SOME CANONICAL COHOMOLOGY CLASSES ON GROUPS OF VOLUME PRESERVING DIFFEOMORPHISMS

BY DUSA McDUFF¹

ABSTRACT. We discuss some canonical cohomology classes on the space $\overline{B} \odot iff_{\omega_0}^c M$, where $\odot iff_{\omega_0}^c M$ is the identity component of the group of compactly supported diffeomorphisms of the manifold M which preserve the volume form ω . We first look at some classes $c_k(M)$, $1 \le k \le n = \dim M$, which are defined for all M, and show that the top class $c_n(M) \in H^n(\overline{B} \odot iff_{\omega_0}^c M; \mathbf{R})$ is nonzero for $M = S^n$, n odd, and is zero for $M = S^n$, n even. When $H_c^i(M; \mathbf{R}) = 0$ for $0 \le i < n$, the classes $c_k(M)$ all vanish and a secondary class $s(M) \in H^{n-1}(\overline{B} \odot iff_{\omega_0}^c M; \mathbf{R})$ may be defined. This is trivially zero when n is odd, and is twice the Calabi invariant for symplectic manifolds when n = 2. We prove that $s(\mathbf{R}^n) \neq 0$ when n is even by showing that it is one of a set of nonzero classes which were defined by Hurder in [7].

1. Statement of main results. Let M be a connected oriented n-dimensional C^{∞} -manifold without boundary and with smooth volume form ω . We write $\mathcal{G} = \mathfrak{D}iff_{\omega 0}^{c}M$ for the identity component of the group of compactly supported C^{∞} -diffeomorphisms of M which preserve ω , with the C^{∞} -topology, and G for the group \mathcal{G} considered with the discrete topology. The homotopy fiber of the natural map $BG \to B\mathcal{G}$ is called $\overline{B}\mathcal{G}$.

We will think of $\overline{B}\mathfrak{G}$ as the realization \mathfrak{C} of the complex $\operatorname{Sing}\mathfrak{G}/G$. Here $\operatorname{Sing}\mathfrak{G}$ is the smooth singular complex of \mathfrak{G} , and $\operatorname{Sing}\mathfrak{G}/G$ is its quotient by the action of G given by the multiplication on the right. Thus a p-simplex S in \mathfrak{C} is given by a smooth (C^{∞}) map $t\mapsto h_t\in\mathfrak{G},\,t\in\Delta^p$, which is well defined up to composition on the right by an element $g\in G$. Such a simplex corresponds to a codimension n foliation $\mathfrak{F}(S)$ on $\Delta^p\times M$ with typical leaf $\{(t,\,h_t(y)):\,t\in\Delta^p\}$. The foliation $\mathfrak{F}(S)$ is transverse to the fibers $t\times M$ of the projection $p\colon \Delta^p\times M\to\Delta^p$, and is trivial, with leaves $\Delta^p\times x$, for x outside of a compact subset of M. One can also describe $\mathfrak{F}(S)$ as the pull-back of the point foliation of M by the map $f\colon (t,x)\mapsto h_t^{-1}(x)$. Hence $\Omega(S)=f^*(\omega)$ is a transverse volume form for $\mathfrak{F}(S)$. In other words, $\Omega(S)$ is a closed n-form which defines $\mathfrak{F}(S)$ in the sense that a tangent vector Y of $\Delta^p\times M$ is tangent to $\mathfrak{F}(S)$ if and only if $i(Y)\Omega(S)=0$. Clearly, $\Omega(S)$ is the only transverse volume form of $\mathfrak{F}(S)$ which restricts to ω on each $t\times M$.

It is easy to check that the $\mathfrak{F}(S)$ fit together to give a foliation \mathfrak{F} of $\mathcal{C} \times M$. Similarly, the forms $\Omega(S)$ fit together to give a canonical closed n-form Ω on $\mathcal{C} \times M$.

Received by the editors September 21, 1981 and, in revised form, January 11, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57T99, 57R32.

Partially supported by NSF grant MCS 79 05795 A02.

(By definition, a k-form Λ on $\mathcal{C} \times M$ is a collection of k-forms $\Lambda(S)$ on $\Delta^p \times M$, one for each p-simplex S in \mathcal{C} , such that $\Lambda(S)$ restricts to $\Lambda(S')$ on the face S' of S.)

Any form Λ on $\mathcal{C} \times M$ has a unique decomposition $\Lambda = \Lambda_0 + \Lambda_1 + \cdots + \Lambda_n$, where the form Λ_i has degree i in the M-variables. In particular,

$$\Omega = \Omega_0 + \cdots + \Omega_n$$

where Ω_n is the pull-back $\pi^*\omega$ of ω by the projection $\pi\colon \mathcal{C}\times M\to M$ and where each Ω_i , i< n, is compactly supported. (This means that $\Omega_i(S)$ has compact support in $\Delta^p\times M$ for all S.) Therefore Ω gives rise to canonical cohomology classes

$$c_k(M) \in H^k(\overline{B} \cap iff_{\omega_0}^c M; H_c^{n-k}(M; \mathbf{R}))$$

for $1 \le i \le n$, as follows. For any k-cycle K in $\mathcal{C} = \overline{B} \mathfrak{N} iff_{\omega 0}^c M$, the value of $c_k(M)$ on K is the cohomology class of the closed, compactly-supported (n-k)-form

$$x \mapsto \int_{K \times x} \Omega = \int_{K \times x} \Omega_{n-k}$$

on M which is obtained by integrating Ω over the fiber of the projection π : $K \times M \to M$. Explicit formulae for the $c_k(M)$ are given in Appendix 1.

Since $\pi_1 \mathcal{C}$ is isomorphic to the universal cover $\mathfrak{D}iff_{\omega_0}^c M$ of $\mathfrak{D}iff_{\omega_0}^c M$, the class c_1 corresponds to a homomorphism $\mathfrak{D}iff_{\omega_0}^c M \to H_c^{n-1}(M; \mathbf{R})$. Up to sign, it is just the flux homomorphism, which is defined in [1, II, §1] for example. See Appendix 1.

Notice that c_n vanishes when M is noncompact since $H_c^0(M; \mathbf{R}) = 0$ in this case. On the other hand $c_n(M)$ is nonzero when M is a compact Lie group. In fact, if H is a k-dimensional compact submanifold in $\mathfrak{D}iff_{\omega_0}^c M$, then the "diagonal" foliation of $H \times M$ with leaves $\{(h, h(y)): h \in H\}$ gives rise to a k-cycle in \mathcal{C} . Moreover the transverse volume form on $H \times M$ is the pull-back of ω by the map $(h, y) \mapsto h^{-1}(y)$. Applying this to the action of the torus T^k on T^n one sees that $c_k(T^n) \neq 0$ for any k. Similarly taking $H \subseteq U(k)$ one has $c_n(S^n) \neq 0$ for n odd. Our first main result is

PROPOSITION 1. $c_n(S^n) = 0$ for n even.

This is proved in §3, together with some other calculations of $c_n(M)$.

REMARK. Fathi observed that there is a natural homomorphism

$$\psi^* : \tilde{H}^*(M; \mathbf{R}) \to \tilde{H}^*(\overline{B} \mathfrak{D} iff_{\omega 0}^c M; \mathbf{R})$$

which corresponds to the $c_k(M)$ by means of the formula

$$\psi^*(a)(K) = (-1)^k \langle a, c_k(M)(K) \rangle.$$

Here K is a k-cycle in \overline{B} \mathfrak{D} iff $f_{\omega 0}^{c}M$, $a \in H^{k}(M; \mathbf{R})$ and $\langle a, b \rangle = \int_{M} \alpha \wedge \beta$, where α, β are forms representing the classes a and b. It is sometimes more natural to think in terms of the homomorphism ψ^{*} instead of the classes c_{k} . Note in particular that ψ^{*} may be defined on the cochain level. For it is easy to check that the formula

$$\psi(\alpha)(S) = \int_{\Delta^k \times M} \pi^* \alpha \wedge \tilde{\Omega}(S),$$

where α is a k-form on M and $\tilde{\Omega}$ is the compactly supported form $\Omega - \pi^*\omega$, defines a homomorphism of the de Rham complex Λ^*M to $C^*(\mathcal{C}; \mathbf{R})$. Evidently ψ induces ψ^* .

One important fact about Ω is that $\Omega^2 = 0$. Indeed, the square of any transverse volume form is zero because locally such a form is pulled back from \mathbf{R}^n .

PROPOSITION 2. If M is a noncompact manifold such that $H_c^i(M; \mathbf{R}) = 0$ for all i < n, then the form Ω is exact. In fact, there is a form Φ on $\mathcal{C} \times M$ such that $d\Phi = \Omega$ and $\Phi\Omega$ has compact support.

Observe that $d(\Phi\Omega) = \Omega^2 = 0$. Hence, by integrating $\Phi\Omega$ over the fibers $t \times M$, one gets a closed (n-1)-form on \mathcal{C} and thus an element s(M) of $H^{n-1}(\overline{B}\mathfrak{D}iff_{\omega 0}^cM; \mathbb{R})$. We will see in §2 that this does not depend on the choice of Φ , provided that some natural restrictions are placed on the support of Φ . Hence s(M) is canonically defined. When n is odd, $\Phi\Omega = \frac{1}{2}d(\Phi^2)$ and s(M) = 0.

PROPOSITION 3. $s(\mathbf{R}^n) \neq 0$ when n is even.

COROLLARY. $s(M) \neq 0$ when n is even.

We will see in §3 that Propositions 1 and 3 are related. Proposition 3 is proved by showing that $s(\mathbf{R}^n)$ coincides with a nonzero class in $H^{n-1}(\overline{B} \odot iff_{\omega_0}^c \mathbf{R}^n; \mathbf{R})$ which was discovered by Hurder [7]. His class may be described in the following way. Let $\overline{B}\Gamma_{sl}^n$ be the classifying space for codimension n foliations with transverse volume form and trivialised normal bundle. Then $\overline{B}\Gamma_{sl}^n$ is (n-1)-connected [4], and has $\pi_n \cong \mathbf{R}$. Let $u \in H^n(\overline{B}\Gamma_{sl}^n; \mathbf{R})$ be the "universal transverse volume form". In other word, if \mathfrak{F} is a foliation with transverse volume form α and trivial normal bundle which is classified by the map g, then $g^*(u) = [\alpha]$. It is shown in [10] that a map g: $S^n \to \overline{B}\Gamma_{sl}^n$ is null homotopic exactly when $g^*(u) = 0$. Therefore, if $e \in H^n(K(\mathbf{R}, n); \mathbf{R})$ is the fundamental class, there is a fibration

$$(*) \qquad \qquad \overline{\overline{B}}\Gamma_{sl}^{n} \xrightarrow{i} \overline{B}\Gamma_{sl}^{n} \xrightarrow{f} K(\mathbf{R}, n)$$

in which $\overline{\overline{B}}\Gamma_{sl}^n$ is *n*-connected and $f^*(e) = u$. As mentioned above, $\alpha^2 = 0$. Hence $u^2 = 0$. However, $e^2 \neq 0$ when *n* is even. Therefore, for even *n* there must be at least one nonzero element of $H^{2n-1}(\overline{\overline{B}}\Gamma_{sl}^n; \mathbf{R})$ which transgresses to e^2 in the spectral sequence of (*).

One such class may be described as follows. Let $g: M \to \overline{B}\Gamma_{sl}^n$ be a map of a manifold into $\overline{B}\Gamma_{sl}^n$. By [4], such a map determines a foliation \mathfrak{F} with transverse volume form α on some bundle over M. Moreover α must be exact. Let $\alpha = d\beta$. Then the form $\beta\alpha$ is closed because α^2 is zero, and one can easily check that it represents a cohomology class $[\beta\alpha]$ in $H^{2n-1}(M; \mathbb{R})$ which depends only on the homotopy class of g. Evidently, there is a unique class $a \in H^{2n-1}(\overline{B}\Gamma_{sl}^n; \mathbb{R})$ such that $g^*(a) = [\beta\alpha]$ for all such maps g.

LEMMA 4. The class a transgresses to $-e^2$ in the spectral sequence of (*).

Now let

$$j: (\overline{B} \cap iff_{\omega 0}^c \mathbf{R}^n) \times \mathbf{R}^n \to \overline{\overline{B}} \Gamma_{sl}^n$$

classify the canonical foliation on $(\overline{B} \cap iff_{\omega_0}^c \mathbb{R}^n) \times \mathbb{R}^n$. (We may assume that j maps into $\overline{B} \Gamma_{ij}^n$ since Ω is exact.) It is shown in [8] that the adjoint Ad j of j,

Ad
$$j: \overline{B} \cap iff_{\omega 0}^{c} \mathbf{R}^{n} \to \mathcal{I} ap_{cpct}(\mathbf{R}^{n}, \overline{\overline{B}} \Gamma_{st}^{n}) = \Omega^{n} \overline{\overline{B}} \Gamma_{st}^{n}$$

induces an isomorphism on integer homology when \mathbb{R}^n has infinite ω -volume. (If \mathbb{R}^n has finite ω -volume one can either use [9] or, preferably argue as in §2 below.)

Let h be the composite

$$H^{2n-1}\left(\overline{\overline{B}}\Gamma_{sl}^{n}\right)\to H^{n-1}\left(\Omega^{n}\overline{\overline{B}}\Gamma_{sl}^{n}\right)\overset{\text{(Ad }j)^{*}}{\to}H^{n-1}\left(\overline{B}\mathfrak{D}iff_{\omega_{0}}^{c}\mathbf{R}^{n}\right).$$

Hurder pointed out that the class a is spherically supported. This implies that its image in $H^{n-1}(\Omega^n \overline{B} \Gamma_{sl}^n)$ is nonzero. Hence h(a) is nonzero. We will see in §2 that $h(a) = s(\mathbf{R}^n)$. It follows that $s(\mathbf{R}^n)$ is also nonzero.

When n=2 the class $s(\mathbf{R}^2)$ is a multiple of the Calabi invariant. This invariant is an element of $H^1(\overline{B} \odot iff_{\sigma 0}^c M; \mathbf{R})$, where $\odot iff_{\sigma 0}^c M$ is the identity component of the group of compactly supported symplectic diffeomorphisms of M, and is defined for certain noncompact M. See [1, II, §4 and 11]. The symplectic case is considered further in Appendix 3. In particular we show that the restriction of $s(\mathbf{R}^{2m})$ to $\overline{B} \odot iff_{\sigma 0}^c \mathbf{R}^{2m}$ is zero when m > 1.

All the classes which are mentioned in this paper are smooth and so may be defined on the Lie algebra level. This is discussed in Appendix 2.

It is a pleasure to acknowledge helpful conversations with A. Fathi, D. Gottlieb, A. Haefliger and especially with S. Hurder. Also I wish to thank I.H.E.S. for its kind hospitality during the writing of this paper.

2. The class s. Let A^* be the algebra of all smooth forms on $\mathcal{C} \times M$, and let A_c^* be the subalgebra of forms which are compactly supported with respect to M. We will write $A^{r,s}$, resp. $A_c^{r,s}$, for the subspace of $A^{r+s} = A^k$, resp. A_c^k , consisting of all k-forms with degree r in the T-variables. We will identify Δ^p with $\{(t_1,\ldots,t_p)\in \mathbb{R}^p:0\leq t_1\leq\cdots\leq t_p\leq 1\}$. Then the restriction of $\Lambda\in A_c^{r,s}$ to the p-simplex S in \mathcal{C} is a form

$$\Lambda(S) = \sum dt_{i_1} \wedge \cdots \wedge dt_{i_r} \wedge \alpha_{i_1 \cdots i_r}(t)$$

on $\Delta^p \times M$, where each $\alpha_{i_1 \cdots i_p}(t)$, $t \in \Delta^p$, is a smooth family of compactly supported s-forms on M. Note also that the differential d on A^* is the sum $d = d_T + d_M$, where d_M and d_T differentiate with respect to the variables in M and Δ^p respectively.

LEMMA 5. If $H_c^s(M; \mathbf{R}) = 0$, the sequence

$$A_c^{r,s-1} \xrightarrow{d_M} A_c^{r,s} \xrightarrow{d_M} A_c^{r,s+1}$$

is exact.

PROOF. This is routine. Suppose that $\Lambda \in A_c^{r,s}$ is in $\ker d_M$, and suppose inductively that a solution of the equation $d_M \Psi = \Lambda$ has been constructed on $\mathcal{C}_{p-1} \times M$, where \mathcal{C}_{p-1} is the (p-1)-skeleton of \mathcal{C} . Then we must define $\Psi(S)$ for each p-simplex S. The conditions on Λ and M imply that the forms $\alpha_{i_1\cdots i_r}(t)$ in the

expression (#) for Λ are exact for each t. The problem now is to find smooth families $\beta_{i_1 \cdots i_r}(t)$ of compactly-supported (s-1)-forms on M such that $d_M \beta_{i_1 \cdots i_r}(t) = \alpha_{i_1 \cdots i_r}(t)$. Also, setting

$$\Psi(S) = \sum dt_{i_1} \wedge \cdots \wedge dt_{i_r} \wedge \beta_{i_1 \cdots i_r}(t)$$

we need $\Psi(S)$ to agree with the previously defined Ψ on $\partial \Delta^p \times M$. However one can always find suitable families $\beta(t)$ by using de Rham's theorem with parameters. \square

PROPOSITION 6. If $H_c^q(M; \mathbf{R}) = 0$ for $0 < q \le k$, then any closed form $\Lambda \in A_c^p$ which has no component in $A_c^{p-s,s}$ for s > k may be written

$$\Lambda = d\Psi + \chi_0$$

where $\Psi \in A_c^{p-1}$ and $\chi_0 \in A_c^{p,0}$.

PROOF. Since $H_c^n(M; \mathbf{R}) = \mathbf{R}$, we must have k < n. Then $\Lambda = \Lambda_0 + \cdots + \Lambda_k$, where $\Lambda_i \in A_c^{p-i,i}$. Because Λ is closed we have

$$d_M \Lambda_k = 0$$
, $d_T \Lambda_0 = 0$ and $d_M \Lambda_{q-1} + d_T \Lambda_q = 0$, $0 < q \le k$.

The argument is now completed by a standard diagram chase in the double complex:

$$A_{c}^{0,2} \xrightarrow{d_{T}} A_{c}^{1,2} \rightarrow \cdots$$

$$d_{M} \uparrow \qquad d_{M} \uparrow \qquad \uparrow$$

$$A_{c}^{0,1} \xrightarrow{d_{T}} A_{c}^{1,1} \xrightarrow{d_{T}} A_{c}^{2,1} \rightarrow \cdots$$

$$d_{M} \uparrow \qquad d_{M} \uparrow \qquad d_{M} \uparrow$$

$$A_{c}^{0,0} \xrightarrow{d_{T}} A_{c}^{1,0} \xrightarrow{d_{T}} A_{c}^{2,0} \rightarrow \cdots \square$$

COROLLARY 7. If in addition M is noncompact, then $\chi_0 = 0$ and $\Lambda = d\Psi$.

PROOF. Observe that χ_0 is closed. Hence,

$$\chi_0(S) = \sum \gamma_{i_1 \cdots i_p}(t, x) dt_{i_1} \wedge \cdots \wedge dt_{i_p},$$

where the functions $\gamma_{i_1 \cdots i_p}(t, x)$ are constant with respect to $x \in M$. Since they are also compactly supported, they must vanish when M is noncompact. \square

PROOF OF PROPOSITION 2. We must show that the canonical form Ω is exact when $H_c^q(M; \mathbf{R}) = 0$ for $0 \le q < n$. But $\Omega = \tilde{\Omega} + \Omega_n$ where $\Omega_n = \pi^*(\omega)$ is exact, and where $\tilde{\Omega} = \Omega_0 + \cdots + \Omega_{n-1}$ is closed. Hence Ω is exact by Corollary 7. \square

Thus the equation $d\Phi = \Omega$ has a solution $\Phi = \tilde{\Phi} + \Phi_n$ where $\tilde{\Phi} \in A_c^{n-1}$ satisfies $d\tilde{\Phi} = \tilde{\Omega}$ and where $d\Phi_n = d_M \Phi_n = \Omega_n$. Clearly $\Phi\Omega \in A_c^{2n-1}$. Also $d(\Phi\Omega) = \Omega^2 = 0$. Therefore, we may define the cohomology class s(M) as a cochain by setting

$$s(M)(S) = \int_{\Delta^{n-1} \times M} \Phi \Omega$$

for each (n-1)-simplex S. Since $\Phi\Omega = \frac{1}{2}d(\Phi^2)$ when n is odd, the class s(M) is zero in this case. (Observe that Φ^2 is compactly supported.) When n is even, it will sometimes be useful to define s using the form $\tilde{\Phi}(\Omega + \Omega_n) = \Phi\Omega - d(\tilde{\Phi}\Phi_n)$. This

alternative definition makes it clear that the cohomology class s does not depend on the choice of $\tilde{\Phi} \in A_c^{n-1}$ or of Φ_n , provided that $d\tilde{\Phi} = \tilde{\Omega}$ and $d\Phi_n = \Omega_n$.

In the remainder of this section, we will fill in the details of the proof that $s(\mathbf{R}^n) \neq 0$ for n even which was sketched in §1. First we will prove Lemma 4 which says that the class $a \in H^{2n-1}(\overline{B}\Gamma_{sl}^n)$ transgresses to $-e^2$ in the spectral sequence of the fibration

$$\overline{\overline{B}}\Gamma_{sl}^{n} \xrightarrow{i} \overline{B}\Gamma_{sl}^{n} \xrightarrow{f} K(\mathbf{R}, n).$$

PROOF OF LEMMA 4. Recall that the transgression τ is the composite $(\bar{f}^*)^{-1} \circ \delta$ where

$$H^{2n-1}\left(\overline{\overline{B}}\Gamma_{sl}^{n}\right) \stackrel{\delta}{\to} H^{2n}\left(\overline{B}\Gamma_{sl}^{n}, \overline{\overline{B}}\Gamma_{sl}^{n}\right) \stackrel{\bar{f}^{*}}{\leftarrow} H^{2n}\left(K(\mathbf{R}, n), *\right).$$

Therefore, because $e^2 \in \text{Im } \tau$ it will suffice to show that $\delta(a) = -\bar{f}^*(e^2)$. This will follow if we show that $\delta(g^*a) = -g^*\bar{f}^*(e^2)$ for any map g of a compact manifold with boundary $(M, \partial M)$ into the pair $(\bar{B}\Gamma^n_{sl}, \bar{B}\Gamma^n_{sl})$.

A map $g: M \to \overline{B}\Gamma_{sl}^n$ corresponds to a foliation \mathfrak{F} of some bundle E over M with transverse volume form $\tilde{\alpha}$. We will identify M with the zero section of E and will put $\alpha = \tilde{\alpha} \mid M$. Then the restriction of α to ∂M is exact because $g(\partial M) \subseteq \overline{B}\Gamma_{sl}^n$. Let β be a form on M such that $d\beta = \alpha$ on ∂M . Then g^*a is by definition the class $[\beta\alpha]$ on ∂M . Since $\alpha = d\beta$ on ∂M and $\alpha^2 = 0$, we have

$$\delta(g^*a) = \delta[\beta\alpha] = \delta[2\beta\alpha - \beta d\beta] = \left[-(\alpha - d\beta)^2\right]$$

in $H^{2n}(M, \partial M)$. It follows that the class $[(\alpha - d\beta)^2]$ is independent of the choice of β . On the other hand, it is easy to check that as β varies the class $[\alpha - d\beta]$ runs over the set of elements of $H^n(M, \partial M)$ which map to $[\alpha] = g^*f^*(e)$ in $H^n(M)$. Therefore $g^*\bar{f}^*(e) = [\alpha - d\beta]$ for some β , and $g^*\bar{f}^*(e^2) = -\delta(g^*a)$ as required. \square

The next step is to show that a is spherically supported. In fact, let λ be a nonzero element of $\pi_n(\bar{B}\Gamma^n_{sl})$ and let $\mu \in \pi_{2n-1}(\bar{B}\Gamma^n_{sl})$ be taken by i_* to the Whitehead product $[\lambda, \lambda] \in \pi_{2n-1}(\bar{B}\Gamma^n_{sl})$. Then $\langle u, \mathcal{K}(\lambda) \rangle \neq 0$, where \mathcal{K} is the Hurewicz homomorphism and $u \in H^n(\bar{B}\Gamma^n_{sl}; \mathbf{R})$ is the universal transverse volume form. It is now easy to check that $\langle a, \mathcal{K}(\mu) \rangle \neq 0$: for example, see [6].

Finally we must show that $h(a) = s(\mathbf{R}^n)$. Consider the commutative diagram

$$H^{2n-1}(\overline{\overline{B}}\Gamma_{sl}^{n}) \rightarrow H^{n-1}(\Omega^{n}\overline{\overline{B}}\Gamma_{sl}^{n})$$

$$\downarrow j^{*} \qquad \qquad \downarrow (Ad j)^{*}$$

$$H^{2n-1}(\mathcal{C} \times \mathbf{R}^{n}) \stackrel{\S}{\rightarrow} H^{n-1}(\mathcal{C})$$

where \mathcal{G} is integration over the fiber $t \times \mathbb{R}^n$ and where j is as in §1. It is clear from the definition of a that $j^*(a)$ is represented by the form $\Phi\Omega$ on $\mathcal{C} \times \mathbb{R}^n$. Hence $h(a) = s(\mathbb{R}^n)$ as claimed.

This completes the proof of Proposition 3. The results of [9] were used here in order to show that j_* is an isomorphism when \mathbf{R}^n has finite ω -volume. This may be avoided by arguing as follows. Let \mathcal{G}_{λ} be the subgroup of $\mathfrak{D}iff_{\omega 0}^c \mathbf{R}^n$ consisting of

diffeomorphisms with support in the open ball of radius λ . If $\operatorname{vol}_{\tilde{\omega}} \mathbf{R}^n \leq \operatorname{vol}_{\omega} \mathbf{R}^n = \infty$, there is by [2] an embedding $i: \mathbf{R}^n \to \mathbf{R}^n$ such that $i^*\omega = \tilde{\omega}$. We may also assume that $\mathcal{G}_{\lambda} \subset i_*(\mathfrak{D}iff_{\tilde{\omega}0}^c \mathbf{R}^n)$ for some $\lambda > 0$. Therefore, in order to show that $s(\mathbf{R}^n, \tilde{\omega}) \neq 0$ it suffices to show that the restriction s_{λ} of $s(\mathbf{R}^n, \omega)$ to $\overline{B}\mathcal{G}_{\lambda}$ is nonzero for all λ . Because $\mathfrak{D}iff_{\omega 0}^c \mathbf{R}^n = \lim_{\lambda} \mathcal{G}_{\lambda}$, some s_{λ} is certainly nonzero. And it is easy to check that the isomorphism $r: \mathcal{G}_{\mu} \to \mathcal{G}_{\lambda}$ which is induced by multiplication by $\mu^{-1}\lambda$ takes s_{μ} to a nonzero multiple of s_{λ} . A similar argument proves the corollary to Proposition 3.

3. The class c_n . We first prove Proposition 1 which states that $c_n(S^n) = 0$ when n is even.

PROOF OF PROPOSITION 1. By Proposition 6 there are forms $\tilde{\Phi}$ and χ_0 on $\mathcal{C} \times S^n$ such that $\tilde{\Omega} = d\tilde{\Phi} + \chi_0$ and $\chi_0 \in A_c^{n,0}$. Note also that if K is any n-cycle in \mathcal{C} , the integral of Ω over $K \times x$ is independent of x. Hence

$$c_n(K) = \int_{K \times x} \Omega = \lambda \int_{K \times S^n} \Omega \Omega_n$$

where $\lambda^{-1} = \int_{S^n} \omega$. But

$$\Omega\Omega_n = (\tilde{\Omega} - \chi_0 + \Omega_n)\Omega_n + \chi_0\Omega_n = d(\tilde{\Phi}\Omega_n) + \chi_0\Omega_n.$$

Also, because $\tilde{\Omega}(\Omega + \Omega_n) = \Omega^2 - \Omega_n^2 = 0$ when n is even, we have

$$2\chi_0\Omega_n = (\chi_0 - \tilde{\Omega})(\Omega + \Omega_n) - \chi_0\tilde{\Omega} = -d(\tilde{\Phi}(\Omega + \Omega_n)) - \chi_0\tilde{\Omega}.$$

Therefore

$$2c_n(K) = -\lambda \int_{K \times S^n} \chi_0 \tilde{\Omega} = 0,$$

since all the terms in $\chi_0 \tilde{\Omega}$ have degree < n in the x-variables. \square

It would be interesting to understand which compact manifolds M have $c_n(M)=0$. Clearly the above proof applies when $H^i(M;\mathbf{R})=0, 0< i< n$, and n is even. The examples given in §1 of manifolds such that $c_n(M)\neq 0$ were constructed using the action of $\mathfrak{D}iff_{\omega 0}M$ on M and were really examples with $i^*c_n(M)\neq 0$ where $i:\mathfrak{D}iff_{\omega 0}M\to \overline{B}\mathfrak{D}iff_{\omega 0}M$ is the natural map. In fact, a cycle $\gamma:K\to\mathfrak{D}iff_{\omega 0}M$ in $\mathfrak{D}iff_{\omega 0}M$ gives rise to a foliation on $K\times M$ with leaves $\{(k,\gamma(k)y):k\in K\}$. Its transverse volume form is the pull-back of ω by the map $(k,y)\mapsto \gamma(k)^{-1}y$. It follows that the value of the class $i^*c_n(M)$ on the cycle K is the constant function on M which equals $\langle e^*[\omega],K\rangle$, where $e:K\to M$ is the evaluation map $k\mapsto \gamma(k)^{-1}y$. Gottlieb proves in [3, Theorem A] that $\chi(M)\cdot e^*([\omega])=0$, where $\chi(M)$ is the Euler characteristic of M. Hence we have shown

LEMMA 8. If M is a compact manifold with $\chi(M) \neq 0$, then $i^*c_n(M) = 0$.

In particular, this implies that $i*c_2(X) = 0$ when X is an oriented surface of genus > 1.

LEMMA 9. If X is an oriented surface of genus > 0, then $c_2(X) \neq 0$.

PROOF. Let $Y = X - \{x_0\}$. We will write \mathcal{C}_X for \overline{B} $\mathfrak{D}iff_{\omega 0} X$ and \mathcal{C}_Y for $\overline{B}\mathfrak{D}iff_{\widetilde{\omega} 0}^c Y$ where $\widetilde{\omega} = \omega \mid Y$. Let $p: \mathcal{C}_X \to \overline{B}\Gamma_{sl}^2$ classify the germ at $\mathcal{C}_X \times x_0$ of the canonical

foliation of $\mathcal{C}_X \times X$. It is shown in [9] that the homotopy fiber of p has the same integral homology as \mathcal{C}_Y . Therefore there is a spectral sequence

$$H'(\overline{B}\Gamma_{sl}^2; H^s(\mathcal{C}_Y)) \Rightarrow H'^{+s}(\mathcal{C}_X)$$

where coefficients in **R** are understood. Since $\overline{B}\Gamma_{sl}^2$ is 1-connected, this gives rise to an exact sequence

$$(\sharp) \qquad 0 \to H^1(\mathcal{C}_X) \stackrel{j^*}{\to} H^1(\mathcal{C}_Y) \stackrel{\tau}{\to} H^2(\overline{B}\Gamma_{sl}^2) \stackrel{p^*}{\to} H^2(\mathcal{C}_X)$$

where τ is the transgression and j^* is induced by the inclusion $Y \subseteq X$.

Banyaga shows in [1] that $H_1(\mathcal{C}_X; \mathbf{Z}) \cong H^1(X; \mathbf{R})$. Further, because the form $\langle \alpha, \beta \rangle = \int_Y \alpha \wedge \beta$ does not vanish identically for $\alpha, \beta \in H_c^1(Y; \mathbf{R})$, the results of Rousseau [11] imply that $H_1(\mathcal{C}_Y; \mathbf{Z}) \cong H_c^1(Y; \mathbf{R})$. Thus there is a commutative diagram

$$H_{1}(\mathcal{C}_{Y}; \mathbf{Z}) \rightarrow H_{c}^{1}(Y; \mathbf{R})$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_{1}(\mathcal{C}_{X}; \mathbf{Z}) \rightarrow H^{1}(X; \mathbf{R})$$

where the horizontal maps are isomorphisms given by the flux and the vertical maps are induced by the inclusion of Y in X. It follows that the map j^* in the exact sequence (\sharp) is an isomorphism and that p^* is injective. But if $u \in H^2(\overline{B}\Gamma_{sl}^2)$ is the "universal transverse volume form", p^*u is represented by the restriction of Ω to $\mathcal{C}_X \times x_0$ and so equals $c_2(X)$. Hence $c_2(X) \neq 0$ as claimed. \square

In general, if $Y = X - x_0$ one has an exact sequence

$$H^{n-1}(\mathcal{C}_Y) \stackrel{\tau}{\to} H^n(\overline{B}\Gamma_{sl}^n) \stackrel{p^*}{\to} H^n(\mathcal{C}_X)$$

in which $p^*u = c_n(X)$. Therefore the vanishing of $c_n(X)$ implies that u is in the image of τ . In particular, consider the case $X = S^n$, for n even.

LEMMA 10. $\tau(s(\mathbf{R}^n))$ is a nonzero multiple of u.

PROOF. Recall that τ is the composite $(\bar{p}^*)^{-1} \circ \delta$ where

$$H^{n-1}(\mathcal{C}_Y) \xrightarrow{\delta} H^n(\mathcal{C}_X, \mathcal{C}_Y) \xleftarrow{\bar{p}^*} H^n(\bar{B}\Gamma_{sl}^n).$$

Therefore, it will suffice to show that $\delta(s(\mathbf{R}^n))$ is a nonzero multiple of \bar{p}^*u . Let $\tilde{\Phi}$ and χ_0 be forms on $\mathcal{C}_X \times X$ as in the proof of Proposition 1. Clearly we may assume that the restriction $\tilde{\Phi}_Y$ of $\tilde{\Phi}$ to $\mathcal{C}_Y \times Y$ is compactly supported and satisfies $d\tilde{\Phi}_Y = \tilde{\Omega}$. Thus $\tilde{\Phi}$ is zero on some neighbourhood of $\mathcal{C}_Y \times \chi_0$ in $\mathcal{C}_Y \times X$, and $\chi_0 = 0$ on $\mathcal{C}_Y \times X$. The class \bar{p}^*u is represented by the restriction of the form Ω to $(\mathcal{C}_X \times \chi_0, \mathcal{C}_Y \times \chi_0)$. Therefore, if L is an n-cycle in $(\mathcal{C}_X, \mathcal{C}_Y)$ we have

$$\bar{p}^*u(L) = \int_{L \times x_0} \Omega = \int_{L \times x_0} (d\tilde{\Phi} + \chi_0) + \Omega_n = \int_{\partial L \times x_0} \tilde{\Phi} + \int_{L \times x_0} (\chi_0 + \Omega_n).$$

But $\tilde{\Phi} = 0$ on $\partial L \times x_0$ since $\partial L \subset \mathcal{C}_Y$. Also $\int_{L \times x_0} \Omega_n = 0$. Therefore, because χ_0 is independent of x (see Corollary 7) we have

$$\tilde{p}^*u(L) = \int_{L \times x_0} \chi_0 = \lambda \int_{L \times X} \chi_0 \Omega_n$$
 where $\lambda^{-1} = \int_X \omega$.

But

$$\delta(s(\mathbf{R}^n))(L) = s(\mathbf{R}^n)(\partial L) = \int_{\partial L \times Y} \tilde{\Phi}(\Omega + \Omega_n) = \int_{\partial L \times X} \tilde{\Phi}(\Omega + \Omega_n)$$
$$= \int_{L \times Y} (\tilde{\Omega} - \chi_0)(\Omega + \Omega_n) = -\int_{L \times X} 2\chi_0 \Omega_n$$

as in the calculation of $c_n(X)$ in Proposition 1. \square

This result suggests that one should be able to extend s to a natural nonzero class $s(Y) \in H^{n-1}(\overline{B} \cap iff_{\omega 0}^c Y; \mathbb{R})$ which is defined for all even dimensional manifolds of the form $Y = X - x_0$, where X is a compact manifold with $c_n(X) = 0$. (To say that s is natural means of course that $j^*s(Y') = s(Y)$ for all embeddings $j: (Y, \omega) \hookrightarrow (Y', \omega')$.) Similarly, one might expect that s would always be zero on odd dimensional manifolds and hence that $c_n(X) \neq 0$ for all odd dimensional X. Note that these suggestions are consistent with our results in dimension 2, for Rousseau's work says exactly that the only noncompact 2-dimensional manifold on which s can be defined is \mathbb{R}^2 .

Appendix 1. Explicit formulae for the c_k . Consider a p-simplex S in \mathcal{C} . Let $\tilde{X}_1(t),\ldots,\tilde{X}_p(t)$ be the vector fields on $\Delta^p\times M$ which are tangent to the leaves of the foliation $\mathcal{F}(S)$ and which lie above the fields $\partial/\partial t_1,\ldots,\partial/\partial t_p$ on $\Delta^p=\{(t_1,\ldots,t_p): 0 \leq t_1 \leq \cdots \leq t_p \leq 1\}$. Then for each $t\in \Delta^p$ we may write

$$\tilde{X}_i(t) = X_i(t) + \partial/\partial t_i,$$

where $X_i(t)$ is an ω -preserving vector field on M. (Compare [1, §I] where it is shown that $X_i(t, x) = \frac{\partial h_i}{\partial t_i} (h_i^{-1}(x))$.) The vectors $[\tilde{X}_i(t), \tilde{X}_j(t)]$ are tangent to the leaves of $\mathfrak{F}(S)$ and project to $[\frac{\partial}{\partial t_i}, \frac{\partial}{\partial t_j}] = 0$ on Δ^p . Since the projection of $\Delta^p \times M$ on Δ^p maps each leaf of $\mathfrak{F}(S)$ diffeomorphically onto Δ^p , it follows that $[\tilde{X}_i(t), \tilde{X}_j(t)] = 0$. This proves

LEMMA A1 [1, Proposition I.1.1]. For each $t \in \Delta^p$ we have

$$\left[X_i(t), X_j(t)\right]_M = \frac{\partial}{\partial t_i} (X_i(t)) - \frac{\partial}{\partial t_i} (X_j(t)).$$

For short we will write this equation as

$$[X_i, X_i] = \partial_i X_i - \partial_i X_i.$$

Next, suppose that Y_1, \ldots, Y_k are ω -preserving vector fields on M and consider the (n-k)-form

$$\omega(Y_1,\ldots,Y_k;\ldots)=i(Y_k)\cdots i(Y_1)\omega$$

on M. When k = 1 this form is closed. In general one has

LEMMA A2.

$$d_{M}\omega(Y_{1},\ldots,Y_{k};\ldots)=\sum_{i\leq i}(-1)^{i+j+k}\omega([Y_{i},Y_{j}],Y_{1},\ldots,\hat{i},\hat{j},\ldots,Y_{k};\ldots).$$

PROOF. This follows easily by induction on k, using the formulae

$$di(X) + i(X)d = \mathcal{L}_X$$

and

$$\mathcal{L}_X(\omega(Y_1,\ldots,Y_k;\ldots))$$

$$=\omega([X,Y_1],Y_2,\ldots,Y_k;\ldots)+\cdots+\omega(Y_1,\ldots,[X,Y_k];\ldots). \quad \Box$$

PROPOSITION A3. For each p-simplex S we have

$$\Omega_{n-k}(S) = (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq p} dt_{i_1} \wedge \cdots \wedge dt_{i_k} \wedge \omega(X_{i_1}, \ldots, X_{i_k}; \ldots)$$

where the fields $X_i(t)$ are as defined above.

PROOF. Let $\Lambda(S) = \Lambda_0(S) + \cdots + \Lambda_n(S)$ be the form defined by the right-hand side of the above equations. Note that $\Lambda_k(S) = 0$ if k < n - p. We must check that $\Lambda(S)$ is closed, that it defines $\mathfrak{F}(S)$ and that it restricts to ω on each fiber $t \times M$. The last two statements are easy to verify, and will be left to the reader. Since $\Lambda_n(S) = \pi^*(\omega)(S)$ is closed, the first statement is equivalent to the equations

$$d_T \Lambda_k(S) + d_M \Lambda_{k-1}(S) = 0$$
 for $0 \le k \le n$.

These follow easily from Lemmas A1 and A2. For example,

$$d_{T}\Lambda_{n-1}(S) = d_{T}\left(-\sum_{i} dt_{i} \wedge \omega(X_{i}; \ldots)\right)$$

$$= -\sum_{i \neq j} dt_{j} \wedge dt_{i} \wedge \omega(\partial_{j}X_{i}; \ldots)$$

$$= \sum_{i < j} dt_{i} \wedge dt_{j} \wedge \omega([X_{i}, X_{j}]; \ldots) = -d_{M}\Lambda_{n-2}(S). \quad \Box$$

COROLLARY A4. For each k-cycle K in C we have

$$c_k(M)(K) = \int_K \Omega_{n-k} = (-1)^k \sum_{S \in K} \int_{\Delta^k} dt_1 \wedge \cdots \wedge dt_k \wedge \omega(X_1, \ldots, X_k; \ldots).$$

It follows immediately that $-c_1(M)$ is the flux homomorphism.

Appendix 2. Lie algebra cohomology. In [5] Haefliger describes spaces such as $\overline{B}^{\mathfrak{N}}iff^{c}_{\omega 0}M$ in a slightly different context, emphasizing their connection with Lie algebras. In this appendix we will translate our results into his language. I am grateful to Haefliger for explaining how this may be done.

Let \mathfrak{g}_M be the Lie algebra of compactly supported vector fields on M which preserve ω . Consider the double complex $C^{r,s}(M) = C^r(\mathfrak{g}_M; \Lambda^s(M))$ of r-cochains on \mathfrak{g}_M with values in the s-forms on M where \mathfrak{g}_M acts trivially on Λ^*M , and let

 $C^*(M)$ be the associated total complex. As in [5], one can construct a universal characteristic homomorphism

$$\chi \colon C^{r,s}(M) \to A^{r,s}_d \subseteq A^{r,s}$$

where $A^{r,s}$ is as in §2 and $A^{r,s}_d$ is its subcomplex of forms smooth under deformation. Define $\overline{\Omega}_{n-k} \in C^{k,n-k}$ by

$$\overline{\Omega}_{n-k}(X_1,\ldots,X_k)=(-1)^k\omega(X_1,\ldots,X_k;\ldots)$$

and let $\overline{\Omega} = \sum \overline{\Omega}_{n-k} \in C^n(M)$. Then $\overline{\Omega}$ is closed. Moreover, because $\theta(\partial/\partial t_i) = X_i(t)$, the calculations of Appendix 1 show that $\chi(\overline{\Omega}) = \Omega$. Thus $\overline{\Omega}$ is the Lie algebra analogue of Ω .

Since $\overline{\Omega}$ is exact when $H_c^i(M; \mathbf{R}) = 0$, i < n, one can easily construct a class $\overline{s} \in H^{n-1}(\mathfrak{g}_M; \mathbf{R})$ which is taken by χ to s. There are also classes $\overline{c}_k \in H^k(\mathfrak{g}_M; H_c^{n-k}(M))$ which correspond to the c_k . As before, they come from a homomorphism

$$\bar{\psi}^* \colon H^*(M) \to H^*(\mathfrak{g}_M; \mathbf{R})$$

which is induced by the cochain map

$$\bar{\psi} \colon \Lambda^* M \to C^*(\mathfrak{g}_M; \mathbf{R})$$

given by

$$\overline{\psi}(\beta)(X_1,\ldots,X_k) = \int_M \beta \wedge \omega(X_1,\ldots,X_k;\ldots), \text{ for } k \geq 1.$$

Appendix 3. The symplectic case. Let σ be a symplectic form on M and set $\omega = \sigma^m$ where dim M = 2m = n. Then $\mathcal{C}_{\sigma} = \overline{B} \mathfrak{D} iff_{\sigma 0}^c M$ is a subcomplex of \mathcal{C} . The arguments of §1 show that $\mathcal{C}_{\sigma} \times M$ carries a canonical symplectic form Σ which is induced locally from \mathbb{R}^{2m} . Clearly $\Sigma^m = \Omega$ and $\Sigma^{m+1} = 0$. Moreover, one can show as in Appendix 1 that $\Sigma = \Sigma_0 + \Sigma_1 + \Sigma_2$ where $\Sigma_2 = \pi^*(\sigma)$, and

$$\Sigma_{1}(S) = -\sum_{1 \leq i \leq p} dt_{i} \wedge \sigma(X_{i}; \cdot),$$

$$\Sigma_0(S) = \sum_{1 \le i < j \le p} \sigma(X_i, X_j) dt_i \wedge dt_j$$

on any p-simplex S in \mathcal{C}_{σ} . The form Σ defines classes similar to the c_k .

If M is noncompact and if $H^1_c(M; \mathbf{R}) = 0$, then Corollary 7 implies that there is a form $\tilde{\Psi}$ in $A^{1,0}_c$ such that $d\tilde{\Psi} = \Sigma_0 + \Sigma_1$. It is easy to check that on any 1-simplex S we have $\tilde{\Psi}(S) = \alpha(t, x) \, dt$, where, for each $t \in I$ the function $\alpha(t, x)$ is the unique compactly supported function on M such that $d_M \alpha(t, x) = \sigma(X(t); \cdot)$. The Calabi class $R \in H^1(\bar{B} \cap iff^c_{\sigma_0}M; \mathbf{R})$ is then given by

$$R(S) = \int_{I \times M} \alpha(t, x) dt \wedge \sigma^{m} = \frac{1}{2} \int_{I \times M} \tilde{\Psi}(\Omega + \Omega_{n})$$

for each 1-simplex S. See [1, II, §4]. This should be compared with the formula $s(M)(S) = \int_{\Delta^{n-1} \times M} \tilde{\Psi}(\Omega + \Omega_n)$ for s(M). Note that these formulae agree up to a constant when m = 1. Observe also that the form $\tilde{\Psi}(\Omega + \Omega_n)$ is not closed. It defines

a cohomology class as above because the part of $d(\tilde{\Psi}(\Omega + \Omega_n))$ which lies in $A_c^{2,n}$ is d_M -exact and so has zero integral over M. To see this one uses the formula $2\Sigma_0\Sigma_2^m + m\Sigma_1^2\Sigma_2^{m-1} = 0$, which is the part of the equation $\Sigma^{m+1} = 0$ concerning forms in $A^{2,n}$, and observes that $\Sigma_1 = d_M\tilde{\Psi}$.

Let $\Lambda_j = \Sigma^j + \Sigma^{j-1}\Sigma_2 + \cdots + \Sigma^j_2$. Then $\tilde{\Psi}\Lambda_m$ is closed and its component in $A_c^{1,n}$ equals $(m+1)\tilde{\Psi}\Sigma_2^m$. Hence the class (m+1)R may be defined by integrating $\tilde{\Psi}\Lambda_m$ over M. More generally one gets classes $R_j \in H^{2j+1}(\bar{B}\mathfrak{D}iff_{\sigma_0}^cM;\mathbf{R})$ by integrating $\tilde{\Psi}\Lambda_m\Sigma^j$ over $M,0 \leq j \leq m$. Notice also that $d(\tilde{\Psi}\Lambda_{m-1}) = \Sigma^m - \Sigma_2^m$. Hence $\Omega = \Sigma^m$ is exact on $\mathcal{C}_\sigma \times M$ and one can define a class s_σ in $H^{2m-1}(\bar{B}\mathfrak{D}iff_{\sigma_0}^cM;\mathbf{R})$ which corresponds to s. It is not hard to check that $s_\sigma = R_{m-1}$. Since the classes $R_j, j \geq 1$, vanish when Σ_2 and hence Σ are exact, this shows that the restriction of $s(\mathbf{R}^{2m})$ to $\bar{B}\mathfrak{D}iff_{\sigma_0}^c\mathbf{R}^{2m}$ is zero if m > 1.

Note finally that the R_j may be defined on $\overline{B}^{\mathfrak{D}}iff_{\sigma_0}^{\Phi_c}M$ for any symplectic, noncompact M, where $\mathfrak{D}iff_{\sigma_0}^{\Phi_c}M$ is the kernel of the flux homomorphism $\mathfrak{D}iff_{\sigma_0}^cM\to H_c^1(M;\mathbb{R})/\Gamma$.

REFERENCES

- 1. A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), 174-227.
- 2. R. E. Greene and K. Shiohoma, Diffeomorphisms and volume preserving embeddings of non-compact manifolds, Trans. Amer. Math. Soc. 225 (1979), 403-414.
 - 3. D. H. Gottlieb, Fiber bundles and the Euler characteristic, J. Differential Geom. 10 (1975), 39-48.
- 4. A. Haefliger, *Homotopy and integrability*, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 133-163.
- 5. _____, Cohomology of Lie algebras and foliations, Lecture Notes in Math., vol.652, Springer-Verlag, Berlin and New York, 1978, pp. 1-12.
- 6. _____, Whitehead products and differential forms, Lecture Notes in Math., vol. 652, Springer-Verlag, Berlin and New York, 1978, pp. 13-24.
 - 7. S. Hurder, Global invariants for measured foliations, preprint, 1982.
- 8. D. McDuff, Local homology of groups of volume preserving diffeomorphisms I, Ann. Sci. Ecole Norm. Sup. (to appear).
 - 9. _____, Local homology of groups of volume preserving diffeomorphisms III, preprint, 1982.
- 10. _____, On groups of volume preserving diffeomorphisms and foliations with transverse volume form, Proc. London Math. Soc. 43 (1981), 295-320.
- 11. G. Rousseau, Difféomorphismes d'une variété symplectique non-compacte, Comment. Math. Helv. 53 (1978), 622-633.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT STONY BROOK, STONY BROOK, NEW YORK 11794