HARDY SPACES AND JENSEN MEASURES1

BY

TAKAHIKO NAKAZI

ABSTRACT. Suppose A is a subalgebra of $L^{\infty}(m)$ on which m is multiplicative. In this paper, we show that if m is a Jensen measure and $A + \overline{A}$ is dense in $L^2(m)$, then $A + \overline{A}$ is weak-* dense in $L^{\infty}(m)$, that is, A is a weak-* Dirichlet algebra. As a consequence of it, it follows that if $A + \overline{A}$ is dense in $L^4(m)$, then A is a weak-* Dirichlet algebra. (It is known that even if $A + \overline{A}$ is dense in $L^3(m)$, A is not a weak-* Dirichlet algebra.) As another consequence, it follows that if B is a subalgebra of the classical Hardy space H^{∞} containing the constants and dense in H^2 , then B is weak-* dense in H^{∞} .

1. Introduction. Let (X, \mathcal{C}, m) be a nontrivial probability measure space and A a subalgebra of $L^{\infty} = L^{\infty}(m)$ containing the constants. Suppose m is multiplicative on A, that is, for $f, g \in A$ we have $\int_X f g \, dm = \int_X f \, dm \int_X g \, dm$. The abstract Hardy space $H^p = H^p(m)$, 0 , associated with <math>A is defined as follows. For $0 , <math>H^p$ is the $L^p = L^p(m)$ -closure of A, while H^{∞} is defined to be the weak-* closure of A. If $A + \overline{A}$ is weak-* dense in L^{∞} , A is called a weak-* Dirichlet algebra, which was introduced by T. P. Srinivasan and J. K. Wang [8]. The theory of weak-* Dirichlet algebras has emerged as the correct setting for many of the central results of abstract analytic function theory.

K. Hoffman and H. Rossi [5] gave an example such that even if $A + \overline{A}$ is dense in L^3 , A is not a weak-* Dirichlet algebra. While G. Lumer [6] showed that if $A + \overline{A}$ is dense in L^p for all finite p, $H^p \cap L^\infty$ is a weak-* Dirichlet algebra. Recently, the author [7] proved that if $A + \overline{A}$ is dense in L^4 , then $H^4 \cap L^\infty$ is a weak-* Dirichlet algebra. Hence if $f \in A$, then [8]

$$\int_{Y} \log |f| \, dm \ge \log \left| \int_{Y} f \, dm \right|.$$

We say m a Jensen measure when functions in A satisfy the inequality above.

In this paper, we show that if m is a Jensen measure and $A + \overline{A}$ is dense in $L^2(m)$, then A is a weak-* Dirichlet algebra. If $A + \overline{A}$ is dense in L^4 , then m is a Jensen measure by the remark above and so A is a weak-* Dirichlet algebra. Hence we answer affirmatively the question left open by Hoffman-Rossi [5], Lumer [6] and the author [7]. Moreover the result is applied to give another proof of a theorem of S. D. Fisher for backward shift invariant subalgebras [1].

Received by the editors November 17, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46J10, 46J15, 47A15.

Key words and phrases. Hardy spaces, Jensen measures, weak-* Dirichlet algebras, backward shift invariant subalgebras.

¹ This research is partially supported by KAKENHI.

2. Jensen measure. Let A be a subalgebra of L^{∞} containing the constants and m a multiplicative measure on it. Set $A_0 = \{ f \in A : \int f dm = 0 \}$.

LEMMA 1. Suppose $A + \overline{A}$ is dense in L^2 . If $w \in L^{\infty}$ is a nonnegative function with $w^{-1} \in L^{\infty}$, then

$$\inf_{f \in A_0} \int |1 - f|^2 w \, dm = \left(\inf_{g \in A_0} \int |1 - g|^2 w^{-1} \, dm \right)^{-1}.$$

PROOF. If $f, g \in A_0$, by Schwarz's inequality,

$$\int |1-f|^2 w \, dm \ge \left(\int |1-g|^2 w^{-1} \, dm\right)^{-1}.$$

There exists a unique f_0 in the closure of A_0 in $L^2(w dm)$ such that

$$\inf_{f \in A_0} \int |1 - f|^2 w \, dm = \int |1 - f_0|^2 w \, dm.$$

Then, by the minimum property of $\int |1-f_0|^2 w \, dm$, $1-f_0$ is orthogonal to A_0 in $L^2(w \, dm)$. Set $h_0 = (1-f_0)w$. Since the infimum is positive, then

$$\int |1 - f_0|^2 w \, dm = \int (1 - \bar{f_0})(1 - f_0) w \, dm$$
$$= \int (1 - f_0) w \, dm = \int h_0 \, dm > 0.$$

By the hypothesis, \overline{H}^2 is the orthogonal complement of A_0 in L^2 and so $h_0 \in \overline{H}^2$. Hence $g_0 = \overline{h_0}/f\overline{h_0} dm$ belongs to H^2 and

$$\left(\int h_0 \, dm\right)^2 \int |1 - (1 - g_0)|^2 w^{-1} \, dm = \int |1 - f_0|^2 w \, dm = \int h_0 \, dm.$$

Since $w, w^{-1} \in L^{\infty}$, $1 - g_0$ belongs to the closure of A_0 in $L^2(w^{-1}dm)$ and

$$\int h_0 dm = \left(\int |1 - (1 - g_0)|^2 w^{-1} dm \right)^{-1}.$$

This implies the lemma.

LEMMA 2 (SZEGÖ'S THEOREM). Suppose $A + \overline{A}$ is dense in L^2 and m is a Jensen measure. If $w \in L^1$ is a nonnegative function, then

$$\inf_{f\in A_0}\int |1-f|^2w\,dm=\exp\int\log w\,dm.$$

PROOF. By the inequality of arithmetic and geometric means and Jensen's inequality, for any $f, g \in A_0$,

$$\int |1 - f|^2 w \, dm \ge \exp \int \log w \, dm$$

and

$$\int |1-g|^2 w^{-1} dm \ge \exp \int \log w^{-1} m$$

if m is a Jensen measure. If $w, w^{-1} \in L^{\infty}$, by Lemma 1

$$\inf_{f\in A_0}\int |1-f|^2w\,dm=\exp\int\log w\,dm.$$

If $w^{-1} \notin L^{\infty}$ with $w \in L^{\infty}$, for any $\varepsilon > 0$,

$$\exp \int \log(w + \varepsilon) \, dm = \inf \int |1 - f|^2 (w + \varepsilon) \, dm$$

$$\ge \inf \int |1 - f|^2 w \, dm \ge \exp \int \log w \, dm$$

and so letting ε tend to zero, the lemma follows. For any $w \in L^1$, let $w_n = \min\{w, n\}$, then

$$\exp \int \log w \, dm \ge \left(\inf \int |1 - g|^2 w^{-1} \, dm\right)^{-1}$$

$$\ge \left(\inf \int |1 - g|^2 w_n^{-1} \, dm\right)^{-1} = \exp \int \log w_n \, dm$$

and so letting n tend to infinity, the lemma follows.

THEOREM 1. $A + \overline{A}$ is dense in L^2 and m is a Jensen measure if and only if A is a weak-* Dirichlet algebra.

PROOF. If A is a weak-* Dirichlet algebra, then $A + \overline{A}$ is dense in L^2 clearly and it is known [8] that m is a Jensen measure. If $A + \overline{A}$ is dense in L^2 and m is a Jensen measure, then Szegö's theorem is valid by Lemma 2. Srinivasan and Wang [8] imply that Szegö's theorem is equivalent to that $A + \overline{A}$ is weak-* dense in L^{∞} .

THEOREM 2. Let A be a subalgebra of L^{∞} containing the constants and m a multiplicative measure on it. If $A + \overline{A}$ is dense in L^2 , then the following (1) \sim (6) are equivalent.

- (1) $A + \overline{A}$ is weak-* dense in L^{∞} , that is, A is a weak-* Dirichlet algebra.
- (2) $A + \overline{A}$ is dense in L^4 .
- (3) m is a Jensen measure.
- (4) If $f \in H^1$ is a real function, then f is a constant.
- (5) If $f \in H^{1/2}$ is a nonnegative function, then f is a constant.
- (6) There is a constant γ_n , defined for 0 , such that

$$\|f\|_p \leq \gamma_p \|f + \bar{g}\|_1, \quad f \in A, g \in A_0.$$

PROOF. (1) \Leftrightarrow (3) is equivalent to Theorem 1. (1) \Leftrightarrow (2) is clear by the remark in Introduction and (1) \Leftrightarrow (3). (1) \Rightarrow (6) is known (cf. [2, p. 107]). (6) \Rightarrow (4) is clear. (4) \Rightarrow (3) Suppose $w \in L^{\infty}$ is a nonnegative function with $w^{-1} \in L^{\infty}$. Let f_0 (resp. g_0) be the orthogonal projection of 1 into the closure of A_0 in $L^2(w \, dm)$ (resp. $L^2(w^{-1} \, dm)$). Then by Lemma 1 and Schwarz's lemma, $|1 - f_0|^2 w = |1 - g_0|^2 w^{-1}$ and $(1 - f_0)(1 - g_0) = k \geq 0$. If $f = 1 - g_0$, then $kw = |f|^2$ and $f \in H^2$ and $k \in H^1$ because $w, w^{-1} \in L^{\infty}$. By the hypothesis, k is a constant 1. Thus w = |f| for $f, f^{-1} \in H^2 \cap L^{\infty}$. This implies that $H^2 \cap L^{\infty}$ is a logmodular algebra and so m is a Jensen measure [4]. (1) \Rightarrow (5) is known [9]. (5) \Rightarrow (4) is clear.

- (5) is Neuwirth-Newman's theorem and (6) is Kolmogoroff's theorem. Even if $A + \overline{A}$ is not dense in L^2 , (3) implies (5) (cf. [3, pp. 135 \sim 136]).
- 3. Subalgebras of H^{∞} on the unit circle. Let T be the unit circle in the complex plane and $d\theta/2\pi$ the normalized Lebesgue measure on T. In this section, we consider A, L^{∞} in case X = T and $m = d\theta/2\pi$. If A is the set of all analytic polynomials on T, then A is a weak-* Dirichlet algebra of $L^{\infty}(T) = L^{\infty}(d\theta/2\pi)$. Then, for $0 , <math>H^p(T) = H^p(d\theta/2\pi)$ is the classical Hardy space.

THEOREM 4. Let B be a subalgebra of $H^{\infty}(T)$ containing the constants. If B is L^2 -dense in $H^2(T)$, then B is weak-* dense in $H^{\infty}(T)$.

PROOF. Since $L^2(T) = H^2(T) + e^{-i\theta}\overline{H^2(T)}$ and $d\theta/2\pi$ is a Jensen measure, and B is L^2 -dense in $H^2(T)$, so it is a weak-* Dirichlet algebra of $L^{\infty}(T)$ by Theorem 1, then $H^2(T) \cap L^{\infty}(T) = H^{\infty}(T)$ is a weak-* closure of B by Theorem 2.4.1 of [8].

COROLLARY (S. D. FISHER). Let B be a nontrivial subalgebra of $H^{\infty}(T)$ which (i) contains the constants, (ii) is weak-* closed, and (iii) contains $e^{-i\theta}f$ whenever $f \in B$ and $\hat{f}(0) = \int_0^{2\pi} f \, d\theta / 2\pi = 0$. Then $B = H^{\infty}(T)$.

PROOF. Let \mathfrak{M} be a closure of B in $L^2(T)$, then the orthogonal complement \mathfrak{M}^\perp of \mathfrak{M} in $H^2(T)$ is a shift invariant subspace, that is, $e^{i\theta}\mathfrak{M}^\perp\subset\mathfrak{M}^\perp$. By the well-known theorem of Beurling, $\mathfrak{M}^\perp=qH^2(T)$ for some inner function q with $\hat{q}(0)=0$ if $\mathfrak{M}^\perp\neq\{0\}$. $e^{-i\theta}q$ is orthogonal to $qH^2(T)$ and so $e^{-i\theta}q\in\mathfrak{M}\cap L^\infty(T)$. Since $\mathfrak{M}\cap L^\infty$ is an algebra, $e^{-i2\theta}q^2$ is orthogonal to $qH^2(T)$ and so $\int qe^{-in\theta}d\theta/2\pi=0$ for $n\geqslant 1$. Thus q is a zero constant and so this implies $\mathfrak{M}^\perp=\{0\}$ and $\mathfrak{M}=H^2(T)$. Theorem 4 implies $B=H^\infty(T)$.

REFERENCES

- 1. S. D. Fisher, Algebras of bounded functions invariant under the restricted backward shift, J. Funct. Anal. 12 (1973).
 - 2. T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.
- 3. _____, Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Series 32, Cambridge Univ. Press, London, 1978.
 - 4. K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317.
- 5. K. Hoffman and H. Rossi, Function theory from a multiplicative linear functional, Trans. Amer. Math. Soc. 116 (1965), 536-543.
 - 6. G. Lumer, Herglotz transformation and H^p theory, Bull. Amer. Math. Soc. 71 (1965), 725-730.
- 7. T. Nakazi, A note on weak-* Dirichlet algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 553-555.
- 8. T. P. Srinivasan and J. K. Wang, *Weak-* Dirichlet algebras*, Proc. Internat. Sympos. Function Algebras (Tuland Univ. 1965), Scott-Foresman, Chicago, Ill., 1966, pp. 216–249.
 - 9. K. Yabuta, A note on extremum problems in abstract Hardy spaces, Arch. Math. 23 (1972), 54-57.

DIVISION OF APPLIED MATHEMATICS, RESEARCH INSTITUTE OF APPLIED ELECTRICITY, HOKKAIDO UNIVERSITY, SAPPORO 060, JAPAN