THE N2-SOUSLIN HYPOTHESIS

BY

RICHARD LAVER¹ AND SAHARON SHELAH²

ABSTRACT. We prove the consistency with CH that there are no \aleph_2 -Souslin trees.

The \aleph_2 -Souslin hypothesis, SH_{\aleph_2} , is the statement that there are no \aleph_2 -Souslin trees. In Mitchell's model [5] from a weakly compact the stronger statement holds (Mitchell and Silver) that there are no \aleph_2 -Aronszajn trees, a property which implies that $2^{\aleph_0} > \aleph_1$.

THEOREM. Con(ZFC + there is a weakly compact cardinal) implies

$$\operatorname{Con}(ZFC + 2^{\aleph_0} = \aleph_1 + SH_{\aleph_1}).$$

In the forcing extension, 2^{\aleph_1} is greater than \aleph_2 , and can be arbitrarily large. Analogues of this theorem hold with \aleph_2 replaced by the successor of an arbitrary regular cardinal. Strengthenings and problems are given at the end of the paper.

Let \mathfrak{M} be a ground model in which κ is a weakly compact cardinal. The extension which models SH_{κ_2} and CH is obtained by iteratively forcing $> \kappa^+$ times with certain κcc , countably closed partial orders, taking countable supports in the iteration. For $\alpha > 1$, $(\mathfrak{P}_{\alpha}, \leq)$ is the ordering giving the first α steps in the iteration. \mathfrak{P}_{α} is a set of functions with domain α .

Let $L_{\mathbf{m},\mathbf{\kappa}}$ be the Levy collapse by countable conditions of each $\beta \in [\aleph_1, \kappa)$ to \aleph_1 (so κ is the new \aleph_2). Then \mathfrak{P}_1 (isomorphic to $L_{\mathbf{m},\mathbf{\kappa}}$) is $\{f: \operatorname{dom} f = 1, f(0) \in L_{\mathbf{m},\mathbf{\kappa}}\}$, ordered by $f \leq g$ iff $f(0) \leq g(0)$. To define $\mathfrak{P}_{\beta+1}$, choose a term A_{β} in the forcing language of \mathfrak{P}_{β} for a countably closed partial ordering (to be described later) and let $\mathfrak{P}_{\beta+1} = \{f: \operatorname{dom} f = \beta+1, f \upharpoonright \beta \in \mathfrak{P}_{\beta}, f \upharpoonright \beta \Vdash_{\mathfrak{P}_{\beta}} f(\beta) \in A_{\beta}\}$, ordered by $f \leq g$ iff $f \upharpoonright \beta \leq g \upharpoonright \beta$ and $g \upharpoonright \beta \Vdash_{\mathfrak{P}_{\beta}} f(\beta) \leq g(\beta)$. For α a limit ordinal, $\mathfrak{P}_{\alpha} = \{f: \operatorname{dom} f = \alpha, f \upharpoonright \beta \in \mathfrak{P}_{\beta}$ for all $\beta < \alpha$, and $f(\beta)$ is (the term for) \emptyset , the least element of A_{β} , for all but $\leq \aleph_0 \beta$'s}, ordered by $f \leq g$ iff for all $\beta < \alpha, f \upharpoonright \beta \leq g \upharpoonright \beta$.

Each \mathcal{P}_{α} is countably closed. We are done as in Solovay-Tennenbaum [7] if the A_{β} 's can be chosen so that each \mathcal{P}_{α} has the κcc , and therefore that every \aleph_2 (= κ)-Souslin tree which crops up gets killed by some A_{β} .

If T is a tree then $(T)_{\lambda}$ is the λ th level of T, $(T)_{<\lambda} = \bigcup_{\mu<\lambda} T_{\mu}$. Regarding the previous problem, it is a theorem of Mitchell that if CH and $\emptyset \{\alpha < \omega_2 : cf(\alpha) = \aleph_1\}$ hold, then there are countably closed \aleph_2 -Souslin trees T_n , $n < \omega$, such that for

Received by the editors October 18, 1978.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 02K35, 04A20.

¹Supported by NSF grant MCS-76-06942.

²Supported by NSF grant MCS-76-08479.

each $m < \omega$, $\bigotimes_{n < m} T_n$ has the $\aleph_2 cc$, but $\bigotimes_{n < \omega} T_n$ does not have the $\aleph_2 cc$. We give for interest his proof modulo the usual Jensen methods. At stage $\mu < \omega_2$ construct each $(T_n)_{\mu}$ normally above $(T_n)_{<\mu}$. If $\mu = \nu + 1$ let each $x \in (T_n)_{\nu}$ have at least two successors in $(T_n)_{\mu}$. If $cf(\mu) = \omega$ let all branches in $(T_n)_{<\mu}$ go through. If $cf(\mu) = \omega_1$ make sure that the antichain given by the \diamond -sequence for $\bigotimes_{n < m_{\mu}} T_n$ is taken care of, and choose $\langle c_{\mu n} : n < \omega \rangle \in \bigotimes_{n < \omega} (T_n)_{\mu}$ so that if $\mu' < \mu$, $cf(\mu') = \omega_1$, then $\langle c_{\mu' n} : n < \omega \rangle \nleq \langle c_{\mu n} : n < \omega \rangle$. We also carry along the following induction hypothesis: if $\nu < \mu$, $\langle x_n : n < \omega \rangle \in \bigotimes_{n < \omega} (T_n)_{\nu}$, $m < \omega$, $\langle y_n : n < m \rangle \in \bigotimes_{n < m} (T_n)_{\mu}$, $x_n < y_n$ (n < m) and $\langle x_n : n < \omega \rangle \ngeq \langle c_{\lambda n} : n < \omega \rangle$, for all $\lambda \leqslant \nu$ with $cf(\lambda) = \omega_1$, then there are $y_n \in (T_n)_{\mu}$ $(m \leqslant n < \omega)$ with $x_n < y_n$, such that $\langle y_n : n < \omega \rangle \ngeq \langle c_{\lambda n} : n < \omega \rangle$, for all $\lambda \leqslant \mu$ with $cf(\lambda) = \omega_1$.

If δ is inaccessible, then forcing with $L_{\aleph_1\delta}$ (whence $2^{\aleph_0} = \aleph_1$, $2^{\aleph_1} = \aleph_2 = \delta$, and $\delta \{\alpha < \omega_2 : cf(\alpha) = \omega_1\}$ hold) followed by forcing with the $\bigotimes_{n < \omega} T_n$ constructed previously, gives a countably closed length ω iteration of countably closed, δcc partial orderings which does not have δcc .

The previous theorem does not rule out that an iteration of \aleph_2 -Souslin trees can give CH and SH_{\aleph_2} ; in this paper, though, the \aleph_2 -Souslin trees are killed by a different method. Let T be an \aleph_2 -Souslin tree (we may assume without loss of generality that T is normal and $Card(T)_1 = \aleph_1$). The antichain partial order A_T is defined to be $(\{x \subseteq T: x \text{ a countable antichain, root } T \notin x\}, \subseteq)$. Now A_T need not have the \aleph_2cc , as shown by the following result of the first author: Con(ZFC) implies Con(ZFC + "there is an \aleph_2 -Souslin tree T and a sequence $(d_{\alpha n}: n < \omega)$ from $(T)_{\alpha}$, for each $\alpha < \omega_2$, such that if $\alpha < \beta$, there is an $m < \omega$ with $d_{\alpha n} < d_{\beta n}$, for all n > m".) Namely, start with a model of CH. Determine in advance that, say, $(T)_{\alpha} = [\omega_1 \alpha, \omega_1(\alpha + 1))$ and that $d_{\alpha n} = \omega_1 \alpha + n$. Conditions are countable subtrees S of T such that if $S \cap (T)_{\alpha} \neq \emptyset$ then $\{d_{\alpha n}: n < \omega\} \subseteq S$, which meet the requirements on the $d_{\beta n}$'s.

Devlin [2] has shown that such a tree exists in L.

We show now that if each A_{β} is an A_{T} , T an \aleph_{2} -Souslin tree, then each \mathcal{P}_{α} has the κcc , which will prove the theorem (we actually just use that Card T < the cardinal designated as the new $2^{\aleph_{1}}$ and T has no ω_{2} -paths; see remarks at the end). This theorem was originally proved by the first author when κ is measurable; that the assumption can be weakened to weak compactness of κ is due to the second author.

We consider now only the case $\alpha \leq \kappa^+$ (which will suffice, assuming $2^{\kappa} = \kappa^+$ in \mathfrak{M} , for $CH + SH_{\kappa_2} + 2^{\kappa_1} = \aleph_3$); α arbitrary will be dealt with at the end.

Fix α for the rest of the proof. We assume by induction that

(1) For each $\beta < \alpha$, \mathfrak{P}_{β} has the κcc .

(One more induction hypothesis is listed later.)

For $\beta < \alpha$, let T_{β} be the β th \aleph_2 -Souslin tree, so $\mathfrak{P}_{\beta+1} = \mathfrak{P}_{\beta} \otimes A_{\beta}$, where $A_{\beta} = A_{T_{\alpha}}$. Assume without loss of generality that for each $\lambda < \kappa$,

$$(T_{\beta})_{\lambda} \subseteq [\omega_1\lambda, \omega_1(\lambda + 1)).$$

An $f \in \mathcal{P}_{\beta}$, $\beta \leq \alpha$, is said to be determined if there is in \mathfrak{N} a sequence $\langle z_{\gamma} : \gamma \in \text{dom } f - \{0\} \rangle$ of countable sets of ordinals such that for all $\gamma \in \text{dom } f - \{0\}$,

 $f \upharpoonright \gamma \Vdash_{\mathscr{T}_{\gamma}} f(\gamma) = z_{\gamma}$. If $\langle f_n : n < \omega \rangle$ is a sequence of determined members of \mathscr{P}_{β} , with $f_n \leqslant f_{n+1}$, then the coordinatewise union f_{ω} of the f_n 's is seen to be a determined member of \mathscr{P}_{β} extending each f_n . From this it may be seen, by induction on $\beta \leqslant \alpha$, that the set of determined members of \mathscr{P}_{β} is cofinal in \mathscr{P}_{β} . Redefine each \mathscr{P}_{β} then to consist just of the determined conditions. Clearly Card $\mathscr{P}_{\beta} \leqslant \kappa$, for all $\beta \leqslant \alpha$.

For $f, g \in \mathcal{P}_{\beta}$, $f \sim g$ means that f and g are compatible.

Fix for the rest of the proof a one-one enumeration $\alpha = \{\alpha_{\mu} : \mu \in S\}$, for some $S \subseteq \kappa$ (this induces a similar enumeration of each $\beta < \alpha$, the induction hypothesis (2) for β below, is with respect to this induced enumeration). For notational simplicity we now assume that S is some $\kappa' \leq \kappa$.

If $\lambda < \kappa$, $\beta \le \alpha$, $f \in \mathcal{P}_{\beta}$, define $f|\lambda$ to be the function h with domain β such that $h(\gamma) = \emptyset$ unless $\gamma \in \{\alpha_{\mu} : \mu < \lambda\} \cap \beta$, in which case,

$$\gamma = 0 \Rightarrow h(\gamma) = f(\gamma) \upharpoonright (\omega_1 \times \lambda), \qquad \gamma > 0 \Rightarrow h(\gamma) = f(\gamma) \cap \lambda.$$

The function $f|\lambda$ need not be a condition, but for $g \in \mathcal{P}_{\beta}$, we will still write $f|\lambda \leq g$ to mean that $f|\lambda$ is coordinatewise a subset of g. Let $\mathcal{P}_{\beta}|\lambda = \{f \in \mathcal{P}_{\beta}: f|\lambda = f\}$.

Suppose $0 < \beta \le \alpha, \lambda < \kappa$. Define

$$\#_{\lambda}^{\beta}(f,g,h) \Leftrightarrow f,g \in \mathcal{P}_{\beta}, f|\lambda = g|\lambda = h,$$

 $*^{\beta}_{\lambda}(f,h) \Leftrightarrow f \in \mathcal{P}_{\beta}, h \in \mathcal{P}_{\beta}|\lambda \text{ and for every } h' \geqslant h \text{ with } h' \in \mathcal{P}_{\beta}|\lambda, h' \sim f,$

$$*^{\beta}_{\lambda}(f, g, h) \Leftrightarrow *^{\beta}_{\lambda}(f, h) \text{ and } *^{\beta}_{\lambda}(g, h).$$

For $P \subseteq Q$, Q a partial ordering, $P \subseteq_{\text{reg}} Q$ means that P is a regular subordering of Q, that is, any two members of P compatible in Q are compatible in P, and every maximal antichain of P is a maximal antichain of Q. If $\mathcal{P}_{\beta}|\lambda \subseteq_{\text{reg}} \mathcal{P}_{\beta}$, then $*^{\beta}_{\lambda}(f,h)$ states that $h \Vdash_{\mathcal{P}_{\beta}|\lambda} [\![f]\!] \neq 0$.

Recall that the sets of the form $\{\lambda < \kappa : (R_{\lambda}, \in, A \cap R_{\lambda}) \models \Phi\}$, where $A \subseteq \kappa$, Φ is π_1^1 , and $(R_{\kappa}, \in, A) \models \Phi$, belong to a normal uniform filter \mathfrak{F}_{wc} , the weakly compact filter on κ (see [9], [0]). The second thing we assume by induction is

(2) for all $\beta < \alpha$, for \mathfrak{F}_{wc} -almost all $\lambda < \kappa$, for all $f, g, h, \#_{\lambda}^{\beta}(f, g, h)$ implies that for some $h' \ge h, *_{\lambda}^{\beta}(f, g, h')$.

If $\beta < \alpha$, $\lambda < \kappa$, say that $(T_{\beta})_{<\lambda}$ is determined by $\mathfrak{P}_{\beta}|\lambda$ if for each θ , τ in $(T_{\beta})_{<\lambda}$ there is a \mathfrak{P}_{β} -maximal antichain R of conditions deciding the ordering between θ and τ in T_{β} , such that $R \subseteq \mathfrak{P}_{\beta}|\lambda$.

Lemma 1. There is a closed unbounded set of $\lambda < \kappa$ such that for all $\mu < \lambda$, $(T_{\alpha_{\mu}})_{<\lambda}$ is determined by $\mathfrak{P}_{\alpha_{\mu}}|\lambda$.

PROOF. This is a consequence of the strong inaccessibility of κ and the assumption that each \mathfrak{P}_{β} , $\beta < \alpha$, has κcc .

LEMMA 2. For \mathcal{F}_{wc} -almost all $\lambda < \kappa$,

- (a) λ is strongly inaccessible.
- (b) For all $\mu < \lambda$, \mathcal{P}_{α} $|\lambda$ has the λcc .
- (c) For all $\mu < \lambda$, $\mathfrak{P}_{\alpha_{\mu}}^{\mu} | \lambda \subseteq_{\text{reg}} \mathfrak{P}_{\alpha_{\mu}}$.
- (d) For all $\mu < \lambda, \Vdash_{\mathscr{D}_{\alpha_{\mu}}|\lambda} \lambda = \aleph_{2}$.
- (e) For all $\mu < \lambda$, $\#_{\mathscr{P}_{\alpha_{\mu}}|\lambda}$ $(T_{\alpha_{\mu}})_{<\lambda}$ is an \aleph_2 -Souslin tree.

PROOF. By π_1^1 reflection and the normality of \mathscr{T}_{wc} .

LEMMA 3. Let $\beta \leq \alpha, \lambda < \kappa, \, \mathcal{P}_{\beta} | \lambda \subseteq_{\mathsf{reg}} \mathcal{P}_{\beta}$.

- (a) If $f \in \mathcal{P}_{\beta}$, $j \in \mathcal{P}_{\beta} | \lambda$, and $f \sim j$, then there is an $h \geqslant j$ with $*^{\beta}_{\lambda}(f, h)$.
- (b) If $*^{\beta}_{\lambda}(f, g, h)$ and D, E are cofinal subsets of \mathfrak{P}_{β} , then there exists $\langle f', g', h' \rangle > \langle f, g, h \rangle$ with $*^{\beta}_{\lambda}(f', g', h'), f' \in D, g' \in E, h \leq f', g'$.

PROOF. These are standard facts about forcing.

The following is T. Carlson's version of the lemma we originally used here.

LEMMA 4. Suppose λ satisfies Lemma 1 and Lemma 2(c), $\mu < \lambda$, and $*^{\alpha}_{\lambda}(f, h)$. Then $f|\lambda \leq h$.

PROOF. Otherwise there is a $\nu < \lambda$ with $\alpha_{\nu} < \alpha_{\mu}$, and a $\theta \in f(\alpha_{\nu}) \cap \lambda$ such that $\theta \notin h(\alpha_{\nu})$. We have that $h \upharpoonright \alpha_{\nu} \Vdash_{\mathscr{D}_{\alpha_{\nu}} \mid \lambda} \theta$ is $T_{\alpha_{\nu}}$ -incomparable with each member of $h(\alpha_{\nu})$; otherwise $*^{\alpha_{\nu}}_{\lambda}(f,h)$ would be contradicted. Pick an $h' \in \mathscr{D}_{\alpha_{\nu}} \mid \lambda$, $h' > h \upharpoonright \alpha_{\nu}$, and a $\theta' < \lambda$ such that $h' \Vdash_{\mathscr{D}_{\alpha_{\nu}} \mid \lambda} \theta < T_{\alpha_{\nu}} \theta'$. Let \bar{h} be $h' \cap \langle h(\alpha_{\nu}) \cup \{\theta'\} \rangle \cap h \upharpoonright [\alpha_{\nu} + 1, \alpha_{\mu})$. Then $\bar{h} \in \mathscr{D}_{\alpha_{\nu}} \mid \lambda$, $h \leq \bar{h}$, and $\bar{h} \nsim f$, a contradiction.

LEMMA 5. Suppose λ satisfies Lemma 1 and Lemma 2(c), $\mu < \lambda$, and $*^{\alpha}_{\lambda}(f, g, h)$. Then there is an $(f', g', h') \geq (f, g, h)$ with $\#^{\alpha}_{\lambda}(f', g', h')$.

PROOF. Choose $(f, g, h) = (f_0, g_0, h_0) \leqslant \cdots \leqslant (f_n, g_n, h_n) \leqslant \cdots$ so that $*^{\alpha_{\mu}}_{\lambda}(f_n, g_n, h_n)$, $h_n \leqslant f_{n+1}$, $h_n \leqslant g_{n+1}$. This is done by repeated applications of Lemma 3(a), (b). Then Lemma 4 implies that the coordinatewise union (f', g', h') of the (f_n, g_n, h_n) 's is as desired.

DEFINITION. Suppose $\lambda < \kappa$, $\mu < \lambda$, $f,g \in \mathfrak{P}_{\alpha_{\mu}}$, and suppose θ , τ are nodes of $(T_{\alpha_{\mu}})_{\geqslant \lambda}$ ($\theta = \tau$ allowed). Then $\langle f,g \rangle$ is said to λ -separate $\langle \theta,\tau \rangle$ if there is a $\gamma < \lambda$ and $\theta',\tau' \in (T_{\alpha_{\mu}})_{\gamma}$, with $\theta' \neq \tau'$, such that

$$f \Vdash_{\mathscr{D}_{\alpha_{\mu}}} \theta' <_{T_{\alpha_{\mu}}} \theta, \qquad g \Vdash_{\mathscr{D}_{\alpha_{\mu}}} \tau' <_{T_{\alpha_{\mu}}} \tau.$$

LEMMA 6. Suppose λ satisfies Lemmas 1 and 2, $\mu < \lambda$, $*^{\alpha}_{\lambda}(f, g, h)$, $\{\theta, \tau\} \subseteq (T_{\alpha_{\mu}})_{\geqslant \lambda}$, with $\theta = \tau$ allowed. Then there is an $\langle f', g', h' \rangle \geqslant \langle f, g, h \rangle$ such that $*^{\alpha}_{\lambda}(f', g', h')$ and $\langle f', g' \rangle \lambda$ -separates $\langle \theta, \tau \rangle$.

Proof.

Claim. There are f_0 , $f_1 \ge f$, $\bar{h} \ge h$, with $*^{\alpha}_{\lambda}(f_0, \bar{h})$, $*^{\alpha}_{\lambda}(f_1, \bar{h})$, such that $\langle f_0, f_1 \rangle$ λ -separates $\langle \theta, \theta \rangle$ via a $\langle \theta_1, \theta_2 \rangle \in (T_{\alpha})_{\gamma}$, for some $\gamma < \lambda$.

PROOF. Consider the result of taking a generic set $G_{\alpha_{\mu}}|\lambda$ over $\mathcal{P}_{\alpha_{\mu}}|\lambda$ which contains h. In $\mathfrak{M}[G_{\alpha_{\mu}}|\lambda]$, $(T_{\alpha_{\mu}})_{<\lambda}$ is a λ (= \aleph_2)-Souslin tree. In the further extension $\mathfrak{M}[G_{\alpha_{\mu}}]$, θ determines a λ -path through $(T_{\alpha_{\mu}})_{<\lambda}$. Since this path is not in $\mathfrak{M}[G_{\alpha_{\mu}}|\lambda]$, there must be $\bar{h} \in G_{\alpha_{\mu}}|\lambda$, $\bar{h} > h$, f_0 , $f_1 > f$, $\gamma < \lambda$, θ_0 , $\theta_1 \in (T_{\alpha_{\mu}})_{\gamma}$, $\theta_0 \neq \theta_1$, with

 $\bar{h} \Vdash f_0 \Vdash \theta_0 <_{T_{\alpha_\mu}} \theta$, $\bar{h} \Vdash f_1 \Vdash \theta_1 <_{T_{\alpha_\mu}} \theta$, such that $*^{\alpha_\mu}_{\lambda}(f_0, \bar{h})$ and $*^{\alpha_\mu}_{\lambda}(f_1, \bar{h})$. This gives the claim.

Now, by Lemma 3, choose $(g',h') \ge (g,h)$ and a $\tau' \in (T_{\alpha_{\mu}})_{\gamma}$ so that $*^{\alpha_{\mu}}_{\lambda}(g',h')$ and $g' \vdash \tau' <_{T_{\alpha_{\mu}}} \tau$. Pick $i \in \{0,1\}$ with $\tau' \ne \theta_i$. Let $f' = f_i$, $\theta' = \theta_i$. Then (f',g',h') are as desired. This proves the lemma.

We claim that the induction hypotheses (1) and (2) automatically pass up to α if $cf(\alpha) > \omega$. Namely, (1) holds at α by a Δ -system argument. For (2), suppose that for an \mathcal{F}_{wc} -positive set W of λ 's there is a counterexample $\langle f_{\lambda}, g_{\lambda}, h_{\lambda} \rangle$. Let $N_{\lambda} = (\text{support } f_{\lambda} \cup \text{ support } g_{\lambda})$. If $cf(\alpha) \neq \kappa$ then for some $\beta < \alpha$ and \mathcal{F}_{wc} -positive $V \subseteq W$, $\lambda \in V$ implies $N_{\lambda} \subseteq \beta$, and we are done. If $cf(\alpha) = \kappa$, pick a closed unbounded set $C \subseteq \kappa$ such that $\langle \sup\{\alpha_{\nu} : \nu < \lambda\} : \lambda \in C \rangle$ is increasing, continuous and cofinal in α and an \mathcal{F}_{wc} -positive $V \subseteq W \cap C$ such that for some $\beta < \alpha$ and all $\lambda \in V$, $N_{\lambda} \cap \sup\{\alpha_{\nu} : \nu < \lambda\} \subseteq \beta$, then apply (2) at β .

Thus, we may assume for the rest of the proof that α is a successor ordinal or $cf(\alpha) = \omega$. Fix $\langle \mu_n : n < \omega \rangle$ such that if $\alpha = \beta + 1$ then each μ_n is the μ with $\alpha_{\mu} = \beta$, and if $cf(\alpha) = \omega$ then $\langle \alpha_{\mu_n} : n < \omega \rangle$ is an increasing sequence converging to α

LEMMA 7. For \mathfrak{F}_{wc} -almost all λ , the following holds: if $f, g \in \mathfrak{P}_{\alpha}$, $h \in \mathfrak{P}_{\alpha} | \lambda$ and $\#^{\alpha}_{\lambda}(f, g, h)$ then there exists $\langle f', g', h' \rangle \geqslant \langle f, g, h \rangle$ such that $\#^{\alpha}_{\lambda}(f', g', h')$ and such that for each $\mu < \lambda$ with $\alpha_{\mu} \neq 0$, and each $\theta \in f'(\alpha_{\mu}) - \lambda$, each $\tau \in g'(\alpha_{\mu}) - \lambda$, $\langle f' | \alpha_{\mu}, g' | \alpha_{\mu} \rangle \lambda$ -separates $\langle \theta, \tau \rangle$.

PROOF. We prove the lemma for λ , assuming that λ satisfies Lemmas 1 and 2, $\lambda > \mu_n$ $(n < \omega)$ and for each $n < \omega$, λ is in the \mathfrak{F}_{wc} set given by induction hypothesis (2) for α_{μ_n} . Construct $\langle f_n, g_n, h_n \rangle$, $n < \omega$, so that

- $(a) f_n, g_n \in \mathcal{P}_{\alpha_{\mu_n}}, \#_{\lambda}^{\alpha_{\mu_n}}(f_n, g_n, h_n),$
- $(b) \left\langle f \upharpoonright \alpha_{\mu_n}; g \upharpoonright \alpha_{\mu_n}, h \upharpoonright \alpha_{\mu_n} \right\rangle \leq \left\langle f_n, g_n, h_n \right\rangle,$
- (c) $\langle f_n, g_n, h_n \rangle \leq \langle f_{n+1}, g_{n+1}, h_{n+1} \rangle$,
- (d) if, at stage n > 1, $\langle \theta_n, \tau_n \rangle$ is the *n*th pair (in the appropriate bookkeeping list for exhausting them) with $\theta_n \in f_n(\alpha_{\nu_n}) \lambda$, $\tau_n \in g_n(\alpha_{\nu_n}) \lambda$, $\nu_n < \lambda$, $\alpha_{\nu_n} \le \alpha_{\nu_n}$, then

$$\langle f_n \upharpoonright \alpha_{\nu_n}, g_n \upharpoonright \alpha_{\nu_n} \rangle$$
 λ -separates $\langle \theta, \tau \rangle$.

Let $f_0 = f \upharpoonright \alpha_{\mu_0}$, $g_0 = g \upharpoonright \alpha_{\mu_0}$, $h_0 = h \upharpoonright \alpha_{\mu_0}$. Suppose n > 1 and f_{n-1} , g_{n-1} , h_{n-1} have been constructed. Let

$$f'_{n} = f_{n-1} \widehat{f} \upharpoonright [\alpha_{\mu_{n-1}}, \alpha_{\mu_{n}}), \qquad g'_{n} = g_{n-1} \widehat{g} \upharpoonright [\alpha_{\mu_{n-1}}, \alpha_{\mu_{n}}),$$

$$h'_{n} = h_{n-1} \widehat{f} \upharpoonright [\alpha_{\mu_{n-1}}, \alpha_{\mu_{n}}).$$

Then $\#_{\lambda^n}^{\alpha_{n,n}}(f'_n, g'_n, h'_n)$. By induction hypothesis (2), there is an $\bar{h}_n > h'_n$ such that $*_{\lambda^n}^{\alpha_n}(f'_n, g'_n, \bar{h}_n)$. By Lemma 6, there is $\langle f''_n, g''_n, h''_n \rangle > \langle f'_n, g'_n, \bar{h}_n \rangle$ such that $*_{\lambda^n}^{\alpha_n}(f''_n, g''_n, h''_n)$ and

$$\langle f_n'' \upharpoonright \alpha_{\nu_n}, g_n'' \upharpoonright \alpha_{\nu_n} \rangle$$
 separates $\langle \theta_n, \tau_n \rangle$.

Finally, by Lemma 5 we may choose $\langle f_n, g_n, h_n \rangle > \langle f_n'', g_n'', h_n'' \rangle$ so that $\#_{\lambda^n}^{\alpha_n}(f_n, g_n, h_n)$.

Taking f', g', h' to be the coordinatewise unions of the f_n 's, g_n 's, h_n 's gives the lemma

We now verify the two induction hypotheses.

(1) \mathcal{P}_{α} has the κcc .

PROOF. Given $f_{\lambda} \in \mathcal{P}_{\alpha}$, $\lambda < \kappa$. For each λ which satisfies Lemmas 1, 2 and 7, with $\lambda > \mu_n$ $(n < \omega)$, apply Lemma 7 to the triple $\langle f_{\lambda}, f_{\lambda}, f_{\lambda} | \lambda \rangle$, obtaining a triple $\langle f_{\lambda}^*, f_{\lambda}^{**}, j_{\lambda} \rangle$ (so $f_{\lambda} \leq f_{\lambda}^*, f_{\lambda}^{**}, j_{\lambda} = f_{\lambda}^* | \lambda = f_{\lambda}^{**} | \lambda$).

$$B_{\lambda} = (\text{support } f_{\lambda}^* \cup \text{support } f_{\lambda}^{**}) \cap \{\alpha_{\mu} : \mu < \lambda\}.$$

If $0 \neq \alpha_u \in B_{\lambda}$, write

$$f_{\lambda}^{*}(\alpha_{\mu}) - \lambda = \{\theta_{\mu\lambda n}: n < r_{\mu\lambda}\}, \qquad r_{\mu\lambda} \leq \omega,$$

$$f_{\lambda}^{**}(\alpha_{\mu}) - \lambda = \{\tau_{\mu\lambda m}: m < s_{\mu\lambda}\}, \qquad s_{\mu\lambda} \leq \omega.$$

To each pair $\langle \theta_{\mu\lambda n}, \tau_{\mu\lambda m} \rangle$, $n < r_{\mu\lambda}$, $m < s_{\mu\lambda}$, $\langle f_{\lambda}^*, f_{\lambda}^{**} \rangle$ assigns a separating pair $\langle \theta'_{\mu\lambda n}, \tau'_{\mu\lambda m} \rangle \in \lambda \times \lambda$.

Let $J_{\lambda} = (\operatorname{dom} f_{\lambda}^{*}(0) \cup \operatorname{dom} f_{\lambda}^{**}(0)) - (\omega_{1} \times \lambda).$

By the normality of \mathscr{T}_{wc} , there is an \mathscr{T}_{wc} -positive set U such that on U, the sets B_{λ} , $r_{\mu\lambda}$, $s_{\mu\lambda}$, $\theta'_{\mu\lambda n}$, $\tau'_{\mu\lambda m}$, J_{λ} are independent of λ , and such that if λ , $\lambda' \in U$, $\lambda < \lambda'$, then (support f_{λ}^{*} \cup support f_{λ}^{**}) \cap (support $f_{\lambda'}^{*}$ \cup support $f_{\lambda'}^{**}$) = B_{λ} , and $J_{\lambda} \cap J_{\lambda'} = \varnothing$.

By induction on $\gamma \leq \alpha$ it is seen that if λ , $\mu \in U$ and $\lambda < \mu$, then $f_{\lambda}^* \sim f_{\mu}^{**}$. Namely, there is no trouble with coordinates in the support of at most one of these functions; coordinates in both supports, being in B_{λ} , are taken care of by the construction. Since $f_{\lambda} \leq f_{\lambda}^*$ and $f_{\mu} \leq f_{\mu}^{**}$, we are done.

The following strengthening of κcc for P_{α} has thus been proved: if for an \mathfrak{F}_{wc} -positive set W of λ 's, $\#^{\alpha}_{\lambda}(f_{\lambda}, g_{\lambda}, h_{\lambda})$, then there is an \mathfrak{F}_{wc} -positive $U \subseteq W$ and $(f'_{\lambda}, g'_{\lambda}, h'_{\lambda})$, $\lambda \in U$, such that $\langle f_{\lambda}, g_{\lambda}, h_{\lambda} \rangle \leqslant \langle f'_{\lambda}, g'_{\lambda}, h'_{\lambda} \rangle$, $\#^{\alpha}_{\lambda}(f'_{\lambda}, g'_{\lambda}, h'_{\lambda})$, and so that if $\lambda, \mu \in W$, $\lambda < \mu$, then $f'_{\lambda} \sim g'_{\mu}$ in the strong sense that the coordinatewise union of f'_{λ} and g'_{μ} is a condition extending both f'_{λ} and g'_{μ} .

Lastly, we prove the second induction hypothesis for α .

(2) For \mathcal{F}_{wc} -almost all $\lambda < \kappa$, for all $f, g, h, \#^{\alpha}_{\lambda}(f, g, h)$ implies that for some $h' \ge h, *^{\alpha}_{\lambda}(f, g, h')$.

PROOF. Otherwise for an \mathcal{F}_{wc} -positive set W of λ 's there exists a counterexample $\langle f_{\lambda}, g_{\lambda}, h_{\lambda} \rangle$. We may assume that for each $\lambda \in W$, $\lambda > \mu_{n}$ $(n < \omega)$ and λ satisfies Lemmas 1, 2 and 7. Furthermore, since we have already proved that \mathcal{P}_{α} has the κcc , we may assume that for each $\lambda \in W$, $\mathcal{P}_{\alpha} | \lambda \subseteq_{\text{reg}} \mathcal{P}_{\alpha}$ and $\mathcal{P}_{\alpha} | \lambda$ has the λcc . If f_{λ} or g_{λ} equals h_{λ} we are done, so assume, for each $\lambda \in W$, that $f_{\lambda}, g_{\lambda} \notin \mathcal{P}_{\alpha} | \lambda$.

Apply Lemma 7 to each $\langle f_{\lambda}, g_{\lambda}, h_{\lambda} \rangle$, $\lambda \in W$, getting $\langle f'_{\lambda}, g'_{\lambda}, h'_{\lambda} \rangle$. Now uniformize as in part (a) to get an \mathcal{F}_{wc} -positive $V \subseteq W$ such that if $\lambda, \mu \in V$ and $\lambda < \mu$ then $f'_{\lambda} \sim g'_{\mu}$. Since $\langle f_{\lambda}, g_{\lambda}, h_{\lambda} \rangle$ is a counterexample to (b), there is a maximal antichain H_{λ} of $\{h \in \mathcal{P}_{\alpha} | \lambda : h \geqslant h_{\lambda}\}$ such that for each $h \in H_{\lambda}$, $h \nsim f_{\lambda}$ or $h \nsim g_{\lambda}$. Then H_{λ} is a maximal antichain of $\{h \in \mathcal{P}_{\alpha} : h \geqslant h_{\lambda}\}$, and Card $H_{\lambda} < \lambda$. Pick an \mathcal{F}_{wc} -positive $U \subseteq V$ on which $H_{\lambda} = H$ is independent of λ and such that for each $h \in H$, the questions, whether or not $h \sim f_{\lambda}$, $h \sim g_{\lambda}$, are independent of λ . Pick

 $\lambda, \mu \in U, \lambda < \mu$, and let $j \ge f'_{\lambda}, g'_{\mu}$. Now $j \ge h_{\lambda}$, and $j \notin \mathcal{P}_{\alpha} | \lambda$ (whence $j \notin H$). But for each $h \in H$, either $h \nsim g_{\lambda}$ (whence $h \nsim g_{\mu}$) or $h \nsim f_{\lambda}$. In either case, $h \nsim j$ since $j \ge f_{\lambda}$, g_{μ} , so H is not maximal, a contradiction.

This completes the proof of the theorem.

Denote by an ω_2 -tree a tree T of any cardinality with no paths of length ω_2 . An ω_2 -tree T is special if there is an $f: T \to \omega_1$ such that $x <_T y$ implies $f(x) \neq f(y)$. By the previous methods, using countable specializing functions instead of countable antichains, the consistency of " $2^{\aleph_0} = \aleph_1$, $2^{\aleph_1} > \aleph_2$, and every ω_2 -tree of cardinality $< 2^{\aleph_1}$ is special" is obtained – the analogous theorem for the \aleph_1 case being Baumgartner-Malitz-Reinhardt [1]. We can also get this model to satisfy the "generalized Martin's axioms" (which are consistent relative to just ZFC but which do not imply SH_{\aleph_2}) that have been considered by the first author and by Baumgartner (see Tall [8]). Desirable, of course, would be the consistency of a generalized MA which is both simple and powerful.

The partial orderings appropriate for the prior methods can be iterated an arbitrary number of times, giving generalized MA models in which 2^{κ_1} is arbitrarily large. The ordering \Re_{α} giving the first α steps of the iteration need not be of cardinality $\leq \kappa$, but, assuming each \Re_{β} , $\beta < \alpha$, has κcc , any sequence $\langle p_{\lambda} : \lambda < \kappa \rangle$ from \Re_{α} is a subset of a sufficiently closed model of power κ , in which the proof that two p_{λ} 's are compatible can be carried out.

Regarding the analog of these results where \aleph_2 is replaced by γ^+ -the relevant forcing is γ -directed closed, so by upward Easton forcing we may guarantee that, for example, γ remains supercompact if it was in the ground model.

For results involving consequences of SH_{n_2} : with GCH, see Gregory [3], [4] $(Con(SH_{n_2} \text{ and } GCH) \text{ is open})$; with just CH, see a forthcoming paper by Stanley and the second author.

REFERENCES

- 0. J. Baumgartner, *Ineffability properties of cardinals*. I, Proc. Colloq. Infinite and Finite Sets, Bolyai Janos Society, Hungary, 1975, pp. 109-130.
- 1. J. Baumgartner, J. Malitz and W. Reinhardt, *Embedding trees in the rationals*, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1748-1755.
 - 2. K. Devlin, handwritten notes.
- 3. J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic 41 (1976), 663-671.
 - 4. R. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.
- 5. W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1973), 21-46.
 - 6. S. Shelah, A weak generalization of MA to higher cardinals, Israel J. Math. 30 (1978), 297-306.
- 7. R. Solovay and S. Tennenbaum, *Iterated Cohen extensions and Souslin's problem*, Ann. of Math. (2) 94 (1971), 201-245.
 - 8. F. Tall, Some applications of a generalized Martin's axiom.
- 9. A. Levy, The sizes of the indescribable cardinals, Proc. Sympos. Pure Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1971, pp. 205-218.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80309

DEPARTMENT OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, ISRAEL