i} < \varepsilon \tag{3.2}$$

uniformly for $a = (a_i)_{i=1}^{\infty} \in A$. (The supremum is taken over all permutations of integers.)

PROPOSITION 3.4. Let $0 . Then <math>d(w, p) = l_1$ if and only if $d(w, p) \subset l_1$. Moreover if $d(w, p) \not\subset l_1$ then $d(w, p) \not\approx l_1$ (i.e. d(w, p) is not linearly homeomorphic to l_1).

PROOF. If $d(w, p) \subset l_1$, let $a = (a_i)_{i=1}^{\infty} \in d(w, p) \setminus l_1$, $A = \{x_i : i \in \mathbb{N}\}$ and $f \in d(w, p)'$. We shall show that

$$\lim_{i} f(x_i) = 0. \tag{3.3}$$

Indeed if (3.3) is not true, there exist the sequence $(i_k)_{k=1}^{\infty}$ of integers and $\alpha > 0$ such that $|f(x_i)| \ge \alpha$ for every $k \in \mathbb{N}$. We consider $b = (b_i)_{i=1}^{\infty}$, where

$$b_i = \begin{cases} a_j \operatorname{sign} f(x_{i_j}), & i = i_j, j \in \mathbb{N}, \\ 0, & i \neq i_j, j \in \mathbb{N}. \end{cases}$$

It is clear that $b \in d(w, p) \setminus l_1$. But $\infty = \alpha$. $\sum_{i=1}^{\infty} |a_i| < |\sum_{j=1}^{\infty} f(x_j)b_j| < \infty$, which is contradictory. Then (3.3) is true and A is weakly relatively compact. On the other hand (3.2) is not verified for A and p = 1, hence A is not a relatively compact subset of d(w, 1). Since the canonical mapping $i: d(w, p) \to d(w, 1), 0 , is clearly continuous, it is obvious that on <math>d(w, p)$ the topology induced by d(w, p) is stronger than that induced by d(w, 1), consequently A is not a relatively compact subset of d(w, p).

If $d(w, p) \approx l_1$, then, A being weakly relatively compact in d(w, p) (since clearly d(w, p)' = d(w, p)') it is also relatively compact in d(w, p), which is a contradiction. Thus $d(w, p) \approx l_1$. Conversely, if $d(w, p) \subset l_1$, we denote by $I: d(w, p) \to l_1$ the canonical mapping. We shall show that I is continuous, that is there exists K > 0 such that, for every $a \in d(w, p)$, we have

$$\sum_{i=1}^{\infty} |a_i| \le K ||a||_{p,w}^{1/p}. \tag{3.4}$$

It is clear that it suffices to prove (3.4) only for positive decreasing sequences $(a_i)_{i=1}^{\infty} \in d(w, p)$. If (3.4) is not true, then for every $n \in \mathbb{N}$ there is the positive decreasing sequence $a^{(n)} = (a_i^{(n)})_{i=1}^{\infty} \in d(w, p)$, such that

$$2^{n} \|a^{(n)}\|_{p,w}^{1/p} < \sum_{i=1}^{\infty} a_{i}^{(n)}.$$
 (3.5)

Denote by $b^{(n)} = 2^{-n} \|a^{(n)}\|_{p,w}^{-1/p} a^{(n)}$. Then $\|\sum_{n=1}^{\infty} b^{(n)}\|_{p,w} < \sum_{n=1}^{\infty} \|b^{(n)}\|_{p,w} < \sum_{n=1}^{\infty} 1/2^{np} < \infty$, consequently it follows that $b = \sum_{n=1}^{\infty} b^{(n)} \in l_1$. But (3.5) implies that $1 < \sum_{i=1}^{\infty} b_i^{(n)}$ for every $n \in \mathbb{N}$, hence $\|\sum_{n=1}^{\infty} b^{(n)}\|_1 = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} b_i^{(n)} = +\infty$, which is a contradiction. Hence I is continuous. On the other hand the canonical mapping $J: l_p \to d(w, p)$ is continuous and consequently the extensions $\tilde{I}: \tilde{l}_p \to d(w, p)$ and $\tilde{J}: d(w, p) \to l_1$ are continuous. Since clearly $\tilde{l}_p = l_1$ for $0 , and <math>\tilde{J} \circ \tilde{I} = \mathrm{id}_{l_1}$, it follows that $d(w, p) = l_1$. \square

We shall give an example of space d(w, p), $0 , for which <math>d(w, p) \subset l_1$. (It is known [4] that $d(w, p) \subset l_1$ for $p \ge 1$.)

EXAMPLE 3.5. Let $w_n = (1 + |\log n|)^{-1}$ for n > 1 and $0 . Then <math>d(w, p) \subset l_1$.

PROOF. Our proof is indirect. We denote by

$$M(t) = \begin{cases} \frac{t^p}{1 + |\log t|}, & t \in (0, 1], \\ 0, & t = 0. \end{cases}$$

Then M(t) is a continuous nondecreasing function on [0, 1], with $\sup_{t \in (0, 1]} M(2t)/M(t) < \infty$, that is an Orlicz function (see [5]). We consider now

the locally convex Orlicz sequence space $l_M = \{a = (a_i)_{i=1}^{\infty} : ||a||_M = \sum_{i=1}^{\infty} M(|a_i|) < + \alpha\}$. We shall show that

$$l_{M} = d(w, p). \tag{3.6}$$

It is clear that $l_M = l_{M_a}$, and that $d(w, 1) = l_{M_1}$ implies that $d(w, p) = l_{M_a}$, where

$$M_q(t) = \begin{cases} \frac{t^q}{1 + |\log t^q|}, & t \in (0, 1], \\ 0, & t = 0, \end{cases}$$

Consequently it is sufficient to show that

$$d(w, 1) = l_{M_1} = \left\{ a = (a_i)_{i=1}^{\infty} : \sum_{i=1}^{\infty} \frac{|a_i|}{1 + |\log|a_i|} \right\} < + \infty .$$

Theorem 4.e.2 of [8] says that $d(w, 1) = l_{M_1}$ if and only if there exists $\gamma > 0$ such that

$$\sum_{n=1}^{\infty} 1/W^{-1}(\gamma w_n) < +\infty \tag{3.7}$$

where $W(x) = (1 + \log x)^{-1}$ for $x \ge 1$.

In our case $W^{-1}(\gamma w_n) = e^{1/(\gamma - 1)} n^{1/\gamma}$, hence, for every $0 < \gamma < 1$, (3.7) and also (3.6) are true. But Theorem 3.3 of [5] shows us that $\widehat{d(w,p)} = l_{\widehat{M}}$, where \widehat{M} is the largest Orlicz convex function on [0, 1] such that $\widehat{M}(x) \le M(x)$, $x \in [0, 1]$. Since $K(p)t \le t^p/(1 + |\log t|) \le t^p$ for $t \in (0, 1]$, where K(p) > 0 depends only on p, it follows that \widehat{M} is equivalent to the function N(t) = t, hence

$$\widetilde{d(w,p)} = l_{\hat{M}} = l_1. \tag{3.8}$$

By Proposition 3.4 it follows that $d(w, p) \subset l_1$.

REMARK 3.6.1. Since M(t) is not equivalent to $N(t) = t^p$ (i.e. there are not the relations $0 < \inf_{t \in (0, 1]} M(t) / N(t) \le \sup_{t \in (0, 1]} M(t) / N(t) < + \infty$) the previous space d(w, p) is a p-Banach space, other than l_p , whose dual is l_{∞} .

2. This space is moreover an example of a p-Banach space X with a unique unconditional basis, other than l_p , for which \tilde{X} has a unique unconditional basis. Indeed $\lim_{x\to 0} M(x)/x = +\infty$, hence by Theorem 7.6 of [5], $d(w,p) = l_M$ has a unique unconditional basis. \square

There are spaces d(w, p), $0 , for which <math>d(w, p) \not\subset l_1$.

PROPOSITION 3.7. Let $(w_i)_{i=1}^{\infty} \in c_0 \setminus l_1$ be a decreasing sequence of positive numbers such that there exist an increasing sequence of integers $(n_j)_{j=1}^{\infty}$, the scalars b > 0 and $0 \le \gamma < p/(1-p)$ (where 0) such that

$$n_{j+1} - n_j \le n_{j+2} - n_{j+1}, \quad j \in \mathbb{N}.$$
 (3.9)

$$n_{j+1} - n_j \leqslant bj^{\gamma}, \qquad j \in \mathbb{N}. \tag{3.10}$$

$$w_n \le 1/j \quad \text{if } n \ge n_i, j \in \mathbb{N}. \tag{3.11}$$

Then $d(w, p) \not\subset l_1$.

PROOF. Let

$$a_i = \begin{cases} 1 & \text{if } i \leq n_1, \\ j^{-\beta/p} (n_{j+1} - n_j)^{-1/p} & \text{if } n_j < i \leq n_{j+1}, \end{cases}$$

where

$$0 < \beta \leqslant p - (1 - p)\gamma. \tag{3.12}$$

By (3.9) it follows that $(a_i)_{i=1}^{\infty}$ is decreasing to zero and (3.11) implies that

$$||a||_{p,w} = \sum_{i=1}^{n_1} w_i + \sum_{j=1}^{\infty} \sum_{i=n_j+1}^{n_{j+1}} \frac{w_i}{j^{\beta}(n_{j+1}-n_j)}$$

$$\leq \sum_{i=1}^{n_1} w_i + \sum_{j=1}^{\infty} \frac{1}{j^{1+\beta}} < +\infty.$$

On the other hand

$$||a||_{1} = \sum_{i=1}^{n_{j}} 1 + \sum_{j=1}^{\infty} \sum_{i=n_{j}+1}^{n_{j+1}} \frac{1}{j^{\beta/p} (n_{j+1} - n_{j})^{1/p}}$$

$$= n_{1} + \sum_{j=1}^{\infty} \frac{1}{j^{\beta/p} (n_{j+1} - n_{j})^{(1/p)-1}}$$

$$\geq (\text{by } (3.10)) \geq n_{1} + b^{1-1/p} \sum_{j=1}^{\infty} \frac{1}{j^{\beta/p} \cdot j^{\gamma(1/p-1)}}$$

$$\geq (\text{by } (3.12)) \geq n_{1} + b^{1-1/p} \sum_{j=1}^{\infty} \frac{1}{j} = \infty,$$

thus $a = (a_i)_{i=1}^{\infty} \notin l_1$. \square

The space d(w, p), $0 , with <math>w_n = 1/n$ for n > 1, satisfies the conditions of Proposition 3.7. In Theorem 4 of [1] it is proved that every two symmetric bounded bases of a subspace of d(w, p), p > 1, are equivalent. Similarly we can state the following still open problem.

Problem 1. Let $X \subset d(w, p)$, $0 , be a subspace and <math>(y_n)_{n=1}^{\infty}$ and $(z_n)_{n=1}^{\infty}$ two symmetric bounded bases of X. Are $(y_n)_{n=1}^{\infty}$ and $(z_n)_{n=1}^{\infty}$ equivalent?

We are unable to give an answer to Problem 1, however the following theorem is true:

THEOREM 3.8. Let d(w, p), $0 , such that <math>d(w, p) \not\subset l_1$. Then d(w, p) has a unique bounded symmetric basis.

PROOF. Let $(y_n)_{n=1}^{\infty}$ be a bounded symmetric basis of l_p other than $(x_n)_{n=1}^{\infty}$. By Proposition 3.4 the hypothesis implies that $\widetilde{d(w,p)} \approx l_1$, hence

$$\lim_{m} x'_{n}(y_{m}) = 0 \quad \text{for every } n \in \mathbb{N}, \tag{3.13}$$

where $(x'_n)_{n=1}^{\infty}$ is the biorthogonal sequence in d(w, p)' associated to $(x_n)_{n=1}^{\infty}$ (i.e. $x'_n(x_m) = \partial_{mn}$ for every $m, n \in \mathbb{N}$). Indeed if (3.13) is not true for $n_0 \in \mathbb{N}$, there exist the subsequence $(y_{m_i})_{i=1}^{\infty}$ of $(y_n)_{n=1}^{\infty}$ and $\alpha > 0$ such that $\alpha < |x'_{n_0}(y_{m_i})|$ for every $i \in \mathbb{N}$. Then for every scalar $(a_i)_{i=1}^{n}$, there are $\varepsilon_i = \pm 1, i = 1, 2, \ldots, n$ and

 $0 < M < \infty$, such that

$$\alpha \sum_{i=1}^{n} |a_i| \leq x'_{n_0} \left(\sum_{i=1}^{n} a_i \varepsilon_i y_{m_i} \right) \leq \left\| \sum_{i=1}^{n} a_i \varepsilon_i y_{m_i} \right\|_{p,w}^{\infty}$$
$$\leq \sum_{i=1}^{n} |a_i| \left\| y_{m_i} \right\|_{p,w}^{\infty} \leq M \sum_{i=1}^{n} |a_i|,$$

where $||x||_{p,w}^{\infty}$ is the norm of the element $x \in \overline{d(w,p)}$. This inequality shows us that $\overline{d(w,p)} \approx l_1$, which is a contradiction. (3.13) implies by Proposition 3.1 of [5] that there exists a subsequence $(y_{n_i})_{i=1}^{\infty}$ of $(y_n)_{n=1}^{\infty}$ which is equivalent to a block basic sequence of $(x_n)_{n=1}^{\infty}$.

The basis $(y_n)_{n=1}^{\infty}$ is a symmetric basis, then $(y_n)_{i=1}^{\infty} \sim (y_n)_{n=1}^{\infty}$ and consequently we may assume that $y_m = \sum_{i=p_m+1}^{p_{m+1}} b_i x_i$, $m \in \mathbb{N}$. Moreover by Lemma 3.1 it follows that $\lim \sup_n |b_n| \neq 0$. (If not then $(y_n)_n \sim (e_n)_n$.)

Since $(x_n)_{n=1}^{\infty}$ is symmetric, we may also assume that there is $\varepsilon > 0$ such that for every $m \in \mathbb{N}$ there is $p_m + 1 \le k_m \le p_{m+1}$ so that $|b_{k_m}| > \varepsilon$. If $\sum_{n=1}^{\infty} a_n y_n$ converges in d(w, p), then for every $n \in \mathbb{N}$,

$$\left\| \sum_{i=1}^{n} a_i x_{k_i} \right\|_{p,w} \leq \frac{1}{\varepsilon^p} \left\| \sum_{i=1}^{n} b_{k_i} a_i x_{k_i} \right\|_{p,w} \leq \frac{1}{\varepsilon^p} \left\| \sum_{i=1}^{n} a_i y_i \right\|_{p,w},$$

hence $\sum_{n=1}^{\infty} a_n x_n$ converges in d(w, p). If we interchange the roles of $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ we deduce the equivalence of these two bases. \square

We can state a weaker version of Problem 1.

Problem 1a. Let $d(w, p) \subset l_1$, 0 . Is the canonical basis of <math>d(w, p) the unique bounded symmetric basis of d(w, p)? Finally we have

THEOREM 3.9. Let $X \subset d(w, p)$, $0 , be a subspace which has a bounded symmetric basis <math>(y_n)_{n=1}^{\infty}$ verifying the equality (3.13). Then any other basis $(z_n)_{n=1}^{\infty}$ of X, which has the same properties as $(y_n)_{n=1}^{\infty}$ is equivalent to this.

PROOF. If $X \approx l_p$, $0 , then by Theorem 2.1 it follows that <math>(y_n)_n \sim (z_n)_n$. Otherwise, Proposition 3.1 of [5] implies that $(y_n)_{n=1}^{\infty}$ is equivalent to a block basic sequence $(u_n)_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$, $u_n = \sum_{i=q_n+1}^{q_{n+1}} a_i x_i$, $n=1,2,\ldots$, and $(z_n)_{n=1}^{\infty}$ is equivalent to a block basic sequence $v_m = \sum_{n=m+1}^{m+1} b_n y_n$, $m=1,2,\ldots$, of $(y_n)_n^{\infty}$. Moreover we may assume that $\lim \sup_{n\to\infty} b_n \neq 0$ (otherwise Lemma 3.1 implies that $(z_n)_n \sim (e_n)_n$ which contradicts our assumption). Reasoning as in Theorem 3.8 we obtain that $(z_n)_{n=1}^{\infty}$ domainates $(y_n)_{n=1}^{\infty}$. By interchanging the roles of $(y_n)_{n=1}^{\infty}$ and $(z_n)_{n=1}^{\infty}$ we deduce the conclusion. \square

Let us mention the following problem.

Problem 2. Is there a subspace $X \subset d(w, p)$, $0 , different from <math>l_p$ and d(w, p), such that $\tilde{X} = l_1$?

Remark that a negative answer to Problem 2 and a positive one to Problem 1a imply that Theorem 3.9 is true without any restriction concerning the basis $(y_n)_{n=1}^{\infty}$.

4. Complemented subspaces and sublattices of d(w, p), $0 . We prove now the version for <math>0 of Theorem 1 of [1]. By <math>(x_n)_{n=1}^{\infty}$ we mean forward the canonical basis of d(w, p).

LEMMA 4.1. For every bounded block basic sequence $(y_n)_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ there is a block basic sequence of $(y_n)_{n=1}^{\infty}$ which is equivalent to the canonical basis of l_p .

PROOF. Let $y_n = \sum_{i=q_n+1}^{q_{n+1}} a_i x_i$, $n = 1, 2, \ldots$ Let us remark that, since $\inf_n \|y_n\|_{p,w} > 0$, $\sum_{i=1}^{\infty} a_i x_i$ does not converge in d(w, p). On the other hand, if $\sup_n \|\sum_{i=1}^n a_i x_i\|_{p,w} < \infty$, then $\sum_{i=1}^{\infty} a_i x_i$ converges in d(w, p). Hence $\sup_{k \le m} \|\sum_{i=k}^{n} y_i\|_{p,w} = +\infty$.

Let $(p_k)_{k=1}^{\infty}$ be an increasing sequence of integers such that

$$\sup_{n} \left\| \sum_{i=p_{n}+1}^{p_{n+1}} y_{i} \right\|_{p,w} = \infty.$$

Also let

$$z_{n} = \left\| \sum_{i=p_{n}+1}^{p_{n+1}} y_{i} \right\|_{p,w}^{-1/p} \cdot \left(\sum_{i=p_{n}+1}^{p_{n+1}} y_{i} \right), \quad n \in \mathbb{N}.$$

Then the block basic sequence $(z_n)_{n=1}^{\infty}$ of $(y_n)_{n=1}^{\infty}$ satisfies the conditions of Lemma 3.1 and, consequently, there is a subsequence $(z_{n_j})_{j=1}^{\infty}$ of $(z_n)_{n=1}^{\infty}$, which is equivalent to $(e_n)_{n=1}^{\infty}$. \square

Using Lemma 4.1 we can prove

THEOREM 4.2. Let $X \subset d(w, p)$, $0 , be a (closed) subspace of infinite dimension. Then there is a closed subspace <math>Y \subset X$ such that $Y \approx l_p$.

PROOF. By Proposition III.2.15 of [10] it follows that X contains a bounded basic sequence $(y_n)_{n=1}^{\infty}$ which is equivalent to a block basic sequence $(z_n)_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$. Then Lemma 4.1 gives us a subspace of $\overline{\operatorname{Sp}}\{z_n: n \in \mathbb{N}\}$ which is linearly homeomorphic to l_n . Consequently X contains a subspace $Y \approx l_n$. \square

REMARK 4.3. In Corollary 17 of [3] it is shown that every (closed) subspace of infinite dimension X of d(w, p), $1 \le p < \infty$, contains a subspace Y complemented in d(w, p) and linearly homeomorphic to l_p .

This assertion is not true in the case $0 . Indeed in [12] it is shown that the subspace of <math>l_p$, $0 , <math>Y = \overline{Sp}\{u_n: n \in \mathbb{N}\} \approx l_p$, where $u_n = n^{-1/p} \sum_{i=n(n-1)/2+1}^{n(n+1)/2} e_i$, $n = 1, 2, \ldots$, does not contain any infinite dimensional subspace which is complemented in l_p . Consequently, let X be a subspace of d(w, p) linearly homeomorphic to l_p and let $(z_i)_{i=1}^{\infty}$ be a bounded basis of X. We consider the block basic sequence $u_n = n^{-1/p} \sum_{j=n(n-1)/2+1}^{n(n+1)/2} z_j$, $n = 1, 2, \ldots$ Then $Y = \overline{Sp}\{u_n: n \in \mathbb{N}\} \approx l_p$ does not contain any complemented infinite dimensional subspace of d(w, p). \square

Remark 4.3 shows us that there are subspaces linearly homeomorphic to l_p (in fact isometric to l_p) which are not complemented in d(w, p) for 0 . We can prove moreover that there are examples of spaces <math>d(w, p), $0 , without any complemented subspace linearly homeomorphic to <math>l_p$.

Example 4.4. Let $w_n = (1 + |\log n|)^{-1}$ for every $n \in \mathbb{N}$ and let 0 . Then any complemented subspace of <math>d(w, p) with an unconditional basis is linearly homeomorphic to $d(w, p) \approx l_p$.

PROOF. By Example 3.5 and Remark 3.6 it follows that $d(w, p)l_M \approx l_p$, where

$$M(t) = \begin{cases} \frac{t}{1 + |\log t|} & \text{if } t \in (0, 1], \\ 0 & \text{if } t = 0. \end{cases}$$

Moreover, the canonical basis of d(w, p) is the unique unconditional bounded basis of d(w, p). But a theorem of Kalton (see Theorem 7.2 of [5]) shows us that if l_F is a nonlocally convex Orlicz sequence space, then any two unconditional bounded bases of l_F are equivalent if and only if any complemented subspace with an unconditional basis is isomorphic to l_F . We conclude applying this result. \square

Example 4.4 motivates the following question:

Problem 3. Let d(w, p), 0 . It is true that there does not exist a complemented subspace of <math>d(w, p) which is linearly homeomorphic to l_n ?

First we give some results which seem to indicate an affirmative answer to Problem 3. First we study the positive complemented sublattices of d(w, p), 0 , which have a symmetric basis. Let X be a p-Banach space, <math>0 , which is simultaneously a vector lattice verifying the condition

$$|a| \le |b|$$
 implies $||a|| \le ||b||$ for every $a, b \in X$. (4.1)

We call such a space X a p-Banach lattice. (Analogously it is defined a Banach lattice.) It is clear that, extending the order relation to \tilde{X} (whenever the last space exists), X is a sublattice of \tilde{X} . Let X be a vector lattice and $Y \subset X$ a sublattice of X (i.e. $x \in Y$ implies that $|x| \in Y$) which has the property that $x \in X$, $y \in Y$ and $|x| \le |y|$ imply that $x \in Y$. Then we call Y to be an order ideal of X. If $A \subset X$ is a subset of X, then we denote by $I_X(A) = \{x \in X : \exists a \in A \text{ and } 0 < \lambda \in \mathbb{R}, \text{ such that } |x| \le \lambda |a|\}$, the order ideal generated by A.

It is clear now that d(w, p), 0 , with the canonical order relation is a <math>p-Banach lattice and, moreover, an order ideal of the space ω of all sequences of real numbers. Now we can extend (under certain conditions) Lemma 2.a.11 of [8] to the p-Banach lattices.

LEMMA 4.5. Let X be a p-Banach lattice which is an order ideal of ω , $(v_n)_{n=1}^{\infty} \in c_0$ a sequence of positive real numbers, $0 \le y_n = \sum_{i \in \sigma_n} \alpha_i x_i$, and $0 \le z_n = \sum_{j \in \psi_n} \beta_j x_j$, $n \in \mathbb{N}$, two bounded basic sequences of X (where $x_n = (\partial_{ni})_{i=1}^{\infty}$ for $n \in \mathbb{N}$) such that $\sigma_n \cap \psi_m = \emptyset$ for every $n, m \in \mathbb{N}$. If there exists a positive and continuous projection P from X onto $\overline{\operatorname{Sp}}\{v_n y_n + z_n : n \in \mathbb{N}\}$, then the sequence $(z_n)_n$ dominates $(v_n y_n)_n$.

PROOF. Let $P(y_i) = \sum_{j=1}^{\infty} c_j^{(i)}(\nu_j y_j + z_j)$ and $P(z_i) = \sum_{j=1}^{\infty} d_j^{(i)}(\nu_j y_j + z_j)$, $i = 1, 2, \ldots$, where $c_j^{(i)} \ge 0$ and $d_j^{(i)} \ge 0$. Since the basis $(x_n)_{n=1}^{\infty}$ is clearly an unconditional basis of X, there is a positive and continuous projection Q such that $Q(x_n) = x_n$ for $n \in \sigma_i$, where $i \in \mathbb{N}$, and $Q(x_n) = 0$ otherwise. Then $QP(z_i) = \sum_{j=1}^{\infty} d_j^{(i)} \nu_j y_j$, $i \in \mathbb{N}$, and QP may be considered as an operator from $\overline{\operatorname{Sp}}\{z_i \colon i \in \mathbb{N}\}$ to $\overline{\operatorname{Sp}}\{y_n \colon n \in \mathbb{N}\}$ defined by the infinite matrix with positive entries $(d_j^{(i)} \nu_j)_{i,j=1}^{\infty}$. Then the diagonal matrix defines an operator

$$D \colon \overline{\mathrm{Sp}}\{z_i \colon i \in \mathbb{N}\} \to \bar{I}_{\omega}(\overline{\mathrm{Sp}}\{y_i \colon i \in \mathbb{N}\}) = \bar{I}_{\chi}(\overline{\mathrm{Sp}}\{y_i \colon i \in \mathbb{N}\}).$$

D is obviously positive and $0 \le D(x) \le QP(x)$ for every $0 \le x \in \overline{Sp}\{y_i: i \in \mathbb{N}\}$. Since X is a p-Banach lattice we have

$$||Dx|| \le ||QPx|| \le M||x||$$
 for every $0 \le x \in \overline{Sp}\{y_i : i \in \mathbb{N}\},$

consequently D is a continuous operator.

Assume now that $\sum_{n=1}^{\infty} a_n z_n$ converges in $\overline{\mathrm{Sp}}\{z_i \colon i \in \mathbb{N}\}$. Then $D(\sum_{n=1}^{\infty} a_n z_n) = \sum_{n=1}^{\infty} a_n d_n^{(n)} \nu_n \nu_n$ converges in $\overline{I}_X(\overline{\mathrm{Sp}}\{y_i \colon i \in \mathbb{N}\})$. Since $0 < c_n^{(n)} (\nu_n \nu_n + z_n) < P(\nu_n)$ for every $n \in \mathbb{N}$, then $|c_n^{(n)}| < M_1$ for $n \in \mathbb{N}$. On the other hand $\nu_n c_n^{(n)} + d_n^{(n)} = 1$, $n = 1, 2, \ldots$, hence $\lim_n d_n^{(n)} = 1$ and, consequently, $\sum_{n=1}^{\infty} a_n \nu_n \nu_n$ converges. \square We can now prove

THEOREM 4.6. Let X be an order ideal of ω , which is a p-Banach lattice and assume that its canonical basis $(x_n)_{n=1}^{\infty}$ is symmetric. If $(y_n)_{n=1}^{\infty}$ is a positive block of type I of $(x_n)_{n=1}^{\infty}$ then $(y_n)_n \sim (x_n)_n$ if and only if $E = \overline{Sp}\{y_n: n \in \mathbb{N}\}$ is a positive complemented sublattice of X (i.e. there exists a positive and continuous projection P from X onto E).

PROOF. Let $\sum_{n=1}^{\infty} a_n x_n \in X$, $a_1 \neq 0$ and $y_n = \sum_{i=p_n+1}^{p_{n+1}} a_{i-p_n} x_i$ for every $n \in \mathbb{N}$, where $a_i > 0$. We may assume that all $a_i \leq 1$. Since $(x_n)_{n=1}^{\infty}$ is a symmetric basis of X, there exists M > 1 such that

$$\frac{1}{M} \left\| \sum_{n} b_{n} x_{p_{n}+1} \right\| \le \left\| \sum_{n=1}^{\infty} b_{n} x_{n} \right\| \le M \left\| \sum_{n=1}^{\infty} b_{n} x_{p_{n}+1} \right\|$$

for every $\sum_n b_n x_n \in X$. Suppose now that $(y_n)_n \sim (x_n)_n$. Let K > 0 such that $\|\sum_{n=1}^{\infty} b_n y_n\| \le K \|\sum_{n=1}^{\infty} b_n x_n\|$ for every $\sum_n b_n x_n \in X$. Define $P(\sum_{n=1}^{\infty} b_n x_n) = \sum_{n=1}^{\infty} (b_{p_n+1}/a_1) y_n$ for $\sum_n b_n x_n \in X$. Since $(y_n)_n \sim (x_n)_n$, P is well defined, $0 \le P$ and $\|P\| \le Ka_1^{-P}$.

Conversely, let $P: K \to E$ be a positive and continuous projection. If $x = \sum_n b_n x_n \in X$ and $||x|| \le 1$, we choose the sequence of integers $1 = n_1 < n_2 < \dots$ such that $||\sum_{j=n_i}^{\infty} b_j x_j|| \le 1/2^i$, $i = 1, 2, \dots$ For $n_i \le m < n_{i+1}$, $i = 1, 2, \dots$, we put

$$z_{m} = \begin{cases} \sum_{j=1}^{i} a_{j} x_{p_{m}+j} & \text{if } p_{m}+i \leq p_{m+1}, \\ y_{m} & \text{if } p_{m}+i > p_{m+1}, \end{cases}$$

and

$$w_m = \begin{cases} (y_m - z_m) / ||y_m - z_m|| & \text{if } y_m \neq z_m, \\ 0 & \text{if } y_m = z_m. \end{cases}$$

Let $v_n = ||y_n - z_n||$ for $n \in \mathbb{N}$. Then v_m, w_m, z_m are positive, $y_m = v_m w_m + z_m$ for $m \in \mathbb{N}$, $(v_n)_{n=1}^{\infty} \in c_0$ and $\inf(z_n, w_m) = 0$ for $m, n \in \mathbb{N}$. Since $0 \le a_i \le 1$, $i = 1, 2, \ldots$, it follows that

$$\left\| \sum_{n=1}^{\infty} b_{n} z_{n} \right\| = \left\| \sum_{i=1}^{\infty} \sum_{m=n_{i}}^{n_{i+1}-1} b_{m} z_{m} \right\|$$

$$\leq \left\| \sum_{i=1}^{\infty} \sum_{m=n_{i}}^{n_{i+1}-1} b_{m} \sum_{j=1}^{p_{m+1}-p_{m}} x_{p_{m}+j} \right\|$$

$$\leq \left(\text{since } (x_{i})_{i=1}^{\infty} \text{ is a symmetric basis} \right) \leq M \left\| \sum_{i=1}^{\infty} \sum_{m=n_{i}}^{n_{i+1}-1} b_{m} x_{p_{m}+1} \right\|$$

$$\leq M \sum_{i=1}^{\infty} \left\| \sum_{j=n_{i}}^{\infty} b_{j} x_{p_{j}+1} \right\| \leq M^{2} \sum_{i=1}^{\infty} \left\| \sum_{j=n_{i}}^{\infty} b_{j} x_{j} \right\|$$

$$\leq M^{2} \sum_{i=1}^{\infty} \frac{1}{2^{i}} < +\infty.$$

Consequently $\sum_{n=1}^{\infty} b_n z_n$ converges and, applying Lemma 4.5, $\sum_{n=1}^{\infty} b_n v_n w_n$ converges, therefore $\|\sum_{n=1}^{\infty} b_n v_n\| < \infty$. Conversely if $\sum_{n=1}^{\infty} b_n v_n$ converges, then $\sum_{n=1}^{\infty} a_1 b_n x_{p_n+1}$ converges. Since $(x_n)_{n=1}^{\infty}$ is a symmetric basis, then $a_1(\sum_{n=1}^{\infty} b_n x_n)$ converges. Consequently $(y_n)_n \sim (x_n)_n$. \square

PROPOSITION 4.7. Let X be a separable p-Banach lattice with the property that every order interval [0, x], where $X \ni x > 0$, is compact. Then there is in X a normalized sequence $(x_n)_{n=1}^{\infty}$ of positive pairwise disjoint (i.e. $\inf(x_i, x_j) = x_i \wedge x_j = 0$, $i \ne j$) elements such that $(x_n)_{n=1}^{\infty}$ is a basis simultaneously of X and of \tilde{X} . Particularly $(x_n)_{n=1}^{\infty}$ is an unconditional basis of X. Moreover X is an order ideal of \tilde{X} .

PROOF. We prove first the second assertion. Let $y \in X$ and $z \in \tilde{X}$ such that $0 \le z \le y$. If $0 \le z_n \in X$ and $\lim_n z_n = z$ in \tilde{X} , then, since \tilde{X} is a p-Banach lattice, $\lim_n z_n \wedge y = z \wedge y = z$ in \tilde{X} . On the other hand $z_n \wedge y \in [0, y] \subset X$ and, by hypothesis, there is a subsequence $(z_{n_k} \wedge y)_{k=1}^{\infty}$ which converges in X (and consequently in \tilde{X}). Hence $\lim_n z_{n_k} \wedge y = z \in X$ and X is an order ideal in \tilde{X} .

Remark now that the hypothesis implies that [0, y] is compact in \tilde{X} for $0 \le y \in \tilde{X}$. But a Walsh's result (see [13]) asserts that a Banach lattice X such that every order interval [0, x] is compact, has a normalized basis of positive pairwise disjoint elements. Consequently there exists a subsequence $(x_n)_{n=1}^{\infty}$ of \tilde{X} of positive pairwise disjoint elements, with $0 < \inf_n ||x_n||^{\infty} \le \sup_n ||x_n||^{\infty} < \infty$ (where $||x||^{\infty}$ is the norm of the element $x \in \tilde{X}$), such that we have a unique expansion $x = \sum_{n=1}^{\infty} a_n x_n$ with $0 \le a_n$, for every $0 \le x \in \tilde{X}$.

Since X is an order ideal of \tilde{X} , there is a subset $A \subseteq N$ such that $x_i \in X$ for every $i \in A$. Let $0 \le x \in X$. Since [0, x] is compact in X, it follows that $x = \sum_{n \in A} a_n x_n$, the convergence being with respect to the topology of X. Hence $(x_n)_{n \in A}$ is a basis of X. It is easy to see that $(x_n)_{n \in A}$ is a bounded basis (see also Proposition 3.2 of [5]). Consequently we may assume that $||x_n|| = 1$ for every $n \in A$. Since X is dense in \tilde{X} and $x_i \wedge x_j = 0$ for $i \neq j$, it follows that $A = \mathbb{N}$. The remaining assertion is a consequence of Lemma 1.1. \square

Remark now that in view of Proposition 3.3 it follows that [0, x] is a compact set of d(w, p), $0 , for every <math>0 \le x \in d(w, p)$. Consequently, by Proposition 4.7,

every sublattice of d(w, p) has a basis of positive pairwise disjoint elements.

We can now state the analogue of Corollary 14 of [3].

THEOREM 4.8. Let E be a positive complemented sublattice of d(w, p), 0 , which has a symmetric basis. Then E is linearly homeomorphic either to <math>d(w, p) or to l_p .

PROOF. Let $(y_n)_{n=1}^{\infty}$ be the symmetric basis of E whose elements are all positive and pairwise disjoint. If $y_n = \sum_{i=1}^{\infty} t_{ni} x_i$ for $n \in \mathbb{N}$, then $\lim_n t_{ni} = 0$ for every $i \in \mathbb{N}$ and, by Proposition 3.1 of [5], there is a subsequence $(y_{nk})_{k=1}^{\infty}$ of $(y_n)_{n=1}^{\infty}$ which is equivalent to a bounded block basic sequence $(z_n)_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$. Moreover repeating the proof of Proposition 1.a.9 of [8], it follows that we can choose $z_n \ge 0$ for $n \in \mathbb{N}$ such that $\overline{\operatorname{Sp}}\{z_n \colon n \in \mathbb{N}\}$ is a positive complemented sublattice of d(w, p). $(y_n)_{n=1}^{\infty}$ being a symmetric basis it follows that $(y_n)_n \sim (z_n)_n$. Then we can apply Theorem 3.2, consequently if $E \not\approx l_p$, there exists a positive block of type I $(u_n)_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ such that $(y_n)_n \sim (u_n)_n$. Using again the proof of Proposition 1.a.9 of [8], we may assume moreover that $\overline{\operatorname{Sp}}\{u_n \colon n \in \mathbb{N}\}$ is a positive complemented sublattice of d(w, p). By Theorem 4.6, we obtain now that $(u_n)_{n=1}^{\infty}$, also and $(y_n)_{n=1}^{\infty}$, is equivalent to $(x_n)_{n=1}^{\infty}$.

In connection with Theorem 4.8 we can state a weaker version of Problem 3.

Problem 3a. Let d(w, p), $0 . Is there a positive complemented sublattice <math>E \subset d(w, p)$ linearly homeomorphic to l_p ?

If we have a negative answer to Problem 3a, then Theorem 4.8 shows us that the positive complemented sublattices with a symmetric basis of d(w, p), 0 , are linearly homeomorphic to <math>d(w, p). We gave only a partially (negative) answer to Problem 3a, when we assume, supplementarily, that the positive projection P: $d(w, p) \to E$ is a contraction, i.e. $||P|| \le 1$.

5. Positive and contractive complemented sublattices of d(w, 1/k), $k \in \mathbb{N}$. In this section we shall characterise, under certain conditions, the positive and contractive complemented sublattices of d(w, 1/k), $k \in \mathbb{N}$. We prove first an inequality:

LEMMA 5.1. Let $k \in \mathbb{N}$, $(w_i)_{i=1}^{\infty} \in c_0 \setminus l_1$ such that $w_1 \ge w_2 \ge \cdots \ge 0$ and $\alpha_1 = \cdots = \alpha_l \ge \alpha_{l+1} \ge \alpha_{l+2} \ge \cdots \ge \alpha_m \ge 0$ for some l < m. Then denoting by $s_n = \sum_{i=1}^n w_i$, by

$$C(l) = \binom{1}{k} (\alpha_{l+1})^{1/k} (\alpha_l^{1-1/k} - \alpha_{l+1}^{1-1/k}) w_{l+1} s_l^{k-1}$$

and by

$$\partial_l(n) = \begin{cases} 1 & \text{for } n > l+1, \\ 0 & \text{for } n < l+1, \end{cases}$$

we have the following inequality

$$A_n = \sum_{i=1}^{n-1} s_i^k (\alpha_i - \alpha_{i+1}) + s_n^k \alpha_n + \partial_l(n) C(l)$$

$$\leq \left(\sum_{i=1}^n \alpha_i^{1/k} \cdot w_i \right)^k = B_n \quad \text{for every } n \leq m.$$
(5.1)

PROOF. We use the induction for n. If $n \le l$ it is nothing to prove. Now let n = l + 1. Then

$$A_{l+1} = \alpha_{l} s_{l}^{k} + \left(s_{l+1}^{k} - s_{l}^{k}\right) \alpha_{l+1} + \left(\frac{1}{k}\right) \alpha_{l+1}^{1/k} \left(\alpha_{l}^{1-1/k} - \alpha_{l+1}^{1-1/k}\right) w_{l+1} s_{l}^{k-1}$$

$$= \alpha_{l} s_{l}^{k} + \alpha_{l+1} \left(\left(\frac{2}{k}\right) w_{l+1}^{2} s_{l}^{k-2} + \cdots + w_{l+1}^{k}\right) + \left(\frac{1}{k}\right) \alpha_{l+1}^{1/k} \alpha_{l}^{1-1/k} \cdot w_{l+1} s_{l}^{k-1}$$

$$\leq \left(\operatorname{since} \alpha_{l+1} \leq \alpha_{i}, i = 1, \dots, l\right)$$

$$\leq \alpha_{l} s_{l}^{k} + \left(\frac{1}{k}\right) \alpha_{l+1}^{1/k} \alpha_{l}^{1-1/k} \cdot w_{l+1} s_{l}^{k-1}$$

$$+ \left(\left(\frac{2}{k}\right) \alpha_{l+1}^{2/k} \alpha_{l}^{1-2/k} \cdot w_{l+1}^{2} s_{l}^{k-2} + \cdots + \alpha_{l+1} w_{l+1}^{k}\right)$$

$$= \left(\sum_{l=1}^{l+1} \alpha_{l}^{1/k} \cdot w_{l}\right)^{k} = B_{l+1}.$$

Thus (5.1) is proved in this case.

Assume now that (5.1) is true for $n - 1 \ge l + 1$. We have

$$A_{n} = A_{n-1} + \left(s_{n}^{k} - s_{n-1}^{k}\right)\alpha_{n}$$

$$= A_{n-1} + \left(\binom{1}{k}s_{n-1}^{k-1} \cdot w_{n} + \binom{2}{k}s_{n-1}^{k-2} \cdot w_{n}^{2} + \cdots + w_{n}^{k}\right)\alpha_{n}$$

$$\leq (\text{since } \alpha_{i} \geq \alpha_{i+1} \text{ for } i \leq n)$$

$$\leq A_{n-1} + \left[\binom{1}{k}\binom{n-1}{i-1}\alpha_{i}^{1/k} \cdot w_{i}\right]^{k-1}\alpha_{n}^{1/k} \cdot w_{n} + \cdots + \alpha_{n}w_{n}^{k}$$

< (by induction hypothesis)

$$\leq \left(\sum_{i=1}^{n-1} \alpha_i^{1/k} \cdot w_i\right)^k + \left[\binom{1}{k} \left(\sum_{i=1}^{n-1} \alpha_i^{1/k} \cdot w_i\right)^{k-1} \alpha_n^{1/k} \cdot w_n + \cdots + \alpha_n w_n^{1/k}\right]$$

$$= \left(\sum_{i=1}^n \alpha_i^{1/k} \cdot w_i\right)^k = B_n. \quad \Box$$

LEMMA 5.2. With the notations of Lemma 5.1, if $(\beta_i)_{i=1}^m$ are positive numbers such that

$$\sum_{i=1}^{n} \beta_{i} \leq s_{n}^{k} \quad \text{for every } n \leq m, \tag{5.2}$$

then

$$\sum_{i=1}^{n} \alpha_{i} \beta_{i} + \partial_{l}(n) C(l) \leq \left(\sum_{i=1}^{n} \alpha_{i}^{1/k} \cdot w_{i}\right)^{k} \quad \text{for } n \leq m.$$
 (5.3)

PROOF. If $n \leq m$, we have

$$\sum_{i=1}^{n} \alpha_{i}\beta_{i} + \partial_{l}(n)C(l) = \alpha_{n}\left(\sum_{i=1}^{n} \beta_{i}\right) + (\alpha_{n-1} - \alpha_{n})\left(\sum_{i=1}^{n-1} \beta_{i}\right) + \cdots + (\alpha_{1} - \alpha_{2})\beta + \partial_{l}(n)C(l)$$

$$\leq (\text{by } (5.2))$$

$$\leq \alpha_{n}s_{n}^{k} + (\alpha_{n-1} - \alpha_{n})s_{n-1}^{k} + \cdots + (\alpha_{1} - \alpha_{2})s_{1}^{k} + \partial_{l}(n)C(l)$$

$$\leq (\text{by } (5.1)) \leq \left(\sum_{i=1}^{n} \alpha_{i}^{1/k} \cdot w_{i}\right)^{k}. \quad \Box$$

Using Lemma 5.2 we can prove now

PROPOSITION 5.3. If p = 1/k, $1 < k \in \mathbb{N}$, and E is a positive and contractive complemented sublattice of d(w, p), then there is a sequence of finite pairwise disjoint subsets $(\sigma_n)_{n=1}^{\infty}$ of \mathbb{N} such that $u_n = (\sum_{i=1}^{\bar{\sigma}_n} w_i)^{-k} (\sum_{i \in \sigma_n} x_i)$ for $n \in \mathbb{N}$, constitute a normalized basis of E, $\bar{\sigma}_n$ being the cardinal number of σ_n .

PROOF. By Proposition 4.7, E has a normalised basis $(u_n)_{n=1}^{\infty}$ of positive pairwise disjoint elements of E. Let $u_n = \sum_{i \in \sigma_n} \alpha_{in} x_i$, where $(\sigma_n)_{n=1}^{\infty}$ is a sequence of pairwise disjoint subsets of \mathbb{N} and $\alpha_{in} > 0$ for $i \in \sigma_n$, $n \in \mathbb{N}$.

If $\bar{\sigma}_n = +\infty$, then we write $\sigma_n = \{i_j : j \in \mathbb{N}\}$, and, since $(u_n)_{n=1}^{\infty}$ is normalised, it follows that $(\alpha_{i_j n})_{j=1}^{\infty} \in d(w, p)$. Consequently there exists a permutation of integers π_n such that $\pi_n(\underline{\sigma}_n) = \sigma_n$, $(\alpha_{\pi_n(i_j)n})_{j=1}^{\infty}$ is a decreasing sequence, and $\pi_n(i) = i$ for every $i \notin \sigma_n$. If $\bar{\sigma}_n < \infty$, such a permutation π_n exists obviously. Since the norm $\|\cdot\|_{p,w}$ is invariant under permutations of integers, we can find an isometry $T: d(w, p) \to d(w, p)$ such that $T(u_m) = t_m$, where $t_m = \sum_{j=1}^{\infty} \alpha_{\pi_m(i_j)m}$ for every $m \in \mathbb{N}$. Then $Q = TPT^{-1}: d(w, p) \to \overline{Sp}\{t_m : m \in \mathbb{N}\}$ is a positive and contractive projection whenever P is a positive and contractive projection onto E. Consequently, we may assume that the coefficients $(\alpha_{im})_{i \in \sigma_m}$ of u_m are decreasingly ordered for every $m \in \mathbb{N}$. Since P is a positive projection, we have

$$P(x_i) = \beta_{in} u_n$$
 where $\beta_{in} \ge 0$ for every $i \in \sigma_n$, $n \in \mathbb{N}$, (5.4)

and moreover

$$\sum_{i \in \sigma_n} \alpha_{in} \beta_{in} = 1 = \left(\sum_{j=1}^{\infty} (\alpha_{i,n})^{1/k} \cdot w_j \right)^k \quad \text{for every } n \in \mathbb{N}.$$
 (5.5)

By (5.4) and using the fact that $||P|| \le 1$ we have

$$\left\| \sum_{n=1}^{\infty} \left(\sum_{i \in \sigma_n} \gamma_i \beta_{in} \right) u_n \right\|_{\rho, w} \le \sup_{\pi} \sum_{i=1}^{\infty} \left| \gamma_{\pi(i)} \right|^{1/k} \cdot w_i \tag{5.6}$$

for every element $(\gamma_i)_{i=1}^{\infty} \in d(w, p)$. Consequently, taking $\gamma_{i_1} = \gamma_{i_2} = \cdots = \gamma_{i_m} = 1$ and $\gamma_j = 0$ for $j \neq i_1, \ldots, i_m$, where $m \leq \overline{\sigma}_n$, we obtain

$$\sum_{i=1}^{m} \beta_{i,n} \leq s_m^k \quad \text{for } m \leq \overline{\bar{\sigma}}_n, n \in \mathbb{N}.$$
 (5.7)

If $\bar{\sigma}_n = \infty$, then, since $\lim_i \alpha_{i,n} = 0$, there is an integer $i \in \mathbb{N}$ such that $\alpha_{i,n} > \alpha_{i_{l+1}n}$ and $\alpha_{i_j n} = \alpha_{i_{j+1} n}$ for $j \le l-1$.

By (5.3) we have

$$\sum_{j=1}^{m} \alpha_{i,n} \beta_{i,n} + C(l) \le \left(\sum_{j=1}^{m} \alpha_{i,n}^{1/k} \cdot w_j \right)^k \quad \text{for every } m > l+1.$$

Now, by passing to the limit over $m \to \infty$ in the previous inequality, we obtain, in view of (5.5).

$$1 = \sum_{i=1}^{\infty} \alpha_{i,n} \beta_{i,n} + C(1) \le \left(\sum_{j=1}^{\infty} \alpha_{i,n}^{1/k} \cdot w_j \right)^k = 1.$$

Since C(l) > 0, this is a contradiction, hence

$$\bar{\bar{\sigma}}_n < \infty$$
 for every $n \in \mathbb{N}$. (5.8)

Then, reasoning as above, we get that $\alpha_{in} = \alpha_{jn}$ for every $i, j \in \sigma$, $n \in \mathbb{N}$, consequently $\alpha_{in} = (\sum_{i=1}^{\bar{\sigma}_n} w_i)^{-k}$ for every $i \in \sigma_n$, $n \in \mathbb{N}$. \square

We study now the existence of positive and contractive projections onto a one dimensional sublattice of d(w, p), p = 1/k.

Proposition 5.4.(a) Let p = 1/k, $1 < k \in \mathbb{N}$, and $u = \sum_{i \in \sigma} \alpha_i x_i$, where $||u||_{p,w}$ = 1 and $\alpha_i > 0$ for every $i \in \sigma$. Then there exists a positive and contractive projection P: $d(w, p) \rightarrow Sp\{u\}$ if and only if the following conditions are satisfied: $\bar{\sigma} = n$, $\alpha_{i_1} = \cdots = \alpha_{i_n} = (\sum_{i=1}^n w_i)^{-k}$, and there exist the positive numbers β_1 $\geq \cdot \cdot \cdot \geq 0$ such that

$$\sum_{i=1}^{m} \beta_i \leqslant \left(\sum_{i=1}^{m} w_i\right)^k = s_m^k \quad \text{for } m < n, \tag{5.9}$$

and

$$\sum_{i=1}^{n} \beta_i = s_n^k. \tag{5.10}$$

Then $P(\sum_{i=1}^{\infty} \alpha_i x_i) = (\sum_{i \in \sigma} \alpha_i \beta_i) u$ for every $\sum_{i=1}^{\infty} \alpha_i x_i \in d(w, p)$. (b) If $u = s_n^{-k} (\sum_{i=1}^n x_i)$ and $t_n = (1/n) s_n^k \le t_m$ for every $1 \le m \le n$, then the operator defined by

$$P\bigg(\sum_{i=1}^{\infty} \alpha_i x_i\bigg) = \frac{1}{n} \bigg(\sum_{i=1}^{n} \alpha_i\bigg) \bigg(\sum_{i=1}^{n} x_i\bigg)$$

is a positive and contractive projection onto $Sp\{u\}$.

(c) If $w_1^k < t_n$ for every n > 1 and u is as at the point (a), then there is a positive and contractive projection P: $d(w, p) \rightarrow \operatorname{Sp}\{u\}$ if and only if $\bar{\sigma} = 1$.

PROOF. (a) If $P: d(w, p) \to \operatorname{Sp}\{u\}$ is a positive and contractive projection then, by Proposition 5.3, $\bar{\sigma} = n < \infty$ and $\alpha_{i_1} = \cdots = \alpha_{i_n} = s_n^{-k}$. Denote now by $(\beta_i)_{i=1}^n$ the coefficients of $(P(x_{i_j}))_{j=1}^n$ decreasingly ordered. Then

$$\sum_{j=1}^{m} \beta_j = \left\| \left(\sum_{j=1}^{m} \beta_j \right) u \right\|_{p,w}^k = \left\| P \left(\sum_{j \in H} x_{i_j} \right) \right\|_{p,w}^k \le \left\| \sum_{j \in H} x_{i_j} \right\|_{p,w}^k = s_m^k,$$

where $H \subseteq \sigma$ with $\overline{H} = m \le n$. If m = n, then

$$\sum_{j=1}^{n} \beta_{j} = \left\| P\left(\sum_{j=1}^{n} x_{i_{j}}\right) \right\|_{p,w}^{k} = \left\| \sum_{j=1}^{n} x_{i_{j}} \right\|_{p,w}^{k} = s_{n}^{k}.$$

Consequently all the conditions are satisfied and obviously $P(\sum_{i=1}^{\infty} \alpha_i x_i) = (\sum_{i=0}^{\infty} \alpha_i \beta_i) u$ for every $\sum_{i=1}^{\infty} \alpha_i x_i \in d(w, p)$.

Conversely, by (5.3), $\sum_{i=1}^{n} \alpha_{i} \beta_{i} \leq (\sum_{i=1}^{n} \alpha_{i}^{1/k} \cdot w_{i})^{k}$ for every $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq 0$, and, consequently, $|\sum_{i=1}^{n} \alpha_{i} \beta_{i}| \leq \sup_{\pi} (\sum_{i=1}^{n} |\alpha_{\pi(i)}|^{1/k} w_{i})^{k}$ for all scalars $(\alpha_{i})_{i=1}^{n}$. Thus the operator defined by $P(\sum_{i=1}^{\infty} \alpha_{i} x_{i}) = (\sum_{i \in \sigma} \alpha_{i} \beta_{i})u$ is well defined, $||P|| \leq 1$ and $P \geq 0$. Since $P(u) = s_{n}^{-k} (\sum_{i=1}^{n} \beta_{i})u = u$ (by (5.10)), it follows moreover that P is a projection.

- (b) If $t_n \le t_m$ for every $m \le n$, then, putting $\beta_1 = \cdots = \beta_n = t_n$, the relations (5.9) and (5.10) are verified, consequently $P(\sum_{i=1}^{\infty} \alpha_i x_i) = (1/n)(\sum_{i=1}^{n} \alpha_i)(\sum_{i=1}^{n} x_i)$ is a positive and contractive projection.
- (c) If there exists $P: d(w, p) \to \operatorname{Sp}\{u\}$ a positive and contractive projection and if $\overline{\sigma} > 1$, then by (a) it follows that $(1/n)s_n^k = (1/n)\sum_{i=1}^n \beta_i \leqslant \beta_1 \leqslant w_1^k$ for n > 1, which is a contradiction.

We can now state the main result of this section:

THEOREM 5.5. If p = 1/k, $1 < k \in \mathbb{N}$, and $w_1^k < (1/n)(\sum_{i=1}^n w_i)^k$ for every n > 1, then the positive and contractive complemented sublattices E of d(w, p) coincide with the (closed) order ideals of d(w, p). In particular any positive and contractive complemented sublattice of d(w, p) cannot be linearly homeomorphic to l_n .

PROOF. If E is a closed order ideal of d(w, p), then $E = \overline{Sp}\{x_i: i \in A \subset \mathbb{N}\}$, hence there is a positive and contractive projection $P: d(w, p) \to E$. Conversely, if E is a positive and contractive complemented sublattice of d(w, p), by Proposition 5.3, it follows that $E = \overline{Sp}\{u_n: n \in \mathbb{N}\}$, where $u_n = \sum_{i \in \sigma_n} \alpha_i x_i > 0$ for $n \in \mathbb{N}$ and $(\sigma_n)_{n=1}^{\infty}$ is a sequence of finite pairwise disjoint subsets of \mathbb{N} .

By Proposition 5.4(c) it follows that $\bar{\sigma}_n = 1$ for every $n \in \mathbb{N}$. Consequently E is a closed ideal of d(w, p).

The second assertion is an obvious corollary of the first. \Box

The conditions of Theorem 5.5 are verified for example by the spaces d(w, p), p = 1/k, $1 < k \in \mathbb{N}$, with $w_i = 1/i^{\alpha}$, $0 < \alpha < \frac{1}{2}$. Indeed,

$$\sum_{i=1}^{n} w_i \ge \int_{1}^{n+1} \frac{dx}{x^{\alpha}} = \frac{1}{1-\alpha} \left[(1+n)^{1-\alpha} - 1 \right] > n^{1/k} \quad \text{for every } n > 1.$$

d(w, 1/k), where $1 < k \in \mathbb{N}$ and $w_n = 1/n^{\alpha}$ for $1 > \alpha > 1 - 1/k$ and $n \in \mathbb{N}$, are examples for spaces d(w, p) for which there is a one dimensional positive and contractive complemented sublattice which is not an order ideal of d(w, p).

More precisely, for a fixed $m \in \mathbb{N}$, there are n > m and a positive and contractive projection onto $\operatorname{Sp}\{u\}$, where $u = (\sum_{i=1}^{n} w_i)^{-1}(\sum_{i=1}^{n} x_i)$. Indeed, using the notations of Lemma 5.4(b) we have

$$t_n \le \frac{1}{n} \left(\int_0^n \frac{dx}{x^{\alpha}} \right)^k = \frac{n^{k(1-\alpha)}}{(1-\alpha)^k \cdot n} \le \frac{1}{(1-\alpha)^k \cdot n^{1-k+\alpha k}} \quad \text{for every } n \in \mathbb{N}.$$

Consequently, for $0 < \varepsilon < \frac{1}{2} \min_{1 \le i \le m} t_i$, there is a lowest n > m with $t_n < \varepsilon$, hence $t_n \le t_j$ for every $1 \le j \le n$. We conclude applying Proposition 5.4(b). \square

Theorem 5.5 suggests the following version of Problem 3.

PROBLEM 3b. Let d(w, p), 0 . Is there a positive and contractive complemented sublattice of <math>d(w, p) linearly homeomorphic to l_p ?

6. The representation of d(w, 1/k) for $1 < k \in \mathbb{N}$. In this section we give a representation of the dual of d(w, 1/k), $1 < k \in \mathbb{N}$, and also a representation of the Mackey completion of this space. These representations seem to be useful in the study of the d(w, p)'s structure. Remark first that the dual of d(w, p), 0 , is

$$d(w,p)' = \left\{ (b_i)_{i=1}^{\infty} \colon \sum_{i=1}^{\infty} |a_i| \ |b_{\pi(i)}| < \infty \text{ for every permutation } \pi \right.$$
of the integers and for every $a + (a_i)_{i=1}^{\infty} \in d(w,p) \right\}.$ (6.1)

Then we have

PROPOSITION 6.1. Let d(w, p), where p = 1/k, k > 1. Then

$$d(w,p)' \cap c_0 = c_0 \cap \left\{ (b_i)_{i=1}^{\infty} : \sup_{n} \left(\sum_{i=1}^{n} b_i^* \right) / \left(\sum_{i=1}^{n} w_i \right)^k < \infty \right\} = E,$$

$$||b||'_{p,w} = \sup_{n} \left(\sum_{i=1}^{n} b_i^* \right) / \left(\sum_{i=1}^{n} w_i \right)^k, \tag{6.2}$$

where $b = (b_i)_{i=1}^{\infty} \in c_0$ and $b^* = (b_i^*)_{i=1}^{\infty}$ is a decreasingly rearrangement of b.

PROOF. Let $b \in d(w, p)' \cap c_0$, $t_n = \sum_{i=1}^n b_i^*$ and $s_n = \sum_{i=1}^n w_i$. Suppose first that

$$\sup_{n} \frac{t_n}{s_n^k} = +\infty. \tag{6.3}$$

Since $\lim_{n} s_n = +\infty$, it follows that $\lim_{n} t_n = +\infty$.

Let $n_0 = 0$ and $s_{n_0} = 0$. If $m \in \mathbb{N}$ is fixed, then (6.3) implies that

$$\sup_{n} \frac{t_n - t_m}{\left(s_n - s_m\right)^k} = +\infty. \tag{6.4}$$

Choosing n_1 arbitrarily we can find $n_2 \in \mathbb{N}$, $n_2 > n_1$ such that

$$s_{n_2} - s_{n_1} \ge s_{n_1} - s_{n_0}$$
 (since $\lim_n s_n = \infty$),
 $t_{n_2} - t_{n_1} \ge 2^{2k-1} (s_{n_2} - s_{n_1})^k$ (by (6.4)).

By induction we get an increasing sequence of integers $(n_i)_{i=1}^{\infty}$ such that

$$s_{n_{j+1}} - s_{n_j} \ge s_{n_j} - s_{n_{j-1}}$$
 for $j = 1, 2, \dots$ (6.5)

$$t_{n_{j+1}} - t_{n_j} \ge (j+1)^{2k-1} (s_{n_{j+1}} - s_{n_j})^k$$
 (6.6)

Now let $n_{j-1} < i \le n_j$ and $y_i = j^{-2k}(s_{n_j} - s_{n_{j-1}})^{-k}$. Then $y = (y_i)_{i=1}^{\infty}$ is a decreasing sequence (by (6.5)) and moreover

$$\sum_{i=1}^{\infty} y_i^{1/k} \cdot w_i = \sum_{j=1}^{\infty} \sum_{i=n_{j-1}+1}^{n_j} \frac{w_i}{j^2 (s_{n_i} - s_{n_{i-1}})} = \sum_{j=1}^{\infty} l/j^2 < \infty,$$

that is $y \in d(w, p)$. On the other hand

$$\sum_{i=1}^{\infty} y_i b_i^* = \sum_{j=1}^{\infty} \sum_{i=n_{j-1}+1}^{n_j} \frac{t_{n_j} - t_{n_{j-1}}}{j^{2k} (s_{n_i} - s_{n_{i-1}})^k} > (\text{by } (6.6)) > \sum_{j=1}^{\infty} \sum_{i=n_{j-1}+1}^{n_j} \frac{1}{j} = +\infty,$$

which contradicts the fact that $b \in d(w, p)'$. Consequently (6.3) is not true and then

$$\lambda_k = \sup_n \frac{t_n}{s_n^k} < +\infty. \tag{6.7}$$

Hence $d(w, p)' \cap c_0 \in E$.

Now let $b \in E$. If the decreasing sequence $y = (y_i)_{i=1}^{\infty} \in d(w, p)$, then

$$\sum_{i=1}^{n} y_{i} b_{i}^{*} = \sum_{i=1}^{n-1} t_{i} (y_{i} - y_{i+1}) + t_{n} y_{n}$$

$$\leq (\text{by (6.7)}) \leq \lambda_{k} \left[\sum_{i=1}^{n-1} s_{i}^{k} (y_{i} - y_{i+1}) + s_{n}^{k} y_{n} \right]$$

$$\leq (\text{by (5.1)}) \leq \lambda_{k} \left(\sum_{i=1}^{n} y_{i}^{1/k} \cdot w_{i} \right)^{k}.$$

Hence $||b||'_{p,w} = ||b^*||'_{p,w} \le \sup_n t_n/s_n^k$ and $b \in d(w, p)' \cap c_0$. On the other hand, for every $\varepsilon > 0$, there is $n \in \mathbb{N}$ with $t_n/s_n^k > \lambda_k - \varepsilon$. Let

$$y_i = \begin{cases} s_n^{-k} & \text{if } i \le n, \\ 0 & \text{if } i > n. \end{cases}$$

Then $||y||_{p,w} = 1$ and $||b||'_{p,w} = ||b^*||'_{p,w} \ge \sum_{i=1}^n y_i b_i = t_n/s_n^k > \lambda_k - \varepsilon$. ε being arbitrarily small, it follows that $||b||'_{p,w} = \sup_n t_n/s_n^k$, consequently the equalities (6.2) are satisfied. \square

COROLLARY 6.2. Let p = 1/k, k > 1.

(a) If $d(w, p) \not\subset l_1$ then

$$d(w,p)' = \left\{ (b_i)_{i=1}^{\infty} \in c_0: \sup_{n} \left(\sum_{i=1}^{n} b_i^* \right) / \left(\sum_{i=1}^{n} w_i \right)^k < \infty \right\}$$
$$= \left\{ (b_i)_{i=1}^{\infty}: \sup_{n} \left(\sum_{i=1}^{n} b_i^* \right) / \left(\sum_{i=1}^{n} w_i \right)^k < \infty \right\}.$$

(b) If $d(w, p) \subset l_1$, then $d(w, p)' = l_{\infty}$.

PROOF. The case (b) is clear by Proposition 3.4.

(a) Let $b \in d(w, p)'$. If $b \notin c_0$, then there are $\varepsilon > 0$ and $(n_j)_{j=1}^{\infty}$ such that $|b_{n_j}| > \varepsilon$ for every $j \in \mathbb{N}$. Reasoning as in the proof of (3.3) we get a contradiction. Hence

 $d(w, p)' \subset c_0$, consequently, by (6.2), it follows the first equality. By the last part of the proof of Proposition 6.1 it follows the second equality.

We state now the main result of this section:

THEOREM 6.3. Let p = 1/k < 1 and $d(w, p) \not\subset l_1$. If there is a positive decreasing sequence $(v_n)_{n=1}^{\infty} \in c_0$ such that

$$\sum_{i=1}^{n} v_{i} \sim \left(\sum_{i=1}^{n} w_{i}\right)^{k} \quad \text{for every } n \in \mathbb{N}$$
 (6.8)

(i.e. there are constants A, B > 0 such that $A(\sum_{i=1}^{n} v_i) \leq (\sum_{i=1}^{n} w_i)^k \leq B(\sum_{i=1}^{n} v_i)$ for every $n \in \mathbb{N}$), then

$$\widetilde{d(w,p)} \approx d(v,1).$$
 (6.9)

PROOF. Theorem 11 of [4] says that $d(v, 1)' = \{(b_i)_{i=1}^{\infty} : \sup_{n} (\sum_{i=1}^{n} b_i^*) / (\sum_{i=1}^{n} v_i) < \infty \}$. Then by the hypothesis and by Corollary 6.2(a) it follows that

$$d(w, p)' = d(v, 1)'. (6.10)$$

It is easy to see that the canonical basis $(x_n)_{n=1}^{\infty}$ of d(w, p) is a symmetric basis of d(w, p) too. Then, denoting by $d(w, p)^x$ the Köthe dual of d(w, p), that is the space $\{(b_i)_{i=1}^{\infty}: \sum_{i=1}^{\infty} |a_ib_i| < +\infty$ for every $a = (a_i)_{i=1}^{\infty} \in d(w, p)^x$, it follows that $d(w, p)^x = d(w, p)^x$. We shall show that $d(v, 1)^{xx} = d(v, 1)$.

A Köthe result (see §30, p. 5 of [6]) says that for a Banach sequence space E, $E^{xx} = E$ if and only if E is weakly sequentially complete. Hence, it suffices to show that d(w, 1) is weakly sequentially complete. By Theorem 1.c.10 of [8] it follows that we must show that $c_0 \not\subset d(v, 1)$. If $c_0 \subset d(v, 1)$, Corollary 17 of [3] implies that c_0 contains a complemented subspace linearly homeomorphic to l_1 , which is a contradiction. Hence $d(w, p)^{xx} = d(v, 1)^{xx} = d(v, 1)$, consequently $d(w, p) \subset d(v, 1) \subset d(w, p)^{xx}$. By Proposition 3.3 it follows that every order interval $[0, x] \subset d(w, p)$ is compact. On the other hand Theorem II. 5.10 of [11] shows us that in a Banach lattice E the following assertions are equivalent:

- (1) The norm of E is order continuous (i.e. if $(y_{\alpha})_{\alpha \in A}$ is a downward directed set in E with $\inf_{\alpha} y_{\alpha} = 0$, then $\lim_{\alpha} ||y_{\alpha}|| = 0$).
 - (2) Every order interval $[0, x] \subset E$ is $\sigma(E, E')$ -compact.
 - (3) E is an order ideal in E''.

Finally, a theorem of Ando (see Proposition IV.11.1 of [11]) says that a Banach lattice E has an order continuous norm if and only if every closed order ideal of E is the range of a positive projection from E.

Consequently $\overline{d(w, p)}$ is a complemented subspace, with a symmetric basis $(y_n)_n$, of the space $\overline{d(w, p)}'' = \overline{d(w, p)}^{xx} = d(v, 1)$. Since $\overline{d(w, p)} \not\approx l_1$, by the Corollary 14 of [3] it follows that $\overline{d(w, p)} \approx d(v, 1)$.

REMARK 6.4. (1) d(w, 1/k) with k > 1 and $w_n = 1/n^{\alpha}$, where $(k-1)/k < \alpha \le 1$, are examples of the spaces d(w, 1/k) which verify the conditions of Theorem 6.3. Indeed, if $\alpha = 1$, we take in Proposition 3.7, $\gamma = 0$, b = 1 and $n_j = j$ for every $j \in \mathbb{N}$. Hence $d(w, 1/k) \downarrow l_1$.

If $(k-1)/k < \alpha < 1$, let $0 < \gamma < 1/(k-1)$, $n_j = j^{1/\alpha}$ for every $j \in \mathbb{N}$, and $b = \sup_j [(j+1)^{1/\alpha} - j^{1/\alpha}]/j^{\gamma} < + \infty$. Then, by Proposition 3.7, it follows that $d(w, 1/k) \notin l_1$. Suppose now again that $\alpha = 1$ and put

$$v_{i} = \begin{cases} 1 & \text{if } i \leq \left[e^{k-1}\right] + 1, \\ \frac{(\log i)^{k-1}}{i} & \text{if } i > \left[e^{k-1}\right] + 1 \end{cases}$$

where $[e^{k-1}]$ is the entire part of e^{k-1} . Then

$$\sum_{i=1}^{n} v_i \sim \int_3^n \frac{(\log x)^{k-1}}{x} dx \sim (\log n)^k \sim \left(\sum_{i=1}^n w_i\right)^k \quad \text{for every } n.$$

Moreover $\lim_{n} v_n = 0$ and $v_n \ge v_{n+1}$ for every $n \in \mathbb{N}$.

If $(k-1)/k < \alpha < 1$, then we put $v_n = 1/n^{\beta}$, where $\beta = k(\alpha - (k-1)/k) < 1$ for every $n \in \mathbb{N}$. Clearly $\lim_n v_n = 0$ and $(v_n)_{n=1}^{\infty}$ is a decreasing sequence. Moreover

$$\sum_{i=1}^{n} v_i \sim \int_1^n \frac{dx}{x^{\beta}} \sim n^{1-\beta} \sim n^{k(1-\alpha)} \sim \left(\sum_{i=1}^{n} w_i\right)^k \text{ for every } n \in \mathbb{N}.$$

(2) We do not know if the condition (6.8) is superfluous.

Let us mention the following problem:

Problem 4. Let p = q/k, 1 < q < k. Is there a positive decreasing sequence $(v_i)_{i=1}^{\infty} \in c_0 \setminus l_1$ such that $d(w, p) \approx d(v, q)$?

More generally:

Problem 4a. Let $0 , <math>p \ne 1/k$ for any $k \in \mathbb{N}$. Is $\widetilde{d(w, p)}$ reflexive?

Remark that a positive answer to Problem 4a implies a positive answer to Problem 3 for $p \neq 1/k$.

REFERENCES

- 1. Z. Altshuler, P. G. Cassaza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973), 140-155.
- 2. G. Bennett, An extension of the Riesz-Thorin theorem, Lecture Notes in Math., vol. 604, Springer-Verlag, Berlin and New York, 1977.
- 3. P. G. Cassaza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces. II, Israel J. Math. 17 (1974), 191-218.
 - 4. D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. 16 (1966), 85-106.
- 5. N. J. Kalton, Orlicz sequence spaces without local convexity, Proc. Cambridge Philos. Soc. 81 (1977), 253-277.
 - 6. G. Köthe, Topological vector spaces. I, Springer-Verlag, Berlin and New York, 1969.
- 7. J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathfrak{L}_p -spaces and their applications, Studia Math. 29 (1968), 275-326.
- 8. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces, Springer-Verlag, Berlin and New York, 1977.
- 9. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^p, Astérisque 11 (1974), 1-163.
 - 10. S. Rolewicz, Metric linear spaces, PWN, Warszawa, 1972.

- 11. H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974.
- 12. W. J. Stiles On properties of subspaces of l_p , 0 , Trans. Amer. Math. Soc. 149 (1970), <math>405-415
- 13. B. Walsh, On characterizing Köthe sequence spaces as vector lattices, Math. Ann. 175 (1968), 253-256.

DEPARTMENT OF MATHEMATICS, INCREST, BUCHAREST 77538, ROMANIA

Current address: Mathematisches Institut, Universität des Saarlandes, Saarbrücken 6600, West Germany