DIMENSION OF STRATIFIABLE SPACES

BY SHINPEI OKA

ABSTRACT. We define a subclass, denoted by EM_3 , of the class of stratifiable spaces, and obtain several dimension theoretical results for EM_3 including the coincidence theorem for dim and Ind. The class EM_3 is countably productive, hereditary, preserved under closed maps and, furthermore, the largest subclass of stratifiable spaces in which a harmonious dimension theory can be established.

1. Introduction. Beyond metric spaces, the following line of generalized metric spaces has been established by many authors [S, C, B, H, Ok]:

metric \rightarrow Lašnev¹ $\rightarrow M_1 \rightarrow$ stratifiable \rightarrow paracompact σ .

After Katětov and Morita's work for metric spaces, the first attack to this line in dimension theory was done by Leĭbo $[L_1]$ who proved the equality dim X = Ind X for any Lašnev space X. Nagami extended this result by defining L-spaces $[N_3]$ and free L-spaces $[N_4]$. Free L-spaces form a countably productive and hereditary class containing every Lašnev space and included in the class of M_1 -spaces. It is now desired to develop a satisfactory dimension theory of a still larger class of generalized metric spaces, say, M_1 -spaces or stratifiable spaces.

In this direction we define a subclass of stratifiable spaces in terms of a special kind of σ -closure-preserving collection.

DEFINITION 1.1. Let X be a space. A collection \mathscr{E} of subsets of X is called an *encircling net* (or, for short, *E-net*) if for any point x and any open neighborhood U of x, there exists a subcollection \mathscr{F} of \mathscr{E} such that $x \in X - \mathscr{F}^* \subset U$ and \mathscr{F}^* is a closed set of X (where \mathscr{F}^* denotes the union of the members of \mathscr{F}).

By EM_3 we denote the class of stratifiable spaces with σ -closure-preserving E-nets, and by M_3 the class of stratifiable spaces.

The class EM_3 is countably productive, hereditary and preserved under closed maps as well as perfect maps (Corollary 3.9).

Our first main result is a characterization of members of EM_3 as those spaces which are the perfect (closed) images of zero-dimensional stratifiable spaces (Theorem 3.8). This means that EM_3 is just the maximal perfect subclass of M_3 in the sense of Nagami $[N_1]$.

Received by the editors May 15, 1981 and, in revised form, December 1, 1981.

1980 Mathematics Subject Classification. Primary 54E20, 54F45; Secondary 54E18.

Key words and phrases. Stratifiable space, σ-space, E-net, LE-net, E-quartet, E-map, fiber product.

A space is called a Lasnev space if it is the closed image of a metric space.

The second main results appear in Theorems 4.2 and 4.3 and consist of the following theorems for EM_3 :

- (a) the equidimensional G_{δ} -envelope theorem,
- (b) the dimension raising theorem,²
- (c) the decomposition theorem,
- (d) the coincidence theorem for dim and Ind.

These theorems for EM_3 extend the corresponding theorems for free L-spaces $[N_4]$ as well as those for Lašnev spaces $[L_1, L_2, O_1]$.

It is an open problem whether the inclusion $EM_3 \subset M_3$ is proper. But the characterization above implies that EM_3 is the largest³ subclass of M_3 in which the dimension raising theorem holds. We also see in Corollary 4.5 that EM_3 is the largest³ subclass of M_3 in which the decomposition theorem and the equidimensional G_8 -envelope theorem simultaneously hold.

Our arguments are based on Gruenhage and Junnila's result that a stratifiable space is an M_2 -space [G, J]. Indeed, though we use the word "stratifiable" in view of its significance, what we need is only the existence of a σ -closure-preserving quasi-base.

Conventions. Throughout this paper a space is a Hausdorff topological space, and a map means an onto continuous one. Let X, Y be spaces and let $f: X \to Y$ be a map. For a collection \mathcal{F} of subsets of X, the symbol \mathcal{F}^* denotes the union of all members of \mathcal{F} , and $f(\mathcal{F})$ means the collection of subsets of Y of the form $\{f(F): F \in \mathcal{F}\}$. For a subset Z of X we denote by \overline{Z} (or Cl(Z)) the closure of Z, by Int Z the interior of Z, and by Bd Z the boundary of Z.

2. Encircling nets and large encircling nets. Encircling nets are naturally strengthened as follows:

DEFINITION 2.1. Let X be a space. A collection $\mathscr E$ of subsets of X is called a *large* encircling net (or, simply, an LE-net) if for any disjoint closed sets C and K of X, there exists a subcollection $\mathscr F$ of $\mathscr E$ such that $C \subset \mathscr F^* \subset X - K$ and $\mathscr F^*$ is a closed set of X.

REMARKS. Since an *LE*-net is a net in the usual sense, it follows from Siwiec-Nagata [SN] that a space with a σ -closure-preserving *LE*-net is a σ -space. But a space with a σ -closure-preserving *E*-net is not necessarily a σ -space as will be seen in Example 2.8. On the other hand it is trivial that a regular σ -space X with ind $X \le 0$ admits a σ -closure-preserving *E*-net, and that a normal σ -space X with dim $X \le 0$ admits a σ -closure-preserving *LE*-net.

PROPOSITION 2.2. A metric space admits a σ -locally finite LE-net.

PROOF. Let M be a metric spaces and $\{\mathcal{E}_i: i=1,2,\ldots\}$ a sequence of locally finite closed covers of M such that, for each i, the diameter of each member of \mathcal{E}_i is smaller than 1/i. Let C, K be disjoint closed sets of M and put

$$\mathfrak{F}_i = \{ E \in \mathcal{E}_i : E \cap C \neq \emptyset \text{ and } E \cap K = \emptyset \}.$$

² The dimension raising theorem for a topological class \mathcal{C} is: If $X \in \mathcal{C}$ and dim $X \leq n$, then X is the image of a space $X_0 \in \mathcal{C}$ with dim $X_0 \leq 0$ under a perfect map of order not greater than n+1.

³ When using this word we take no account of infinite-dimensional spaces in the sense of dim.

It is then clear that $\bigcup_{i=1}^{\infty} \mathfrak{F}_i^*$ is a closed set of X including C but not meeting K. Hence $\bigcup_{i=1}^{\infty} \mathcal{E}_i$ is a σ -locally finite LE-net on M, which completes the proof.

PROPOSITION 2.3. The property of having a σ -closure-preserving LE-net is preserved under closed maps.

We thus have

PROPOSITION 2.4. A Lašnev space admits a σ -closure-preserving LE-net, and hence it is a member of EM_3 .

LEMMA 2.5. If \mathscr{E} is an E-net (resp. LE-net) on a space, then $\{\overline{E}: E \in \mathscr{E}\}$ is an E-net (resp. LE-net) on the space.

PROPOSITION 2.6. The property of having a σ-closure-preserving E-net is countably productive, hereditary and preserved under perfect maps.

PROOF. Let X_i , i = 1, 2, ..., be spaces with σ -closure-preserving E-nets \mathcal{E}_i . It is then clear that

$$\left\{E_j \times \prod_{i=1, i \neq j}^{\infty} X_i \colon E_j \in \mathcal{E}_j, j = 1, 2, \ldots\right\}$$

is a σ -closure-preserving E-net on $\prod_{i=1}^{\infty} X_i$.

By the preceding lemma it is obvious that the property is hereditary.

Let X be a space with a σ -closure-preserving E-net $\mathscr E$ and let $f\colon X\to Y$ be a perfect map onto a space Y. By Lemma 2.5 we may assume that every finite intersection of members of $\mathscr E$ is again a member of $\mathscr E$. To show that $f(\mathscr E)$ is an E-net on Y let $y\in Y$ and let U be an open neighborhood of y. There exist subcollections $\mathscr E_i$, $1\le i\le k$, of $\mathscr E$ such that $f^{-1}(y)\subset X-\bigcap_{i=1}^k\mathscr E_i^*\subset f^{-1}(U)$ and $\mathscr E_i^*$ is a closed set of X. It then follows from assumption that $f(\bigcap_{i=1}^k\mathscr E_i^*)$ is a closed set of Y written as a union of members of $f(\mathscr E)$ such that $y\in Y-f(\bigcap_{i=1}^k\mathscr E_i^*)\subset U$. This completes the proof.

PROPOSITION 2.7. Let X be a space (resp. a semistratifiable space). Then the following statements are equivalent:

- (1) X admits a σ -closure-preserving LE-net (resp. E-net).
- (2) X admits a σ-locally finite LE-net (resp. E-net).
- (3) X admits a σ-discrete LE-net (resp. E-net).

PROOF. It follows from Lemma 2.5 and a remark above that a space with a σ -closure-preserving *LE*-net admits a σ -closure-preserving net of closed sets, and therefore it is semistratifiable. Hence the proposition is immediate from Lemma 2.5 and the following fact, which is essentially due to Siwiec and Nagata [SN]: Let X be a semistratifiable space and \mathcal{E} a σ -closure-preserving collection of closed sets of X. Then there exists a σ -discrete collection \mathcal{F} of closed sets of X such that each member of \mathcal{E} is a union of members of \mathcal{F} .

As for famous pathological spaces, we have the following results which imply particularly that the existence of σ -closure-preserving E-nets does not mean, in general, that of σ -closure-preserving LE-nets (but, for stratifiable spaces, the former means the latter as will be seen in Theorem 3.8).

Examples 2.8. (1) The Michael line I(M) has a σ -discrete E-net, but does not have a σ -closure-preserving LE-net.

- (2) The same is true for the Sorgenfrey line R(S).
- (3) $[0, \omega_1]$ does not admit a σ -closure-preserving E-net.
- (4) The quotient space I(M)/Q obtained by identifying the rational points in I(M) does not admit a σ -closure-preserving E-net. In particular the property of having a σ -closure-preserving E-net is not preserved under closed maps.

PROOF. (1) and (2) (simultaneously). Let \mathcal{F} be a σ -discrete net of closed sets in the unit interval I (resp. the real line R) with the usual topology. It is easy to see that \mathcal{F} is a σ -discrete E-net on I(M) (resp. R(S)). But I(M) (resp. R(S)) does not admit a σ -closure-preserving LE-net because it is not a σ -space.

- (3) For any σ -closure-preserving collection \mathfrak{F} of $[0, \omega_1]$, \mathfrak{F} fails to be an E-net at ω_1 ; indeed, $Cl(\{\bar{F}: F \in \mathfrak{F}, \omega_1 \notin \bar{F}\}^*) \cap \{\omega_1\} = \emptyset$.
- (4) If I(M)/Q had a σ -closure-preserving E-net, then every point in I(M)/Q, in particular the quotient image of Q, would be a G_{δ} -set of I(M)/Q; but this is impossible because Q is not a G_{δ} -set of I(M).

3. Characterizations of EM_3 .

LEMMA 3.1 [$\mathbf{O_2}$, LEMMA 3.1]. Let X be a submetrizable space (that is, X admits a weaker metric topology), and let $\mathfrak A$ be a σ -discrete collection of cozero sets of X. Then there exist a metric space M and a one-to-one map $f: X \to M$ such that f(U) is an open set of M for every $U \in \mathfrak A$.

The following lemma plays a fundamental role in this paper.

LEMMA 3.2. Let X be a paracompact σ -space and let $\mathfrak{F} = \bigcup_{i=1}^{\infty} \mathfrak{F}_i$ be a collection of closed sets of X such that \mathfrak{F}_i is closure-preserving for each i. Then there exist a metric space M and a one-to-one map $f: X \to M$ such that f(F) is a closed set of M for every $F \in \mathfrak{F}$ and such that $f(\mathfrak{F}_i)$ is closure-preserving in M for every i.

PROOF. Let $\mathfrak{B} = \bigcup_{i=1}^{\infty} \mathfrak{B}_i$ be a net of X consisting of closed sets such that \mathfrak{B}_i is discrete for each i. For each i let $\mathcal{V}_i = \{V_i(B) \colon B \in \mathfrak{B}_i\}$ be a discrete collection of open sets of X such that $B \subset V_i(B)$ for each $B \in \mathfrak{B}_i$. For $i, j = 1, 2, \ldots, B \in \mathfrak{B}_i$, put

$$W_i^j(B) = V_i(B) \cap (X - \{F: F \in \mathfrak{F}_i, F \cap B = \varnothing\}^*).$$

Then $W_i^j(B)$ is an open set of X, and $\{W_i^j(B): B \in \mathfrak{B}_i\}$ is discrete in X. Hence Lemma 3.1 applies to give a metric space M and a one-to-one map $f: X \to M$ such that $f(W_i^j(B))$ is an open set of M for every $B \in \mathfrak{B}_i$, $i, j = 1, 2, \ldots$ It is then obvious that for each $i, f(\mathfrak{F}_i)$ is a closure-preserving collection of closed sets of M. This completes the proof.

DEFINITION 3.3. Let $X \in EM_3$ and let $\{\mathscr{F}, \mathscr{V}, \mathscr{E}, \mathscr{S}\}\$ be a quartet of collections of subsets of X. The quartet is called an E-quartet if we can write $\mathscr{F} = \bigcup_{i=1}^{\infty} \mathscr{F}_i$, $\mathscr{V} = \bigcup_{i=1}^{\infty} \mathscr{V}_i$, $\mathscr{E} = \bigcup_{i=1}^{\infty} \mathscr{E}_i$, $\mathscr{S} = \bigcup_{i=1}^{\infty} \mathscr{S}_i$ and if the following four conditions are satisfied:

 (1_q) F is a net on X consisting of closed sets.

- (2_q) For each i, \mathcal{V}_i is a discrete collection of open sets of X written as $\mathcal{V}_i = \{V_i(F): F \in \mathcal{F}_i\}$ in such a manner that $F \subset V_i(F)$ for each $F \in \mathcal{F}_i$.
- (3_q) & is an E-net on X consisting of closed sets and & is closure-preserving for each i.
- (4_q) δ is a quasi-base⁴ for X consisting of closed sets and δ_i is closure-preserving for each i.

By Heath [H], Gruenhage [G] and Junnila [J], each member of EM_3 admits an E-quartet.

DEFINITION 3.4. Let X be a member of EM_3 with an E-quartet $\{\mathfrak{F}, \mathfrak{I}, \mathfrak{S}, \mathfrak{S}\}$. A map $f: X \to Y$ onto a normal space Y is called an E-map with respect to the E-quartet if the following five conditions are satisfied:

- (0_f) f is one-to-one.
- $(1_f) f(F)$ is a closed set for every $F \in \mathcal{F}$.
- $(2_f) f(V)$ is an open set for every $V \in \mathbb{V}$.
- $(3_{\mathbf{f}})$ f(E) is a closed set for every $E \in \mathcal{E}$, and $f(\mathcal{E}_i)$ is closure-preserving in Y for every i.
- (4_f) f(S) is a closed set for every $S \in S$, and $f(S_i)$ is closure-preserving in Y for every i.

Noting that $\{X - V: V \in \mathcal{V}\}$ is a σ -closure-preserving collection of closed sets of X, we have the following result by virtue of Lemma 3.2.

PROPOSITION 3.5. Let X be a member of EM_3 . Then for any E-quartet of X there exist a metric space M and an E-map $f: X \to M$ with respect to the E-quartet.

The following lemma is well known (see, for example, [E, 2.3.16]).

LEMMA 3.6. Let X be a space and let C, K be disjoint closed sets of X. Let \mathfrak{A} be a countable open cover of X such that for each $U \in \mathfrak{A}$, either $\overline{U} \cap C = \emptyset$ or $\overline{U} \cap K = \emptyset$. Then C and K are separated by a closed set S such that $S \subset \{Bd\ U:\ U \in \mathfrak{A}\}^*$.

Now we have the following result frequently used later.

PROPOSITION 3.7. Let X be a member of EM₃ with an E-quartet $\{\mathcal{F}, \mathcal{V}, \mathcal{E}, \mathcal{S}\}$. Let $f: X \to Y$ be an E-map with respect to the E-quartet onto a normal space Y. Then Ind $X \leq \text{Ind } Y$.

PROOF. The proof is by induction on Ind Y. If $Y = \emptyset$ then the proposition is trivial. Suppose that the proposition is valid when Ind $Y \le n - 1$ and consider the case of Ind Y = n. To show Ind $X \le n$, let C, K be disjoint closed sets of X. For the time being, fix a point x in X - C arbitrarily. We show that there exists an open neighborhood W of x such that $\overline{W} \cap C = \emptyset$ and Ind Bd $W \le n - 1$. Let $\mathcal{E}(x)$ be a subcollection of \mathcal{E} such that $x \in X - \mathcal{E}(x)^* \subset X - C$ and $\mathcal{E}(x)^*$ is a closed set. Write $\mathcal{E}(x) = \bigcup_{i=1}^{\infty} \mathcal{E}_i(x)$ where $\mathcal{E}_i(x) \subset \mathcal{E}_i$. Put $\mathcal{E}_i(x) = \{S \in \mathcal{E}_i: S \cap \mathcal{E}(x)^* = \emptyset\}$

⁴ A collection $\mathbb S$ of subsets of a space X is called a quasi-base for X if for any point x and any open neighborhood U of x there exists a member S of $\mathbb S$ such that $x \in \operatorname{Int} S \subset S \subset U$.

and $S(x) = \bigcup_{i=1}^{\infty} S_i(x)$. Fix i_0 so that $x \in \text{Int } S_{i_0}(x)^*$. By (3_f) and (4_f) there exist open sets O_i , $i = 1, 2, \ldots$, of $i \in Y$ such that

$$f\bigg(\bigcup_{i=1}^{j} \mathbb{S}_{i}(x)^{*}\bigg) \cup f\bigg(\mathbb{S}_{i_{0}}(x)^{*}\bigg) \subset O_{j} \subset \overline{O}_{j} \subset Y - f\bigg(\mathbb{S}_{j}(x)^{*}\bigg)$$

and

Ind Bd
$$O_i \leq n-1$$
.

Define $W = \bigcap_{i=1}^{\infty} f^{-1}(O_i)$. Then

$$x \in W \subset \overline{W} \subset \bigcap_{j=1}^{\infty} f^{-1}(\overline{O_j}) \subset X - \mathcal{E}(x)^* \subset X - C.$$

To show that W is open, let $x' \in W$. Since $x' \in X - \mathcal{E}(x)^*$ and $\mathcal{E}(x)^*$ is a closed set, it follows from (4_q) that $x' \in \text{Int } \mathcal{E}_m(x)^*$ for some m. Then

$$x' \in \bigcap_{j=1}^{m-1} f^{-1}(O_j) \cap \operatorname{Int} S_m(x)^* \subset W,$$

which implies that W is open. To show Ind Bd $W \le n-1$, note that, for any subset Z of X, $f \mid Z$: $Z \to f(Z)$ is again an E-map with respect to the E-quartet $\{\mathscr{F} \mid Z, \mathscr{V} \mid Z, \mathscr{E} \mid Z, \mathscr{E} \mid Z\}$ on Z. Hence we may apply induction hypothesis to obtain Ind $f^{-1}(\operatorname{Bd} O_i) \le n-1$, $j=1,2,\ldots$, which yields

$$\operatorname{Ind} \operatorname{Bd} W \leq \operatorname{Ind} \left(\bigcup_{j=1}^{\infty} \operatorname{Bd} f^{-1}(O_{j}) \right)$$

$$= \max \left\{ \operatorname{Ind} \operatorname{Bd} f^{-1}(O_{j}) : j = 1, 2, \dots \right\}$$

$$\leq \max \left\{ \operatorname{Ind} f^{-1}(\operatorname{Bd} O_{j}) : j = 1, 2, \dots \right\} \leq n - 1.$$

Hence W is a required open neighborhood of x; we have thus finished "local" separation.

Now put

$$\mathfrak{F}_i(C) = \{ F \in \mathfrak{F}_i : F \subset W \text{ for some open set } W \text{ with } \}$$

$$\overline{W} \cap C = \emptyset$$
 and Ind Bd $W \le n - 1$.

Then by (1_q) and by the "local" separation above, we have $\bigcup_{i=1}^{\infty} \mathfrak{F}_i(C)^* = X - C$. For each $F \in \mathfrak{F}_i(C)$, fix such a W and denote it by $W_i(C, F)$. On the other hand, by (1_f) and (2_f) , there exist open sets $H_i(F)$, $F \in \mathfrak{F}_i$, of Y such that $f(F) \subset H_i(F) \subset Cl\ H_i(F) \subset f(V_i(F))$ and Ind Bd $H_i(F) \leq n-1$ (where the set $V_i(F)$ is as in Definition 3.3(2_q)). By induction hypothesis again,

Ind Bd
$$f^{-1}(H_i(F)) \leq \text{Ind } f^{-1}(\text{Bd } H_i(F)) \leq n-1$$
.

Put for each $F \in \mathcal{F}_i(C)$,

$$D_i(C,F) = W_i(C,F) \cap f^{-1}(H_i(F)).$$

Then

Ind Bd
$$D_i(C, F) \le \max\{\text{Ind Bd } W_i(C, F), \text{Ind Bd } f^{-1}(H_i(F))\} \le n - 1.$$

Put $D_i(C) = \{D_i(C, F): F \in \mathcal{F}_i(C)\}^*$. Since $D_i(C, F) \subset V_i(F)$, (2_q) implies that $\{D_i(C, F): F \in \mathcal{F}_i(C)\}$ is discrete. Thus Ind Bd $D_i(C) \leq n-1$, $i=1,2,\ldots$ By the same discreteness and by the fact $D_i(C, F) \subset W_i(C, F) \subset \operatorname{Cl} W_i(C, F) \subset X - C$, we have $C \cap \operatorname{Cl} D_i(C) = \emptyset$ for every $i=1,2,\ldots$ We also obtain $\bigcup_{i=1}^{\infty} D_i(C) = X - C$ because $\bigcup_{i=1}^{\infty} \mathcal{F}_i(C)^* = X - C$.

Quite similarly we can obtain open subsets $D_i(K)$, i = 1, 2, ..., such that Ind Bd $D_i(K) \le n - 1$, $K \cap \operatorname{Cl} D_i(K) = \emptyset$ and $\bigcup_{i=1}^{\infty} D_i(K) = X - K$. Hence, applying Lemma 3.6, we have a closed set B separating C and K such that

$$B \subset \left(\bigcup_{i=1}^{\infty} \operatorname{Bd} D_i(C)\right) \cup \left(\bigcup_{i=1}^{\infty} \operatorname{Bd} D_i(K)\right).$$

By the countable sum theorem for Ind, we have Ind $B \le n - 1$. Thus Ind $X \le n$, which completes the proof of Proposition 3.7.

We can now prove a characterization theorem for EM_3 .

THEOREM 3.8. The following statements about a space X are equivalent:

- (1) X is a stratifiable space with a σ -closure-preserving E-net.
- (2) X is the perfect image of a stratifiable space X_0 with dim $X_0 \le 0$.
- (3) X is the closed image of a stratifiable space X_0 with ind $X_0 \le 0$.
- (4) X is a stratifiable space with a σ -closure-preserving LE-net.

PROOF. The implications $(2) \to (3)$ and $(4) \to (1)$ are obvious. To show $(1) \to (2)$ let X be a member of EM_3 with an E-quartet $\{\mathcal{F}, \mathcal{V}, \mathcal{E}, \mathcal{S}\}$. By Proposition 3.5 there exists an E-map $f: X \to M$ onto a metric space M with respect to $\{\mathcal{F}, \mathcal{V}, \mathcal{E}, \mathcal{S}\}$. By Morita [M], M is the image of a metric space P with dim $P \leq 0$ under a perfect map g. Now let P be the fiber product of P and P with respect to P and P that is,

$$T = \{(p, x) \in P \times X : g(p) = f(x)\}$$

with the topology induced from $P \times X$. Let t_P , t_X be the restrictions to T of the projections from $P \times X$ onto P and X, respectively. We thus have the following commutative diagram:

$$X \quad \stackrel{\iota_X}{\leftarrow} \quad T$$

$$f \downarrow \qquad \qquad \downarrow \iota_P$$

$$M \quad \stackrel{\leftarrow}{\leftarrow} \quad P$$

It is a well-known property of fiber products that the perfectness of g implies the perfectness of t_X (see [Pe, Lemma 7.5.13]). T is stratifiable by [C, Theorems 2.3, 2.4]. Hence what should be proved is the zero-dimensionality of T. By Proposition 2.2, P admits an E-quartet $\{\mathcal{F}_P, \mathcal{N}_P, \mathcal{S}_P, \mathcal{S}_P\}$. Now define

$$\begin{split} \mathfrak{F}_T &= \left\{ t_P^{-1}(F_p) \cap t_X^{-1}(F) \colon F_P \in \mathfrak{F}_P, F \in \mathfrak{F} \right\}, \\ \mathfrak{V}_T &= \left\{ t_P^{-1}(V_P) \cap t_X^{-1}(V) \colon V_P \in \mathfrak{V}_P, V \in \mathfrak{V} \right\}, \\ \mathfrak{S}_T &= \left\{ t_P^{-1}(S_P) \cap t_X^{-1}(S) \colon S_P \in \mathfrak{S}_P, S \in \mathfrak{S} \right\}, \quad \text{and} \\ \mathfrak{E}_T &= \left\{ t_P^{-1}(E_P) \colon E_P \in \mathfrak{E}_P \right\} \cup \left\{ t_X^{-1}(E) \colon E \in \mathfrak{E} \right\}. \end{split}$$

Then it is easy to see that the quartet $\{\mathfrak{F}_T, \mathfrak{I}_T, \mathfrak{S}_T, \mathfrak{S}_T\}$ is an *E*-quartet of *T*. Furthermore, the map t_P is an *E*-map with respect to $\{\mathfrak{F}_T, \mathfrak{I}_T, \mathfrak{S}_T, \mathfrak{S}_T\}$ because, in general, $t_P(t_P^{-1}(P') \cap t_X^{-1}(X')) = P' \cap g^{-1} \circ f(X')$ for any $P' \subset P$ and $X' \subset X$, and because f is an *E*-map with respect to $\{\mathfrak{F}, \mathfrak{I}, \mathfrak{S}, \mathfrak{S}\}$. Hence, applying Proposition 3.7, we have Ind $T \leq 0$. Thus the implication $(1) \to (2)$ has been proved.

To show (3) \rightarrow (4) let X_0 be a stratifiable space with ind $X_0 \le 0$ and let $f: X_0 \rightarrow X$ be a closed map. Note that every net on X_0 is an *E*-net; hence X_0 is a member of EM_3 by Heath [H]. It now follows from the implication (1) \rightarrow (2) that X_0 is the image of a stratifiable space X_1 with dim $X_1 \le 0$ under a perfect map h. Since every net on X_1 is an LE-net, it follows from Heath [H] again that X_1 admits a σ -closure-preserving LE-net. Hence, applying Proposition 2.3 to the closed map $f \circ h$, we see that X admits a σ -closure-preserving LE-net. On the other hand X is stratifiable by Borges [B, Theorem 3.1]. This completes the proof of Theorem 3.8.

COROLLARY 3.9. The class EM_3 is countably productive, hereditary and preserved under closed maps.

PROOF. This is immediate from Theorem 3.8, Proposition 2.6 and the analogous result for M_3 due to Ceder [C] and Borges [B].

A topological class \mathcal{C} is called *perfect* (Nagami $[N_1]$, also see $[N_2]$) if it is countably productive, hereditary, preserved under perfect maps, included in the class of normal spaces, and every member of \mathcal{C} is the perfect image of a zero-dimensional (in the sense of dim) member of \mathcal{C} . Theorem 3.8 and Corollary 3.9 say

COROLLARY 3.10. The class EM_3 is the maximal perfect subclass of M_3 .

Recently Ito [I] has presented a free L-space, a certain closed image of which is not a free L-space. But we have

COROLLARY 3.11. Every closed image of a free L-space is a member of EM₃.

PROOF. By Nagami [N_4 , Theorem 2.10] and Theorem 3.8, every free *L*-space is a member of EM_3 (it is also easy to directly prove that every free *L*-space admits a σ -closure-preserving *E*-net). Hence this corollary is immediate from Corollary 3.9.

4. Dimension for EM_3 . We begin with the equidimensional G_{δ} -envelope theorem. To show this, the following lemma is useful.

LEMMA 4.1 (OKA $[O_4, LEMMA 3.3]$). Let X be a hereditarily normal space and let $f: X \to L$ be a map onto a metric space L. Then for any subset $Y \subset X$, there exist a G_8 -set Z of X, a metric space M and maps $g: Z \to M$, $h: M \to f(Z)$ such that

- (i) $Y \subset Z$,
- (ii) dim $g(Y) \leq \dim Y$ and
- (iii) $f \mid Z = h \circ g$.

THEOREM 4.2. Let $X \in EM_3$ and let Y be a subset of X with dim $Y \le n$. Then there exists a G_{δ} -set G of X such that $Y \subset G$ and dim $G \le n$.

PROOF. Let $f: X \to L$ be an *E*-map onto a metric space *L* with respect to an *E*-quartet, say $\{\mathcal{F}, \mathcal{N}, \mathcal{E}, \mathcal{S}\}\$, on *X*. By the above lemma there exist a G_{δ} -set *Z* of *X*, a

metric space M and maps $g: Z \to M$, $h: M \to f(Z)$ satisfying (i), (ii), (iii) above. Since dim $g(Y) \le n$ and M is metrizable, we can find a G_{δ} -set H of M such that $g(Y) \subset H$ and dim $H \le n$ (see, for example, [E, 4.1.19]). Define $G = g^{-1}(H)$. Then G is a G_{δ} -set of Z, and hence of X. To show dim $G \le n$, note that $g \mid G$ is an E-map with respect to $\{ \mathcal{F} \mid G, \mathcal{V} \mid G, \mathcal{E} \mid G, \mathcal{S} \mid G \}$ because $f \mid G$ is so and because $f \mid G = h \circ g \mid G$ by (iii). Hence by Proposition 3.7 we have Ind $G \le I$ nd H. Consequently

$$\dim G \leq \operatorname{Ind} G \leq \operatorname{Ind} H = \dim H \leq n$$
,

as required. This completes the proof.

The following theorem occupies the central position in dimension theory of EM_3 . The key argument of the proof has already appeared in the proof of Theorem 3.8.

THEOREM 4.3. The following statements about a space X are equivalent:

- (1) $X \in EM_3$ and dim $X \le n$.
- (2) X is the image of a stratifiable space X_0 with dim $X_0 \le 0$ under a perfect map of order not greater than n + 1.
- (3) X is a stratifiable space which is the union of G_{δ} -sets X_i , $1 \le i \le n+1$, with dim $X_i \le 0$.
 - (4) $X \in EM_3$ and Ind $X \le n$.

PROOF. (1) \rightarrow (2). Let X be a member of EM_3 such that $\dim X \le n$. Let $\{\mathfrak{F}, \mathfrak{N}, \mathfrak{E}, \mathfrak{S}\}$ be an E-quartet of X. By Proposition 3.5 there exist a metric space L and an E-map f: $X \to L$ with respect to the E-quartet. By Pasynkov's factorization theorem [**P**, Theorem 29], there exist a metric space M and maps g: $X \to M$, h: $M \to L$ such that $\dim M \le n$ and $f = h \circ g$. It then follows from Morita [**M**] that M is the image of a metric space P with $\dim P \le 0$ under a perfect map r such that ord $r \le n + 1$. Let T be the fiber product of P and X with respect to r and g, and let t_p , t_X be the restrictions to T of the projections from $P \times X$ onto P and X, respectively. We thus obtain the following commutative diagram:

It is obvious that t_X is a perfect map of order not greater than n+1 and that T is a stratifiable space. Note that g is an E-map with respect to $\{\mathscr{F}, \mathscr{V}, \mathscr{E}, \mathscr{S}\}$ because f is so and $f = h \circ g$. Now, as in the proof of Theorem 3.8, t_P is also an E-map with respect to a certain E-quartet of T, and hence dim $T \leq 0$ by Proposition 3.7.

(2) \rightarrow (3). Let $t: X_0 \rightarrow X$ be a perfect map from a stratifiable space X_0 with dim $X_0 \le 0$ onto a space X such that ord $t \le n+1$. Put $Y_i = \{x \in X: |t^{-1}(x)| = i\}$, $1 \le i \le n+1$. It then follows from Nagami [N₂, Lemma 4] that dim $Y_i \le 0$ for each $i=1,2,\ldots,n+1$. Since X is a member of EM_3 by Theorem 3.8, we may apply Theorem 4.2 to obtain G_{δ} -sets X_i , $1 \le i \le n+1$, such that dim $X_i \le 0$ and $Y_i \subset X_i$. The implication (4) \rightarrow (1) is trivial.

Finally the implication $(3) \rightarrow (4)$ is assured by the following theorem (but the fact Ind $X \le n$ only is direct from (3) as a consequence general for hereditarily normal spaces).

THEOREM 4.4. Let X be a normal σ -space expressed as the finite union of G_{δ} -sets X_i , $1 \le i \le k$, such that dim $X_i \le 0$. Then X admits a σ -closure-preserving LE-net.

PROOF. The proof is by induction on k. When k=1, the theorem is trivial. Now suppose that the theorem is valid when k=m-1, and consider the case k=m. Put $Y_m=X-X_m$. Then by induction hypothesis and Lemma 2.5, the normal σ -space Y_m admits a σ -closure-preserving LE-net, say \mathcal{E} , consisting of closed sets of Y_m . Write $Y_m=\bigcup_{i=1}^\infty C_i$ with closed sets C_i such that $C_i\subset C_{i+1}$, and put $\mathcal{E}_i=\mathcal{E}\mid C_i$. Let \mathcal{F} be a σ -locally finite net of X. Now consider the σ -closure-preserving collection $\bigcup_{i=1}^\infty \mathcal{E}_i \cup \mathcal{F}$ of X. To show that the collection is an LE-net on X, let C, K be disjoint closed sets of X. Since X is hereditarily normal and Ind $X_m \leq 0$, there exists a closed set S separating C and K such that $S\cap X_m=\emptyset$. Represent X as the disjoint union $V\cup S\cup W$, where V and W are open sets of X including C and K respectively. Write $V=\bigcup_{i=1}^\infty V_i$ with open sets V_i such that $\overline{V}_i\subset V_{i+1}$ for every i. For each i take a subcollection \mathcal{F}_i of \mathcal{E}_i such that

$$(W \cup S) \cap C_i \subset \mathcal{F}_i^* \subset C_i - (\overline{V}_i \cup C)$$

and \mathfrak{F}_i^* is a closed set of C_i . Now put

$$B = W \cup \left(\bigcup_{i=1}^{\infty} \mathfrak{F}_{i}^{*}\right).$$

It is easy to see that B is a closed set of X including K and not meeting C. Since W is the union of some members of \mathcal{F} , B is the union of some members of $\bigcup_{i=1}^{\infty} \mathcal{E}_i \cup \mathcal{F}$. Thus $\bigcup_{i=1}^{\infty} \mathcal{E}_i \cup \mathcal{F}$ is a σ -closure-preserving LE-net on X. This completes the proof of Theorem 4.4 and, therefore, of Theorem 4.3.

REMARK. Slightly modifying the above proof, we can weaken the condition " X_i is G_{δ} " in Theorem 4.4 to " X_i is either G_{δ} or F_{σ} ".

As a trivial version of Theorem 4.4, we have the following result which tells us that the dimension theory does not work well in the remainder $M_3 - EM_3$.

COROLLARY 4.5. Let X be a normal σ -space not admitting a σ -closure-preserving LE-net. Then either

- (1) X cannot be decomposed into finitely many zero-dimensional (in the sense of dim) subsets, or
- (2) there exists a zero-dimensional (in the sense of dim) subset of X not admitting an equidimensional G_{δ} -envelope.

As an immediate consequence of Theorem 4.3, we have

COROLLARY 4.6. Let X be a stratifiable space with ind $X \le 0$. Then dim X = Ind X.

REMARK. This result, however, is generalized to paracompact σ -spaces in my recent paper $[O_5]$.

We conclude this section with the following result, an immediate consequence of Corollary 3.11 and Theorem 4.3.

COROLLARY 4.7. Let X be the closed image of a free L-space. Then dim X = Ind X.

5. Other spaces admitting σ -closure-preserving E-nets. Let \mathcal{C} be a topological property. A space is called *peripherally* \mathcal{C} if every point in the space admits an open neighborhood base, the boundary of each member of which is \mathcal{C} .

Theorem 5.1. (1) A peripherally σ -discrete, paracompact σ -space admits a σ -closure-preserving E-net.

(2) A peripherally σ -compact, stratifiable space admits a σ -closure-preserving E-net.

PROOF. We shall prove (1) and (2) simultaneously. Let \mathfrak{F} be a σ -locally finite net (resp. a σ -closure-preserving quasi-base) of X consisting of closed sets. To show that \mathfrak{F} itself is an E-net on X let x be a point of X and V an open neighborhood of x. Take an open set U such that $x \in U \subset \overline{U} \subset V$ and $\operatorname{Bd} U$ is σ -discrete (resp. σ -compact). Write $U = \bigcup_{i=1}^{\infty} U_i$ with open sets U_i such that $\overline{U_i} \subset U_{i+1}$ for every i. Write $\operatorname{Bd} U = \bigcup_{i=1}^{\infty} C_i$ with discrete (resp. compact) closed sets C_i , $i=1,2,\ldots$ There exists, for each i, a discrete (resp. finite) subcollection \mathfrak{F}_i of \mathfrak{F} such that $C_i \subset \mathfrak{F}_i^* \subset X - (\overline{U_i} \cup \{x\})$. Then $\bigcup_{i=1}^{\infty} \mathfrak{F}_i^* \cup (X - \overline{U})$ is a closed set of X including X - V, not meeting X and expressed as a union of members of X. Thus X is an X-net of X, which completes the proof.

Now we have the following generalization of Corollary 4.6.

COROLLARY 5.2. Let X be a peripherally σ -compact (or peripherally σ -discrete) stratifiable space. Then dim $X = \operatorname{Ind} X$.

We next verify a countable sum theorem for σ -closure-preserving LE-nets.

THEOREM 5.3. Let X be a normal space expressed as the countable union of closed sets X_i , i = 1, 2, ..., each of which admits a σ -closure-preserving LE-net. Then X has a σ -closure-preserving LE-net.

PROOF. Note that X is perfectly normal because each X_i is. Let \mathcal{E}_i be a σ -closure-preserving LE-net of X_i . It is clear that $\bigcup_{i=1}^{\infty} \mathcal{E}_i$ is σ -closure-preserving in X. To show that $\bigcup_{i=1}^{\infty} \mathcal{E}_i$ is an LE-net, let C and K be disjoint closed sets of X. Write $X-C=\bigcup_{i=1}^{\infty} V_i$ with open sets V_i such that $\overline{V_i}\subset V_{i+1}$. For each i let $\overline{\mathcal{F}_i}$ be a subcollection of \mathcal{E}_i such that \mathcal{F}_i^* is a closed set of X_i and $C\cap X_i\subset \mathcal{F}_i^*\subset X_i-(K\cup \overline{V_i})$. It is then obvious that $\bigcup_{i=1}^{\infty} \mathcal{F}_i^*$ is a closed set of X and $C\subset \bigcup_{i=1}^{\infty} \mathcal{F}_i^*\subset X-K$. This completes the proof.

The following result is immediate from Theorem 5.3, Proposition 2.2 and Ceder [C, Theorem 8.3].

COROLLARY 5.4. A chunk complex (and hence a CW-complex) is a member of EM_3 . We list several unsolved problems below.

Problem 5.5. (1) Does every stratifiable space admit a σ-closure-preserving E-net? By virtue of Theorem 3.8, this is equivalent to:

(2) (Nagami $[N_1, Problem 4]$) Is every stratifiable space a perfect image of a zero-dimensional (in the sense of dim) stratifiable space?

The author also does not know whether the inclusion $EM_3 \subset M_1$ (or $M_1 \subset EM_3$) holds or not.

Problem 5.6. Let X be a paracompact σ -space admitting a σ -closure-preserving E-net. Then:

- (1) Does the equality dim X = Ind X hold?
- (2) Is X a perfect image of a zero-dimensional (in the sense of dim) paracompact σ -space? More weakly:
 - (3) Does X admit a σ -closure-preserving LE-net?

In the specific case of ind $X \le 0$, (1) admits an affirmative answer by the inequality Ind $X \le \dim X + \operatorname{ind} X$ for every nonempty paracompact σ -space X $[O_5]$; (2) is also affirmative, that is, a paracompact σ -space of ind ≤ 0 is the perfect image of a paracompact σ -space of dim ≤ 0 .

To outline the proof, let X be a nonempty paracompact σ -space with ind X=0. Let $\mathscr{T}=\bigcup_{i=1}^\infty\mathscr{T}_i$ and $\mathscr{V}=\bigcup_{i=1}^\infty\mathscr{V}_i$ be as in Definition 3.3. Let $f\colon X\to M$ be a one-to-one map onto a metric space M such that $f(\mathscr{V}_i^*)$ is open and $f(\mathscr{T}_i^*)$ is closed for every i. In $[\mathbf{O_5}, \text{Lemma 5}]$ it is proved that, in general, $\text{Ind } X \leq \text{Ind } M + \text{ind } X$ for any such map $f\colon X\to M$. The metric space M is the image of a metric space L with dim L=0 under a perfect map g. Let L be the fiber product of L and L with respect to L and L be the restrictions to L of the projections from $L\times X$ onto L and L respectively. Then, since the map L is of the "same type" as L we have L and L ind L is a paracompact L space and L is a perfect map. This completes the proof.

Problem 5.7. Let X be a stratifiable space expressed as the union of countably many metrizable $(G_{\delta}$ -) subsets. Does the equality dim $X = \operatorname{Ind} X$ hold? More strongly, does X admit a σ -closure-preserving E-net? (A space of this type is a natural generalization of a Lašnev space in view of Lašnev's well-known decomposition theorem [La].)

BIBLIOGRAPHY

- [B] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
- [C] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125.
- [Cr] G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47-54.
- [E] R. Engelking, Dimension theory, North-Holland, Amsterdam, 1978.
- [G] G. Gruenhage, Stratifiable spaces are M₂, Topology Proc. 1 (1976), 221–226.
- [H] R. W. Heath, Stratifiable spaces are σ-spaces, Notices Amer. Math. Soc. 16 (1969), 761.
- [I] M. Itō, Weak L-spaces are free L-spaces, J. Math. Soc. Japan 34 (1982), 507-514.
- [J] H. Junnila, Neighbornets, Pacific J. Math. 76 (1978), 83-108.
- [La] N. S. Lašnev, Continuous decompositions and closed mappings of metric spaces, Soviet Math. Dokl. 6 (1965), 1504–1506.
- [L₁] I. M. Leïbo, On the equality of dimensions for closed images of metric spaces, Soviet Math. Dokl. 15 (1974), 835-839.
 - [L₂] _____, On closed images of metric spaces, Soviet Math. Dokl. 16 (1975), 1292-1295.
- [M] K. Morita, A condition for the metrizability of topological spaces and for n-dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 5 (1955), 33-36.

- [N₁] K. Nagami, Normality of products, Actes Congrès Intern. Math. 2 (1970), 33-37.

 [N₂] _____, Perfect class of spaces, Proc. Japan Acad. 48 (1972), 21-24.

 [N₃] _____, The equality of dimensions, Fund. Math. 106 (1980), 239-246.

 [N₄] _____, Dimension of free L-spaces, Fund. Math. 108 (1980), 211-224.

 [O₁] S. Oka, A note on the covering dimension of Lašnev spaces, Proc. Japan Acad. Ser. A 54 (1978), 73-75.
 - [O₂] _____, Dimension of finite unions of metric spaces, Math. Japon. 24 (1979), 351-362.
- [O₃] _____, Every Lašnev space is the perfect image of a zero-dimensional one, Bull. Acad. Polon. Sci. Ser. Sci. Math. 28 (1980), 591-594.
- [O₄] _____, Free patched spaces and fundamental theorems of dimension theory, Bull. Acad. Polon. Sci. Ser. Sci. Math. 28 (1980), 595-602.
- $[O_5]$ _____, An inequality concerning three fundamental dimensions of paracompact σ -spaces, Proc. Amer. Math. Soc. 83 (1981), 790–792.
- [Ok] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1967), 236–254.
- [P] B. A. Pasynkov, On the spectral decomposition of topological spaces, Amer. Math. Soc. Transl. Ser. (2) 73 (1966), 83-134.
 - [Pe] A. R. Pears, Dimension theory of general spaces, Cambridge Univ. Press, Cambridge, 1975.
- [S] F. G. Slaughter, The closed image of a metrizable space is M_1 , Proc. Amer. Math. Soc. 37 (1973), 309-314
 - [SN] F. Siwiec and J. Nagata, A note on nets and metrization, Proc. Japan Acad. 44 (1968), 623-627.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, ROKKAKU-BASHI, KANAGAWA-KU, YOKOHAMA, 221, JAPAN

Current address: Faculty of Education, Kagawa University, Saiwai-chō, Takamatsu, 760, Japan