RADIAL FUNCTIONS AND INVARIANT CONVOLUTION OPERATORS

BY CHRISTOPHER MEANEY

ABSTRACT. For 1 and <math>n > 1, let $A_p(\mathbf{R}^n)$ denote the Figà-Talamanca-Herz algebra, consisting of functions of the form

$$\sum_{k=0}^{\infty} f_k * g_k$$

with $\sum_k \|f_k\|_p \cdot \|g_k\|_{p'} < \infty$. We show that if $2n/(n+1) , then the subalgebra of radial functions in <math>A_p(\mathbf{R}^n)$ is strictly larger than the subspace of functions with expansions (*) subject to the additional condition that f_k and g_k are radial for all k. This is a partial answer to a question of Eymard and is a consequence of results of Herz and Fefferman. We arrive at the statement above after examining a more abstract situation. Namely, we fix $G \in [FIA]_B^-$ and consider $^BA_p(G)$ the subalgebra of B-invariant elements of $A_p(G)$. In particular, we show that the dual of $^BA_p(G)$ is equal to the space of bounded, right-translation invariant operators on $L^p(G)$ which commute with the action of B.

Introduction. In his survey of the properties of the Figà-Talamanca-Herz algebras $A_p(G)$, Eymard asks the following question, [Ey, 9.3]. If $u \in A_p(\mathbb{R}^n)$ is radial does it have an expansion

$$u = \sum_{l=0}^{\infty} f_l * g_l$$

with not only the usual conditions $f_l \in L^p(\mathbf{R}^n)$, $g_l \in L^{p'}(\mathbf{R}^n)$, and

$$\sum_{l=0}^{\infty} \|f_l\|_p \|g_l\|_{p'} < \infty,$$

but also f_l and g_l radial for all l?

We use results of Herz and Fefferman to show that the answer is no when n > 1 and 2n/(n+1) .

A similar statement is possible for central functions in $A_p(G)$, where G is a compact, simply connected, simple Lie group.

It is possible to view the radial part of $A_p(\mathbf{R}^n)$ in a more general setting. Suppose that G is a locally compact group with a group of topological automorphisms B such that B contains all inner automorphisms of G and B is compact in $\operatorname{Aut}(G)$. We examine the subalgebra of B-invariant elements of $A_p(G)$, written ${}^BA_p(G)$, and

Received by the editors April 20, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 43A15, 43A22, 42B15; Secondary 22D15, 43A75. Key words and phrases. Radial function; Figà-Talamanca-Herz algebra, $[FIA]_B^-$, B-characters, convolution operator, compact semisimple Lie group, central function, multiplier, Fourier transform.

show that its dual is the space of bounded right-translation invariant operators on $L^p(G)$ which commute with the action of B. Furthermore, let $\mathfrak{A}_p(G,B)$ be the image of $({}^BL^p(G))\hat{\otimes}({}^BL^{p'}(G))$ under the map $f\otimes g\mapsto g*f^\vee$. For $h\in L^1(G)$, denote by $\lambda(h)$ the operator $f\mapsto h*f$, acting on $L^p(G)$ and having norm $|||\lambda(h)|||_p$. If $h\in {}^BL^1(G)$ then $\lambda(h)\colon {}^BL^p(G)\to {}^BL^p(G)$ and we denote the norm of this operator by $N_p(f)$.

We arrive at our answer to Eymard's question via the following general principle. If there exists a sequence $\{h_n\}_n \in {}^BL^1(G)$ with $\{|||\lambda(h_n)|||_p\}_n$ unbounded and $\{N_p(h_n)\}_n$ bounded, then

$${}^{B}A_{p}(G) \neq \mathfrak{A}_{p}(G,B).$$

1. $[FIA]_B^-$ groups. If G is a locally compact group let Aut(G) be the group of topological automorphisms of G, equipped with the Birkhoff topology described in $[\mathbf{Br}]$ and $[\mathbf{PtSu}]$. Throughout this paper we assume that there is a subgroup $B \subset Aut(G)$ such that: (i) B contains all inner automorphisms of G; and (ii) B is compact in Aut(G). This is abbreviated by writing $G \in [FIA]_B^-$. For a list of the properties of the class $[FIA]_B^-$ see the survey article $[\mathbf{Pa}]$.

Examples include locally compact abelian groups, with B trivial; central groups, with B equal to the group of inner automorphisms; and $G = \mathbb{R}^n$, B = SO(n).

For $\alpha \in \operatorname{Aut}(G)$ and f a function on G we let ${}^{\alpha}f(x) = f(\alpha^{-1}(x)), x \in G$. The hypothesis $G \in [FIA]_B^-$ implies that G is unimodular and we fix a Haar measure m_G on G. In particular, m_G is B-invariant (see $[\mathbf{Br}, \S IV.5]$). The action of B extends to the Lebesgue spaces of G with respect to m_G . If f belongs to one of the spaces $L^p(G)$ ($1 \le p < \infty$) or $C_0(G)$ then the map $\alpha \mapsto {}^{\alpha}f$ provides a strongly continuous representation of G by isometries $[\mathbf{Br}, p. 78]$. If G is a Lebesgue space or a space of functions on G then we let

$${}^{B}E := \{ f \in E \colon {}^{\alpha}f = f, \ \forall \ \alpha \in B \}.$$

Having equipped G with m_G we define convolution of functions on G as in $[\mathbf{HwRs}, \S 20]$. Since m_G is B-invariant we see that

(1.1)
$${}^{\alpha}(\varphi * \psi) = ({}^{\alpha}\varphi) * ({}^{\alpha}\psi), \qquad \forall \alpha \in B,$$

whenever $\varphi * \psi$ makes sense. Note also that

$$({}^{\alpha}f)^{\vee} = {}^{\alpha}(f^{\vee}), \quad \forall \alpha \in \operatorname{Aut}(G),$$

where $f^{\vee}(x) = f(x^{-1})$.

If $f \in C_0(G)$ or $L^p(G)$ $(1 \le p < \infty)$ we set

(1.2)
$$Z_B f := \int_B (^\beta f) \, dm_B(\beta),$$

where the right-hand side is the Bochner integral with respect to the normalized Haar measure m_B of the compact group B. This is denoted $f^{\#}$ in $[\mathbf{Msk}]$. The operator Z_B is obviously bounded and provides the projections $C_0(G) \to {}^BC_0(G)$ and $L^p(G) \to {}^BL^p(G)$. Since B contains all inner automorphisms of G, ${}^BL^1(G)$ is contained in the centre of $L^1(G)$.

The maximal ideal space of the commutative Banach algebra $^BL^1(G)$ is identified with \mathfrak{X}_B , the space of B-characters as defined in [Msk, §2]. These can be considered as the zonal spherical functions for the Gel'fand pair $(G \rtimes B, \{1\} \times B)$. Hence, \mathfrak{X}_B

can be equipped with a measure ν so that the Gel'fand transform \mathcal{F} : ${}^BL^1(G) \to C_0(\mathfrak{X}_B)$ extends to an isometric isomorphism \mathcal{F} : ${}^BL^2(G) \to L^2(\mathfrak{X}_B, \nu)$, see [Go]. The usual interpolation argument shows that if 1 and <math>(1/p) + (1/p') = 1 then \mathcal{F} extends to be a bounded map

$$\mathcal{F} \colon {}^B L^p(G) \to L^{p'}(\mathfrak{X}_B, \nu).$$

For further details on analysis on $[FIA]_B^-$ groups see [Ha, HHL, KS, LM, Mz, Msk, Pa, Pt, PtSu].

2. Figà-Talamanca-Herz spaces. Fix $G \in [FIA]_B^-$ and 1 . The action of <math>G on $L^p(G)$ by right translation is denoted by

$$(\rho(x)f)(y) := f(yx), \quad \forall x, y \in G,$$

and left translation is

$$(\lambda(x)f)(y) := f(x^{-1}y), \quad \forall x, y \in G.$$

Furthermore, if $h \in L^1(G)$ and $f \in L^p(G)$ then we set

$$\lambda(h)f := h * f$$

so that $\lambda(h)$ is a bounded linear operator on $L^p(G)$. The space of all bounded linear operators on $L^p(G)$ which commute with $\rho(G)$ is denoted $Cv_p(G)$ and is equipped with the operator norm $|||\cdot|||_p$. Clearly $\lambda\colon L^1(G)\to Cv_p(G)$ is a homomorphism of Banach algebras.

The Figà-Talamanca-Herz space $A_p(G)$ is the image of $L^p(G) \hat{\otimes} L^{p'}(G)$ under the map

$$(2.1) P(f \otimes g) := g * f^{\vee},$$

and the norm on $A_p(G)$ is the quotient norm on $(L^p(G)\hat{\otimes} L^{p'}(G))/\ker(P)$. Since G is amenable (see [Pa, diagram 1]) we can identify $A_p(G)^*$ with $Cv_p(G)$. For $T \in Cv_p(G)$ and $\varphi \in A_p(G)$, having series expansion $\varphi = P(\sum_{n=0}^{\infty} f_n \otimes g_n)$, the pairing is

(2.2)
$$\langle T, \varphi \rangle = \sum_{n=0}^{\infty} g_n * (Tf_n)^{\vee} (1).$$

In particular, if $h \in L^1(G)$ then

(2.3)
$$\langle \lambda(h), \varphi \rangle = \int_{\Gamma} \varphi h \, dm_G.$$

Herz has shown that $Cv_p(G)$ is the ultrastrong closure of $\lambda(C_c(G))$ [**Hz 3**, Theorem 5].

2.4 LEMMA. If $T \in Cv_p(G)$ then there is a net $\{h_\gamma\}_\gamma \subset C_c(G)$ such that

$$|||\lambda(h_{\gamma})|||_{p} \leq |||T|||_{p}, \qquad \forall \gamma,$$

and

$$\langle T, \varphi \rangle = \lim_{\gamma} \int_{C} \varphi h_{\gamma} dm_{G}, \qquad \forall \varphi \in A_{p}(G).$$

For details see [Cw, Ey, FT, Hz 2, Hz 3, Rb].

Herz also considered the map M, which takes functions on G to functions on $G \times G$ and is defined by

$$(2.5) (Mh)(x,y) := h(xy^{-1}), \forall x,y \in G.$$

In particular, if $\varphi \in A_p(G)$ then $M\varphi$ is a multiplier of $L^p(G) \hat{\otimes} L^{p'}(G)$ and

$$P\left((M\varphi)\sum_{n=0}^{\infty}f_n\otimes g_n\right)=\varphi\cdot P\left(\sum_{n=0}^{\infty}f_n\otimes g_n\right).$$

This shows that $A_p(G)$ is a Banach algebra (see [**Ey**, Théorème 1]).

We next consider the action of B on $A_p(G)$. In fact, both B and $B \times B$ act on $L^p(G) \hat{\otimes} L^{p'}(G)$. For $f \in L^p(G)$, $g \in L^{p'}(G)$, and $\beta, \beta' \in B$ set

(2.7)
$${}^{\beta}(f \otimes g) := ({}^{\beta}f) \otimes ({}^{\beta}g);$$

$$(2.8) (\beta,\beta')(f\otimes g) := (\beta f) \otimes (\beta' g).$$

Equation (2.7) (resp. (2.8)) defines a strongly continuous representation of B (resp. $B \times B$) on $L^p(G) \hat{\otimes} L^{p'}(G)$, acting as isometries. We need only remark that

$$||f \otimes g - {}^{\beta}(f \otimes g)|| = ||f \otimes g - ({}^{\beta}f) \otimes g + ({}^{\beta}f) \otimes g - ({}^{\beta}f) \otimes ({}^{\beta}g)||$$

$$\leq ||f - {}^{\beta}f||_{\mathcal{P}} ||g||_{\mathcal{P}'} + ||f||_{\mathcal{P}} ||g - {}^{\beta}g||_{\mathcal{P}'}.$$

From equation (1.1) we see that if $h \in L^p(G) \hat{\otimes} L^{p'}(G)$ and if $\beta \in B$ then

(2.9)
$$P(^{\beta}h) = {}^{\beta}(Ph).$$

2.10 LEMMA. If $f \in A_p(G)$ and $\beta \in B$ then $\beta \in A_p(G)$ and the map $\beta \mapsto \beta f$ is a strongly continuous representation of B on $A_p(G)$, acting by isometries. Furthermore, $Z_B f \in A_p(G)$ and $\|Z_B f\|_{A_p(G)} \leq \|f\|_{A_p(G)}$.

The case p=2 was proved in $[\mathbf{PtSu}]$. The following results were verified by Mosak $[\mathbf{Msk}, p. 284]$.

- 2.11 LEMMA. (i) If $f \in L^1(G)$ and $g \in {}^BL^1(G)$ then $Z_B(f * g) = (Z_B f) * g$ and $Z_B(g * f) = g * (Z_B f)$.
 - (ii) If $f, h \in L^1(G)$ then $Z_B(f * h) = Z_B(h * f)$.
 - (iii) If $1 , <math>f \in L^p(G)$ and $g \in L^{p'}(G)$ then $Z_B(f * g) = Z_B(g * f)$.
- 2.12 COROLLARY. If $1 then <math>{}^BA_p(G) = {}^BA_{p'}(G)$ with equality of norms.

Note that ${}^BA_p(G)$ is a closed subalgebra of $A_p(G)$. If $h \in {}^BA_p(G)$ and $\beta \in B$ then $(Mh)(\beta(x),\beta(y)) = h(\beta(xy^{-1})) = Mh(x,y)$, so that Mh is a multiplier of the invariant subspace

$$^{B}(L^{p}(G)\otimes L^{p'}(G)).$$

The action of $B \times B$ does not fit in with P, for if $f \in L^p(G)$, $g \in L^{p'}(G)$, and $\beta, \beta' \in B$ then

$$P({}^{\beta}f\otimes{}^{\beta'}g)=({}^{\beta'}g)*({}^{\beta}f)^{\vee}={}^{\beta}P(f\otimes{}^{\beta^{-1}\cdot\beta'}g).$$

In fact, $F \in L^p(G) \hat{\otimes} L^{p'}(G)$ is B-invariant if and only if

$$F = \int_{B} (^{\beta}F) \, dm_{B}(\beta), \qquad \text{(Bochner integral)}$$

while it is $B \times B$ -invariant if and only if it belongs to $({}^BL^p(G))\hat{\otimes}({}^BL^{p'}(G))$. Eymard's question [Ey, 9.3] asks if

(2.13)
$${}^{B}A_{p}(G) = P(({}^{B}L^{p}(G))\hat{\otimes}({}^{B}L^{p'}(G)))?$$

Peters [Pt] has shown that the answer is yes when p = 2. Let us use the abbreviation

(2.14)
$$\mathfrak{A}_{p}(G,B) := P(({}^{B}L^{p}(G))\hat{\otimes}({}^{B}L^{p'}(G))).$$

This is the analogue of a Figà-Talamanca-Herz space for the hypergroup of B orbits in G (see [Ha, HHL]).

2.15 REMARK. We cannot use the technique of [**Hz 2**] to verify whether $\mathfrak{A}_p(G,B)$ is an algebra. For if $h \in \mathfrak{A}_p(G,B) \subseteq {}^BA_p(G)$ then Mh is a multiplier of ${}^B(L^p(G)\hat{\otimes}L^{p'}(G))$ but not necessarily of $({}^BL^p(G))\hat{\otimes}({}^BL^{p'}(G))$, since it need not be $B \times B$ -invariant. The best we can say is that the function

$$(x,y) \mapsto \int_{\mathcal{B}} h(x \cdot \beta(y^{-1})) dm_B(\beta)$$

is a multiplier of $({}^BL^p(G))\hat{\otimes}({}^BL^{p'}(G))$.

3. Invariant convolution operators. Maintain the notation and hypotheses of §2. The compact group B acts on $Cv_p(G)$ via conjugation. If $T \in Cv_p(G)$ and $\beta \in B$ let ${}^{\beta}T$ be the bounded linear transformation on $L^p(G)$ defined by

$$(^{\beta}T)f := ^{\beta^{-1}}(T(^{\beta}f)), \qquad \forall f \in L^p(G).$$

An elementary calculation confirms that ${}^{\beta}T \in Cv_p(G)$ and clearly

$$|||^{\beta}T|||_{p}=|||T|||_{p}.$$

3.1 DEFINITION. We set ${}^BCv_p(G)=\{T\in Cv_p(G)\colon {}^\beta T=T, \,\,\forall\,\beta\in B\}$. From (2.2) and (1.1) it follows that if $\varphi\in A_p(G)$ can be written as $P(\sum_{n=0}^\infty f_n\otimes g_n)$ and if $T\in Cv_p(G)$ then

(3.2)
$$\langle {}^{\beta}T, \varphi \rangle = \sum_{n=0}^{\infty} g_n * ({}^{\beta^{-1}}(T({}^{\beta}f_n)))^{\vee}(1)$$

$$= \sum_{n=0}^{\infty} ({}^{\beta}g_n) * ((T({}^{\beta}f_n)))^{\vee}(1)$$

$$= \langle T, {}^{\beta}\varphi \rangle, \qquad \forall \beta \in B.$$

We wish to show that ${}^BCv_p(G)$ is the closure of $\lambda({}^BC_c(G))$.

3.3 LEMMA. If $\varphi \in C_c(G)$ then $|||\lambda(Z_B\varphi)|||_p \le |||\lambda(\varphi)|||_p$.

PROOF. We know that

$$|||\lambda(Z_B\varphi)|||_p = \sup \left| \int_G f(Z_B\varphi) \, dm_G \right|,$$

where the supremum is taken over $\{f \in A_p(G): ||f||_{A_p} \leq 1\}$. However,

(3.4)
$$\left| \int_G f(Z_B \varphi) \, dm_G \right| = \left| \int_B \int_G (\beta f) \varphi \, dm_G \, dm_B \right|,$$

since m_G is B-invariant, and the right-hand side is less than or equal to

$$\int_{B} |||\lambda(\varphi)|||_{p}||^{\beta} f||_{A_{p}} dm_{B}.$$

Now apply Lemma 2.10. Q.E.D.

Fix $T \in {}^BCv_p(G)$ and let $\{h_\gamma\}_\gamma \subset C_c(G)$ be a net as described in Lemma 2.4. We have just seen that

$$(3.5) |||\lambda(Z_B h_\gamma)|||_p \leq |||T|||_p, \forall \gamma.$$

Furthermore, for every $\varphi \in A_p(G)$,

(3.6)
$$\langle T, \varphi \rangle = \int_{B} \langle {}^{\beta}T, \varphi \rangle \, dm_{B}(\beta) \stackrel{\text{(3.2)}}{=} \langle T, Z_{B}\varphi \rangle = \lim_{\gamma} (Z_{B}\varphi) * h_{\gamma}^{\vee}(1)$$

$$\stackrel{\text{(3.4)}}{=} \lim_{\gamma} \varphi * (Z_{B}h_{\gamma}^{\vee})(1) = \lim_{\gamma} \langle \lambda(Z_{B}h_{\gamma}), \varphi \rangle.$$

3.7 LEMMA. If $T \in {}^BCv_p(G)$ then there exists a net $\{h_\gamma\} \subset {}^BC_c(G)$ such that $|||\lambda(h_\gamma)|||_p \leq |||T|||_p$, $\forall \gamma$, and

$$\langle T, \varphi \rangle = \lim_{\gamma} \int_{G} \varphi h_{\gamma} \, dm_{G}, \qquad orall \, \varphi \in A_{p}(G).$$

This shows that ${}^BCv_p(G)$ is the image $Z_B^*Cv_p(G)$ where Z_B^* is the adjoint of $Z_B: A_p(G) \to A_p(G)$. From [Mz, p. 67], it follows that ${}^BCv_p(G) \cong {}^BA_p(G)^*$.

- 3.8 PROPOSITION. The dual of the Banach space ${}^BA_p(G)$ is equal to ${}^BCv_p(G)$, with the pairing as in (2.2).
- 3.9 COROLLARY. For $1 and <math>G \in [FIA]_B^-$ we have ${}^BCv_p(G) = {}^BCv_p(G)$ and ${}^BCv_p(G) \subset {}^BCv_2(G)$.

PROOF. The first part follows from Corollary 2.12 and the second form from the Riesz-Thorin convexity theorem. Q.E.D.

This is different from the case of all of $Cv_p(G)$, for there are examples [**Hz 4**, **Hz 5**, **Lh**, **Ob**] of values p and groups G with $Cv_p(G) \neq Cv_{p'}(G)$. Corollary 3.9 is very well known for various special cases, such as locally compact abelian groups and compact groups, with B the group of inner automorphisms.

3.10 REMARKS. Recall the notation of §1. Hartmann [Ha] has shown that

$$^{B}A_{2}(G)=\mathfrak{A}_{2}(G,B)\cong L^{1}(\mathfrak{X}_{B},\nu),$$

where the isomorphism is the "inverse Fourier transform" \mathcal{F}^{-1} . Hence, ${}^BCv_2(G)\cong L^\infty(\mathfrak{X}_B,\nu)$, so that elements of ${}^BCv_2(G)$ can be viewed as multipliers. That is, if $T\in {}^BCv_2(G)$ then there is $\mathcal{F}T\in L^\infty(\mathfrak{X}_B,\nu)$ such that

$$\langle T, arphi
angle = \int_{{\mathfrak T}_{\mathcal R}} ({\mathcal F} T) ({\mathcal F} arphi) \, d
u,$$

for all $\varphi \in {}^{B}A_{2}(G) \cap C_{c}(G)$.

Conversely, $m \in L^{\infty}(\mathfrak{X}_B, \nu)$ is equal to $\mathcal{F}T$ for some $T \in {}^BCv_p(G)$ if and only if

(3.11)
$$\left| \int_{\mathfrak{X}_{R}} m \cdot \mathcal{F} \varphi \cdot d\nu \right| \leq \operatorname{const} \cdot \|\varphi\|_{A_{p}(G)}$$

for all $\varphi \in {}^{B}A_{p}(G) \cap C_{c}(G)$. We could also use ${}^{B}A_{2}(G) \cap C_{c}(G)$, equipped with $\|\cdot\|_{A_{p}(G)}$, as a test space in (3.11). See [Cw].

This line of reasoning suggests a means of sometimes distinguishing $A_p(G)$ and $\mathfrak{A}_p(G,B)$.

Observe that ${}^BL^1(G)$ acts on ${}^BL^p(G)$ via convolution. Let us denote by $N_p(f)$ the norm of $\lambda(f) \colon {}^BL^p(G) \to {}^BL^p(G)$, where $f \in {}^BL^1(G)$. Clearly, from (2.14) we know that

$$N_p(f) = \sup \left\{ \left| \int_G f \varphi \, dm_G \right| : \varphi \in \mathfrak{A}_p(G,B), \|\varphi\|_{\mathfrak{A}_p} \leq 1 \right\}.$$

If one could show that $N_p(f) \neq |||\lambda(f)|||_p$, for some $f \in {}^BL^1(G)$, then it would follow that $\mathfrak{A}_p(G,B) \neq {}^BA_p(G)$, since

$$|||\lambda(f)|||_p = \sup\left\{\left|\int_G f\varphi\,dm_G\right|: \varphi\in {}^BA_p(G), \,\,\|\varphi\|_{A_p} \leq 1
ight\}.$$

We shall demonstrate this for special cases in the next sections.

4. Radial multipliers. In this section we let $G = \mathbb{R}^n$, for fixed n > 1, and B = SO(n), so that $^BL^p(G)$ is the subspace of radial elements of $L^p(\mathbb{R}^n)$. We use \hat{f} to denote the usual Fourier transform of an integrable function f on \mathbb{R}^n . The Schwartz space is denoted by $S(\mathbb{R}^n)$ and $\mathcal{D}(\mathbb{R}^n)$ is the space of C^{∞} -functions with compact support.

It is well known that $T \in {}^{SO(n)}Cv_p(\mathbf{R}^n)$ corresponds to an element $\mathcal{F}T \in L^{\infty}([0,\infty))$ such that

$$(Tf)(x) = \int_{\mathbf{R}^n} \hat{f}(\xi) \mathcal{F}T(|\xi|) e^{ix \cdot \xi} d\xi,$$

for all $f \in \mathcal{S}(\mathbf{R}^n)$. Conversely, we have seen in §3 that $m \in L^{\infty}([0,\infty))$ is of the form $m = \mathcal{F}T$, for some $T \in {}^{SO(n)}Cv_n(\mathbf{R}^n)$, provided

$$\left| \int_{\mathbf{R}^n} \hat{f}(\xi) m(|\xi|) \, d\xi \right| \le \text{const.} \|f\|_{A_p(\mathbf{R}^n)}$$

for all $f \in {}^{SO(n)}\mathcal{D}(\mathbf{R}^n)$.

For each r > 0 let T_r° be the operator defined by

$$(T_r^{\circ}f)(x) = \int_{|\xi| \le r} \hat{f}(\xi)e^{i\xi \cdot x} d\xi.$$

for all $f \in \mathcal{S}(\mathbb{R}^n)$. We recall the following results of Herz [**Hz 1**] and Fefferman [**Ff**].

4.2 LEMMA. (a) For n > 0, r > 0, and $2n/(n+1) the operator <math>T_r^{\circ}$ is bounded on $SO(n)L^p(\mathbb{R}^n)$ and the norm is independent of r.

(b) For
$$n > 1$$
, $r > 0$, and $p \neq 2$, $T_r^{\circ} \notin Cv_p(\mathbf{R}^n)$.

The following lemma was shown to me by Michael Cowling.

4.3 LEMMA. Let $\psi \in C^{\infty}([0,\infty))$ be compactly supported and have $\psi' \leq 0$. Furthermore let T_{ψ} be the operator defined by

$$(T_{\psi}f)^{\wedge}(\xi) = \psi(|\xi|)\hat{f}(\xi), \qquad \forall \, \xi \in \mathbf{R}^n, \, f \in \mathcal{S}(\mathbf{R}^n).$$

Then for each $2n/(n+1) there is a constant <math>c_p > 0$ such that

$$||T_{\psi}f||_{p} \leq c_{p}||f||_{p}\psi(0), \quad \text{for all } f \in {}^{SO(n)}\mathcal{S}(\mathbf{R}^{n}).$$

PROOF. For $f, g \in {}^{SO(n)}S(\mathbb{R}^n)$ we see that

$$(T_{\psi}f)*g(0)=\int_{\mathbf{R}^n}\hat{f}(\xi)\hat{g}(\xi)\psi(|\xi|)\,d\xi.$$

Integrating by parts we see that this is equal to

$$-\int_0^\infty \psi'(r)\int_{|\xi| \le r} \hat{f}(\xi)\hat{g}(\xi)\,d\xi\,dr = -\int_0^\infty \psi'(r)((T_r^\circ f) * g)(0)\,dr.$$

Now apply the preceding lemma. Q.E.D.

Note that we could also have used [GT, p. 238] and [Ig].

We can now give a partial answer to [Ey, 9.3].

4.4 THEOREM. For n > 1 and 2n/(n+1) .

$$^{SO(n)}A_p(\mathbf{R}^n) \neq P(^{SO(n)}L^p(\mathbf{R}^n)\hat{\otimes}^{SO(n)}L^{p'}(\mathbf{R}^n)).$$

PROOF. Suppose ${}^{SO(n)}A_p({\bf R}^n)=\mathfrak{A}_p({\bf R}^n,SO(n)).$ The open mapping theorem implies equivalence of norms

$$||f||_{A_p} \leq ||f||_{\mathfrak{A}_p} \leq \kappa ||f||_{A_p}.$$

Fix a smooth, compactly supported function ψ on $[0, \infty]$ such that:

- (i) $\psi(t) = 1$ if $t \le 1$;
- (ii) $0 \le \psi(t) < 1$ if t > 1; and
- (iii) $\psi'(t) \leq 0, \forall t \geq 0.$

For each $k \geq 1$ let Ψ_k be the element of $SO(n) S(\mathbf{R})$ such that

$$\hat{\Psi}_k(\xi) = (\psi(|\xi|))^k, \quad \forall \, \xi \in \mathbf{R}^n.$$

For an arbitrary pair $f,g\in\mathcal{D}(\mathbf{R}^n)$ our hypothesis implies that there exists sequences $\{F_l\}_{l\geq 0}$ and $\{G_l\}_{l\geq 0}$ contained in $SO(n)\mathcal{D}(\mathbf{R}^n)$ and satisfying

$$Z_{SO(n)}(f * g) = \sum_{l=0}^{\infty} F_l * G_l$$

and $\sum_{l=0}^{\infty} \|F_l\|_p \|G_l\|_{p'} \leq 2\kappa \|f\|_p \|g\|_{p'}$. This involves Lemma 2.10 and the density of $SO(n) \mathcal{D}(\mathbf{R}^n)$ in $SO(n) L^p(\mathbf{R}^n)$. We now examine

$$\begin{aligned} |\langle \lambda(\Psi_k), f * g \rangle| &= |\langle \lambda(\Psi_k), Z_{SO(n)}(f * g) \rangle| \\ &= \left| \sum_{l=0}^{\infty} \Psi_k * F_l * G_l(0) \right| \leq \sum_{l=0}^{\infty} c_p ||F_l||_p ||G_l||_{p'} \end{aligned}$$

on account of Lemma 4.3.

However, this shows that for all $k \geq 1$,

(4.5)
$$\left| \int_{\mathbf{R}^n} \hat{f}(\xi) \hat{g}(f) (\psi(|\xi|))^k \, d\xi \right| \leq 2\kappa c_p \|f\|_p \|g\|_{p'}.$$

The left-hand side converges to $|\langle T_1^{\circ}, f * g \rangle|$ as $k \to \infty$ and so (4.5) contradicts Fefferman's solution of the multiplier problem for the ball, [**Ff**]. Q.E.D.

5. Central multipliers. Let G be a d-dimensional, compact, simply connected, simple Lie group of rank r, with a fixed maximal torus T. In this case $G \in [FIA]_B^-$, with B the group of inner automorphisms of G, and Z_B is the operation of centralization,

$$Z_B f(x) = \int_G f(yxy^{-1}) dm_G(y).$$

Hence, ${}^BA_p(G)$ is the subalgebra of central functions in $A_p(G)$ and ${}^BL^p(G)$ is the subspace of central elements of $L^p(G)$.

We use some results of Stanton and Tomas, [SnTo], to show that ${}^BA_p(G) \neq \mathfrak{A}_p(G,B)$ for certain values of p. Fix a Weyl group-invariant polyhedron R in the Lie algebra of T and let $\{D_n : n \geq 1\}$ be the Dirichlet kernels for summation of Fourier series on G, as described in [SnTo, p. 478]. There is a constant p(R), satisfying

$$2d/(d+r) \le p(R) \le (2d-2r+2)/(d-r+2) < 2$$

such that for all $p(R) and <math>n \ge 1$

$$||D_n * f||_p \le \operatorname{const.}_p ||f||_p, \quad \forall f \in {}^B L^p(G).$$

However, if $p \neq 2$ then

$$\sup_{n\geq 1}|||\lambda(D_n)|||_p=\infty.$$

5.1 THEOREM. For G, B, R and p(R) as above and p(R) , we have

$${}^{B}A_{p}(G) \neq P({}^{B}L^{p}(G)\hat{\otimes}^{B}L^{p'}(G)).$$

This is an immediate consequence of §3 and [SnTo, Theorems D and E].

ACKNOWLEDGEMENTS. This paper would not have reached its final form without the encouragement and valuable comments of Michael Cowling. I am particularly grateful for his proof of Lemma 4.3. While working on this material I have been supported by the Universities of New South Wales and Adelaide. Special thanks to Jenny, Zena and Ruth.

REFERENCES

- [Br] Jean Braconnier, Sur les groupes topologiques localement compacts, J. Math. Pures Appl. 27 (1948), 1-85.
- [Cw] Michael Cowling, Some applications of Grothendieck's theory of topological tensor products in harmonic analysis, Math. Ann. 232 (1978), 273-285.
- [Ey] Pierre Eymard, Algèbres A_p et convoluteurs de L^p , Sèm. Bourbaki 367, Nov. 1969.
- [Ff] Charles Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336.
- [FT] Alessandro Figà-Talamanca, Translation invariant operators in L^p, Duke Math. J. 32 (1965), 495-502.
- [GT] George Gasper and Walter Trebels, Multiplier criteria of Hörmander type for Fourier series and applications to Jacobi series and Hankel transforms, Math. Ann. 242 (1979), 225-240.
- [Go] Roger Godement, Introduction aux travaux de A. Selberg, Sém. Bourbaki 144, 1957.
- [Ha] Klaus Hartmann, [FIA] Gruppen und Hypergruppen, Monatsh. Math. 89 (1980), 9-17.
- [HHL] Klaus Hartmann, Rolf Wim Henrichs and Rupert Lasser, Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups, Monatsh. Math. 88 (1979), 229-238.
- [Hz 1] Carl S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999.
- [Hz 2] ____, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.

- [Hz 3] ____, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123.
- [Hz 4] ____, On the asymmetry of norms of convolution operators. I, J. Funct. Anal. 23 (1976), 11-22.
- [Hz 5] _____, Asymmetry of norms of convolution operators. II: Nilpotent Lie groups, Symposia Math. 22 (1977), 223-230.
- [HwRs] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. I and II, Springer-Verlag, Berlin, Heidelberg and New York, 1963 and 1970.
- [Ig] Satoru Igari, On the multipliers of Hankel transform, Tôhoku Math. J. 24 (1972), 201-206.
- [KS] Eberhard Kaniuth and Detlef Steiner, On complete regularity of group algebras, Math. Ann. 204 (1973), 305-329.
- [LM] J. Liukkonen and R. Mosak, Harmonic analysis and centers of group algebras, Trans. Amer. Math. Soc. 195 (1974), 147-163.
- [Lh] Noël Lohoué, Estimations L^p des coefficients de représentation et opérateurs de convolution, Adv. in Math. 38 (1980), 178-221.
- [Mz] Michel Mizony, Contribution a l'analyse harmonique sphérique, Publ. Dép. Math. (Lyon) 12-1 (1975), 61-108.
- [Msk] Richard D. Mosak, The L¹ and C^{*} algebras of [FIA]_B groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277-310.
- [Ob] Daniel M. Oberlin, $M_p(G) \neq M_q(G)$ $(p^{-1} + q^{-1} = 1)$, Israel J. Math. 22 (1975), 175–179.
- [Pa] T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741.
- [Pt] Justin Peters, Representing positive definite B invariant functions on $[FC]_B$ groups, Monatsh. Math. 80 (1975), 319-324.
- [PtSu] Justin Peters and Terje Sund, Automorphisms of locally compact groups, Pacific J. Math. 76 (1978), 143-156.
- [Rb] Stephen G. Roberts, A_p spaces and asymmetry of L_p -operator norms for convolution operators, M.Sc. Thesis, Flinders University of South Australia, 1982.
- [SnTo] Robert J. Stanton and Peter A. Tomas, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math. 100 (1978), 477-493.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF ADELAIDE, G.P.O. BOX 498, ADELAIDE, SOUTH AUSTRALIA 5001, AUSTRALIA

Current address: Department of Mathematics, University of Texas, Austin, Texas 78712