MONGE-AMPÈRE MEASURES ASSOCIATED TO EXTREMAL PLURISUBHARMONIC FUNCTIONS IN C"

BY

NORMAN LEVENBERG

ABSTRACT. We consider the extremal plurisubharmonic functions L_E^* and U_E^* associated to a nonpluripolar compact subset E of the unit ball $B \subset \mathbb{C}^n$ and show that the corresponding Monge-Ampère measures $(dd^c L_E^*)^n$ and $(dd^c U_E^*)^n$ are mutually absolutely continuous. We then discuss the polynomial growth condition (L^*) , a generalization of Leja's polynomial condition in the plane, and study the relationship between the asymptotic behavior of the orthogonal polynomials associated to a measure on E and the (L^*) condition.

1. Introduction. Two natural extremal plurisubharmonic functions can be associated to a compact subset E of the unit ball B in \mathbb{C}^n . One is the extremal function L_E^* [S1], which is the Green function for the unbounded component of $\mathbb{C} - E$ with pole at infinity when n = 1. The other is the relative extremal function $U_{E,B}^* = U_E^*$ introduced by Siciak and studied by Bedford and Taylor [BT], which is an analogue of the one-variable harmonic measure of E relative to the unit disc. Both of these functions satisfy the complex Monge-Ampère equation $(dd^c u)^n = 0$ outside of E and hence both functions give rise to nonnegative measures supported in E.

In the case where the compact set E is regular, i.e., L_E^* and U_E^* are continuous, Nguyen Thanh Van and Zeriahi [NZ] have shown that the set E, together with the measure $\mu_E \equiv (dd^c U_E^*)^n$, satisfy the polynomial condition (L^*) which is a generalized version of Leja's polynomial condition in the complex plane. This result was used by Zeriahi [Ze] to show that certain classes of orthogonal polynomials associated with the measure μ_E exhibit asymptotic behavior similar to that of the extremal function L_E^* .

The main result of this paper shows that if E is a nonpluripolar compact subset of B, then the Monge-Ampère measures $\mu_E \equiv (dd^c U_E^*)^n$ and $\tilde{\mu}_E \equiv (dd^c L_E^*)^n$ are mutually absolutely continuous. As a corollary to this result, it follows that the pair $(E, \tilde{\mu}_E)$ satisfies the (L^*) condition for a regular compact set E. In addition, we show that the (L^*) condition can be formulated entirely in terms of properties of the carriers of the measure. This result gives the extension to \mathbb{C}^n of a theorem of Ullman [U2] in the one-variable case.

2. Comparison of the Monge-Ampère measures. Given a domain Ω in \mathbb{C}^n , we let $P(\Omega)$ denote the class of plurisubharmonic functions on Ω . Let

$$L = \left\{ u \in P(\mathbb{C}^n) \colon u(z) \leqslant \log|z| + O(1) \text{ as } |z| \to \infty \right\}$$

Received by the editors June 27, 1984.

1980 Mathematics Subject Classification. Primary 32F05, 31C10.

and for $E \subset B$ define

$$L_E(z) \equiv \sup\{u(z) : u \in L, u \leq 0 \text{ on } E\}.$$

The uppersemicontinuous regularization $L_E^*(z) \equiv \overline{\lim}_{\xi \to z} L_E(\xi)$ is called the extremal function of E. By a result of Siciak [S1], either $L_E^* \equiv +\infty$, in which case E is pluripolar, or $L_E^* \in L$. In the latter case (see [BT]), then $L_E^*(z) = 0$ for $z \in E - Z$, where Z is a pluripolar set. If E is compact, then E is regular when $Z = \emptyset$. Furthermore, $(dd^c L_E^*)^n = 0$ in $\mathbb{C}^n - E$. Here, $d = \partial + \overline{\partial}$, $d^c = i(\overline{\partial} - \partial)$, so that $dd^c L_E^* = 2i\partial \overline{\partial} L_E^*$ and $(dd^c L_E^*)^n = dd^c L_E^* \wedge \cdots \wedge dd^c L_E^*$ (n times) where the last two formulas are to be interpreted as currents on \mathbb{C}^n . We refer the reader to [Le] for a definition of currents and to [BT] for a more complete discussion of the complex Monge-Ampère operator $(dd^c)^n$.

If Ω is a strictly pseudoconvex domain containing E, we define

$$U_F(\Omega, z) \equiv \sup\{u(z) : u \in P(\Omega), u \leq 0 \text{ on } \Omega, u \leq -1 \text{ on } E\}$$

and call $U_E^*(\Omega, z) \equiv \overline{\lim}_{\xi \to z} U_E(\Omega, \xi)$ the relative extremal function of E (relative to Ω). It is easily seen that either $U_E^*(\Omega, \cdot) \equiv 0$, in which case E is pluripolar, or $U_E^*(\Omega, \cdot)$ is a nontrivial plurisubharmonic function in Ω taking values between -1 and 0. In the latter case, $U_E^*(\Omega, z) \to 0$ on $\partial \Omega$ and $U_E^*(\Omega, z) = -1$ on E - Z, where Z is pluripolar; $Z = \emptyset$ when E is regular. In addition, $(dd^c U_E^*(\Omega, \cdot))^n = 0$ in $\Omega - E$ if E is compact. Our first result shows that if E is not pluripolar and Ω_1 , Ω_2 are two strictly pseudoconvex domains with $E \subset \Omega_1 \subset \Omega_2$, and if Ω_1 is a Runge domain relative to Ω_2 (see [Ho, Theorem 4.3.3]), then $(dd^c U_E^*(\Omega_i, \cdot))^n$, i = 1, 2, are mutually absolutely continuous. This result is well known from classical potential theory in the case where n = 1 (see [Ne, Chapter 5]). For $n \ge 2$, the main ingredient in the proof is a comparison theorem for Monge-Ampère measures supported on E.

LEMMA 2.1. Let E be a compact set in \mathbb{C}^n with smooth boundary ∂E and nonempty interior E^0 such that E is the closure of E^0 . Let $\omega \subset \mathbb{C}^n$ be a domain with $E \subset \subset \omega$. Suppose $u_1, u_2 \in P(\omega) \cap C(\overline{\omega})$ satisfy:

- (i) $u_1 = u_2 = 0$ on E;
- (ii) $u_1 \geqslant u_2$ on ω ;
- (iii) $(dd^c u_1)^n = (dd^c u_2)^n = 0$ (as measures) on ωE ; and
- (iv) there exists $\eta > 0$ with $u_1 \ge u_2 + \eta$ on $\partial \omega$.

Then $\int_{\omega} \phi (dd^c u_1)^n \geqslant \int_{\omega} \phi (dd^c u_2)^n$ for all $\phi \in C_0^{\infty}(\omega)$ with $\phi \geqslant 0$.

PROOF. Without loss of generality, we assume E is connected. Given $\varepsilon > 0$, let $E_{\varepsilon} = \{z \in \omega \colon u_1(z) \leqslant u_2(z) + \varepsilon\}$. From (i) and the continuity of u_i on $\overline{\omega}$, $E \subset \subset E_{\varepsilon}$. By (iv), we also have that $E_{\varepsilon} \subset \subset \omega$ for ε sufficiently small. For any family of smoothings $\{u_i^{\delta}\}$ with $u_i^{\delta} \setminus u_i$ in a neighborhood of $\overline{\omega}$, we have $E \subset \subset E_{\varepsilon,\delta} \subset \subset \omega$ for sufficiently small δ , where

$$E_{\varepsilon,\delta} = \left\{ z \in \omega \colon u_1^{\delta}(z) \leqslant u_2^{\delta}(z) + \varepsilon \right\}.$$

Also, since $u_i \in C(\overline{\omega})$, there exists M > 0 such that

(2.1)
$$u_i^{\delta} \leq M$$
 $(i = 1, 2)$ for δ sufficiently small.

Given $\phi \in C_0^{\infty}(\omega)$ with $\phi \geqslant 0$,

$$\int_{\omega} \phi \left[\left(dd^{c} u_{1}^{\delta} \right)^{n} - \left(dd^{c} u_{2}^{\delta} \right)^{n} \right] = \int_{\omega} \phi \, dd^{c} \left(u_{1}^{\delta} - u_{2}^{\delta} \right) \wedge T_{\delta},$$

where $T_{\delta} \equiv \sum_{k=0}^{n-1} (dd^c u_1^{\delta})^{n-k-1} \wedge (dd^c u_2^{\delta})^k$ is a positive, closed (n-1, n-1)-form with smooth coefficients. From two applications of Stokes' theorem, we have

$$(2.2) \qquad \int_{\omega} \phi \, dd^{c} \left(u_{1}^{\delta} - u_{2}^{\delta} \right) \wedge T_{\delta} = \int_{\omega} \left(u_{1}^{\delta} - u_{2}^{\delta} \right) \, dd^{c} \phi \wedge T_{\delta}$$

$$= \int_{E_{\epsilon,\delta}} \left(u_{1}^{\delta} - u_{2}^{\delta} \right) \, dd^{c} \phi \wedge T_{\delta}$$

$$+ \int_{\omega - E_{-\delta}} \left(u_{1}^{\delta} - u_{2}^{\delta} \right) \, dd^{c} \phi \wedge T_{\delta}.$$

We first consider the integral over $E_{\epsilon,\delta}$. Since $\phi \in C_0^{\infty}(\omega)$,

$$\left|\int_{E_{\epsilon,\delta}} \left(u_1^{\delta} - u_2^{\delta}\right) dd^c \phi \wedge T_{\delta}\right| \leq c(\phi) \|u_1^{\delta} - u_2^{\delta}\|_{E_{\epsilon,\delta}} \int_{E_{\epsilon,\delta}} \beta \wedge T_{\delta},$$

where $\|u_1^{\delta} - u_2^{\delta}\|_{E_{\epsilon,\delta}} = \sup_{z \in E_{\epsilon,\delta}} |u_1^{\delta}(z) - u_2^{\delta}(z)|, \ \beta = dd^c |z|^2$, and $c(\phi)$ is a constant depending only on ϕ and n. Choose a compact set K such that $E_{\epsilon,\delta} \subset K \subset \omega$ for ϵ,δ sufficiently small. Then, since T_{δ} is positive, $\beta \wedge T_{\delta}$ is a positive multiple of the volume form $\beta^n = \beta \wedge \cdots \wedge \beta$, and we have

$$\left| \int_{E_{\epsilon,\delta}} \left(u_1^{\delta} - u_2^{\delta} \right) dd^c \phi \wedge T_{\delta} \right| \leq c(\phi) \| u_1^{\delta} - u_2^{\delta} \|_{E_{\epsilon,\delta}} \int_K \beta \wedge T_{\delta}$$

$$\leq c(\phi) \| u_1^{\delta} - u_2^{\delta} \|_{E_{\epsilon,\delta}} c' M^{n-1},$$

where c' is a constant depending only on K and ω . This last inequality follows from (2.1) and the Chern-Levine-Nirenberg estimates on $(dd^c)^n$ for bounded plurisub-harmonic functions (see [CLN, or BT, §2]). From the construction of the set $E_{\varepsilon,\delta}$, it follows that

$$\lim_{\epsilon \to 0} \left\{ \lim_{\delta \to 0} \left\| u_1^{\delta} - u_2^{\delta} \right\|_{E_{\epsilon,\delta}} \right\} = 0$$

so that

$$\lim_{\varepsilon \to 0} \left\langle \lim_{\delta \to 0} \left| \int_{E_{\varepsilon,\delta}} \left(u_1^{\delta} - u_2^{\delta} \right) dd^c \phi \wedge T_{\delta} \right| \right\rangle = 0.$$

For the integral over $\omega - E_{\varepsilon,\delta}$ in (2.2), note that for each $\delta > 0$, the set $E_{\varepsilon,\delta}$ has smooth boundary for almost all ε by Sard's theorem. Thus we can find a sequence of values of δ tending to 0 and a sequence of values of ε tending to 0 such that for each

pair (ε, δ) , the set $E_{\varepsilon, \delta}$ has smooth boundary. We can then apply Stokes' theorem to obtain

$$\int_{\omega - E_{\epsilon,\delta}} \left(u_1^{\delta} - u_2^{\delta} \right) dd^c \phi \wedge T_{\delta} = -\int_{\omega - E_{\epsilon,\delta}} d\left(u_1^{\delta} - u_2^{\delta} \right) \wedge d^c \phi \wedge T_{\delta}
- \int_{\partial E_{\epsilon,\delta}} \left(u_1^{\delta} - u_2^{\delta} \right) d^c \phi \wedge T_{\delta}
= -\int_{\omega - E_{\epsilon,\delta}} d\phi \wedge d^c \left(u_1^{\delta} - u_2^{\delta} \right) \wedge T_{\delta} - \varepsilon \int_{\partial E_{\epsilon,\delta}} d^c \phi \wedge T_{\delta}
= \int_{\omega - E_{\epsilon,\delta}} \phi \left[\left(dd^c u_1^{\delta} \right)^n - \left(dd^c u_2^{\delta} \right)^n \right]
+ \int_{\partial E_{\epsilon,\delta}} \phi d^c \left(u_1^{\delta} - u_2^{\delta} \right) \wedge T_{\delta} - \varepsilon \int_{\partial E_{\epsilon,\delta}} d^c \phi \wedge T_{\delta}.$$

Similar to before, we have

$$\left| \varepsilon \int_{\partial E_{\epsilon,\delta}} d^{\epsilon} \phi \wedge T_{\delta} \right| \leq \varepsilon c(\phi) \int_{K} \beta \wedge T_{\delta} \leq \varepsilon c(\phi) c' M^{n-1}$$

which goes to zero as $\varepsilon \searrow 0$. We claim that the second term in (2.3) is nonnegative. This follows because $\phi \geqslant 0$, T_{δ} is a positive, closed (n-1,n-1)-form, and $u_1^{\delta} - u_2^{\delta} - \varepsilon$ is a defining function for the interior of $E_{\varepsilon,\delta}$ so that $d^c(u_1^{\delta} - u_2^{\delta} - \varepsilon) \land T_{\delta} = d^c(u_1^{\delta} - u_2^{\delta}) \land T_{\delta} \geqslant 0$ on $\partial E_{\varepsilon,\delta}$ [Le, p. 68]. For the first term in (2.3), since $E_{\varepsilon} \searrow E$ as $\varepsilon \searrow 0$, if we fix $\varepsilon > 0$, we can find $\delta_0 > 0$ such that $E_{\varepsilon/2} \subset E_{\varepsilon,\delta}$ for $\delta < \delta_0$. As $\delta \searrow 0$, the functions u_i^{δ} decrease to u_i on $\overline{\omega}$; hence the measures $(dd^c u_i^{\delta})^n$ converge weakly to $(dd^c u_i)^n$, i = 1, 2 [BT, Theorem 2.1]. Thus

$$0 \leqslant \lim_{\delta \to 0} \int_{\omega - E_{\epsilon,\delta}} \phi \left(dd^c u_i^{\delta} \right)^n \leqslant \lim_{\delta \to 0} \int_{\omega - E_{\epsilon/2}} \phi \left(dd^c u_i^{\delta} \right)^n$$
$$= \int_{\omega - E_{\epsilon/2}} \phi \left(dd^c u_i \right)^n = 0$$

by (iii) and the fact that $E \subset \subset E_{\epsilon/2}$. Hence the sum of the integrals in (2.3) tends to a nonnegative number as δ and then ϵ decrease to zero so that from (2.2) we have

$$\lim_{\delta \to 0} \int_{\omega} \phi \left[\left(dd^{c} u_{1}^{\delta} \right)^{n} - \left(dd^{c} u_{2}^{\delta} \right)^{n} \right] = \int_{\omega} \phi \left[\left(dd^{c} u_{1} \right)^{n} - \left(dd^{c} u_{2} \right)^{n} \right] \geqslant 0$$

and the lemma is proved.

We will also make use of a domination principle of Bedford and Taylor for bounded plurisubharmonic functions [BT, Corollary 4.5].

Lemma 2.2. Let $\Omega \subset \mathbb{C}^n$ be open and bounded and suppose that $u, v \in P(\Omega) \cap L^{\infty}(\Omega)$ satisfy:

(i)
$$\underline{\lim}_{\xi \to \partial \Omega} (u(\xi) - v(\xi)) \ge 0$$
, and

(ii)
$$\overline{\int_{\{u < v\}} (dd^c u)^n} = 0.$$

Then $u \geqslant v$ in Ω .

THEOREM 2.1. Let $E \subset \mathbb{C}^n$ be a nonpluripolar compact set and let Ω_1 , Ω_2 be two strictly pseudoconvex domains with $E \subset \subset \Omega_1 \subset \Omega_2$. Then

$$\mu_1 \equiv \left(dd^c U_E^*(\Omega_1, \cdot) \right)^n \geqslant \mu_2 \equiv \left(dd^c U_E^*(\Omega_2, \cdot) \right)^n.$$

Furthermore, if (Ω_1, Ω_2) is a Runge pair, then there exists a constant c > 0 such that $c\mu_1 \leq \mu_2$. In particular, in this latter case, μ_1 and μ_2 are mutually absolutely continuous.

PROOF. For convenience, we work with the functions $u_i(z) \equiv U_E^*(\Omega_i, z) + 1$, i = 1, 2. Given ω open with $E \subset \omega \subset \Omega_1$, we will show that there exists a constant c > 0 such that

$$(2.4) c \int_{\omega} \phi (dd^{c}u_{1})^{n} \leq \int_{\omega} \phi (dd^{c}u_{2})^{n} \leq \int_{\omega} \phi (dd^{c}u_{1})^{n}$$

for all $\phi \in C_0^{\infty}(\omega)$ with $\phi \geqslant 0$. It will follow from the proof that only the first inequality will require that (Ω_1, Ω_2) be a Runge pair. We first assume that E satisfies the conditions in Lemma 2.1 so that E is regular and u_1, u_2 are continuous. We then have that $u_1, u_2 \in C(\overline{\Omega}_1) \cap P(\Omega_1)$; also

(i) $u_1 = u_2 = 0$ on E

since E is regular. Furthermore,

(ii) $u_1 \ge u_2$ on Ω_1

by definition of the relative extremal functions; and

(iii)
$$(dd^c u_1)^n = (dd^c u_2)^n = 0 \text{ on } \Omega_1 - E.$$

Since $u_1 = 1$ on $\partial \Omega_1$ and $\max_{z \in \partial \Omega_1} u_2(z) = \alpha < 1$ by the maximum principle for plurisubharmonic functions, we have

(iv) $u_1 \ge u_2 + (1 - \alpha)$ on $\partial \Omega_1$.

Thus we can apply Lemma 2.1 to conclude that for any open set $\omega \subset \Omega_1$ with $E \subset \subset \omega$,

$$\int_{\Omega} \phi (dd^c u_1)^n \geqslant \int_{\Omega} \phi (dd^c u_2)^n$$

for all $\phi \in C_0^{\infty}(\omega)$ satisfying $\phi \geqslant 0$. In the other direction, we first note that since $E \subset \Omega_i$, i = 1, 2, it follows from the pseudoconvexity of Ω_i that $\hat{E}_{\Omega_i}^P \subset \Omega_i$, where

$$\hat{E}_{\Omega_i}^P \equiv \left\{ z \in \Omega_i : u(z) \leqslant \sup_{z' \in E} u(z') \text{ for all } u \in P(\Omega_i) \right\}.$$

Since Ω_1 is a Runge domain relative to Ω_2 , $\hat{E}_{\Omega_1}^P = \hat{E}_{\Omega_2}^P$ [Ho, Theorems 4.3.3 and 4.3.4]. From the definitions of $\hat{E}_{\Omega_i}^P$ and $U_E(\Omega_i, z)$, we have that $U_E(\Omega_i, z) > -1$ for $z \in \Omega_i - \hat{E}_{\Omega_i}^P$. Thus if we let $\eta = \min_{z \in \partial \Omega_1} u_2(z)$, we see that $\eta > 0$, so that $\eta u_1 \leq u_2$ on $\partial \Omega_1$ and $\eta u_1 = u_2 = 0$ on E. By (iii), it follows that

$$\int_{\{u_2<\eta u_1\}} \left(dd^c u_2\right)^n = 0,$$

so that by Lemma 2.2 we conclude that $\eta u_1 \le u_2$ in Ω_1 . Given $0 < \varepsilon < \eta$, we then have that $(\eta - \varepsilon)u_1$, u_2 satisfy the hypotheses of Lemma 2.1 so that

$$\int_{\omega} \phi \left[dd^{c} (\eta - \varepsilon) u_{1} \right]^{n} \leqslant \int_{\omega} \phi \left(dd^{c} u_{2} \right)^{n}$$

for all $\phi \in C_0^{\infty}(\omega)$ with $\phi \ge 0$. Letting $\varepsilon \setminus 0$, we obtain

$$\eta^n \int_{\omega} \phi (dd^c u_1)^n \leqslant \int_{\omega} \phi (dd^c u_2)^n,$$

and (2.4) is proved with $c = \eta^n$ for compact sets E satisfying the conditions in Lemma 2.1.

For the general case, we take a sequence $\{E_k\}$ of compact sets as above which decrease to E. If we fix ω open with $E \subset \subset \omega \subset \subset \Omega_1$, we have $E_k \subset \subset \omega$ for k sufficiently large and we obtain

$$\left(\eta_{k}\right)^{n}\int_{\omega}\phi\left(dd^{c}u_{1}^{k}\right)^{n}\leqslant\int_{\omega}\phi\left(dd^{c}u_{2}^{k}\right)^{n}\leqslant\int_{\omega}\phi\left(dd^{c}u_{1}^{k}\right)^{n}$$

from (2.4), where $u_i^k(z) \equiv U_{E_k}^*(\Omega_i, z) + 1$, $\eta_k = \min_{z \in \partial \Omega_1} u_2^k(z)$, and $\phi \in C_0^{\infty}(\omega)$ satisfies $\phi \ge 0$. Since $u_i^k \nearrow u_i$ a.e. [**BT**, Proposition 6.4], the measures $(dd^c u_i^k)^n$ converge weakly to $(dd^c u_i)^n$ [**BT**, Theorem 2.1], i = 1, 2. Thus for ϕ as above,

$$\int_{\omega} \phi \left(dd^{c} u_{2} \right)^{n} = \lim_{k \to \infty} \int_{\omega} \phi \left(dd^{c} u_{2}^{k} \right)^{n} \leqslant \lim_{k \to \infty} \int_{\omega} \phi \left(dd^{c} u_{1}^{k} \right)^{n} = \int_{\omega} \phi \left(dd^{c} u_{1} \right)^{n}.$$

In addition, if we fix k_0 , $\eta_k \geqslant \eta_{k_0}$ for $k \geqslant k_0$ so that

$$\int_{\omega} \phi (dd^{c}u_{2})^{n} = \lim_{k \to \infty} \int_{\omega} \phi (dd^{c}u_{2}^{k})^{n} \geqslant \lim_{k \to \infty} (\eta_{k})^{n} \int_{\omega} \phi (dd^{c}u_{1}^{k})^{n}$$

$$\geqslant \lim_{k \to \infty} (\eta_{k_{0}})^{n} \int_{\omega} \phi (dd^{c}u_{1}^{k})^{n} = (\eta_{k_{0}})^{n} \int_{\omega} \phi (dd^{c}u_{1})^{n},$$

then (2.4) holds in the general case and the theorem is proved. We note that the constant in (2.4) can be taken as $c = (\min_{z \in \partial \Omega_1} u_2(z))^n$ when E is regular.

We now come to the main theorem of the paper.

THEOREM 2.2. Let $E \subset B$ be a nonpluripolar compact set. Then the measures μ_E and $\tilde{\mu}_E$ are mutually absolutely continuous.

PROOF. We first assume that E satisfies the conditions of Lemma 2.1. Let $a = \|L_E\|_B$. Then

$$u_1(z) \equiv U_F(z) + 1 \ge (1/a)L_F(z) \equiv u_2(z)$$

for $z \in B$ by definition of U_E . Furthermore, since ∂E is smooth, E is regular, so that $u_1 = u_2 = 0$ on E. Also, $(dd^c u_1)^n = (dd^c u_2)^n = 0$ outside of E. Thus, given $0 < \varepsilon < 1$, the functions u_1 and $(1 - \varepsilon)u_2$ satisfy the conditions (i)–(iv) of Lemma 2.1 and we have

$$\int_{\Omega} \phi \ d\mu_E \geqslant \left(\frac{1-\varepsilon}{a}\right)^n \int_{\Omega} \phi \ d\tilde{\mu}_E$$

for all $\phi \in C_0^{\infty}(\omega)$ with $\phi \ge 0$ where $E \subset \subset \omega \subset B$ and ω is open. Letting $\varepsilon \setminus 0$, we obtain

(2.5)
$$\int_{\Omega} \phi \, d\mu_E \geqslant \left(\frac{1}{a}\right)^n \int_{\Omega} \phi \, d\tilde{\mu}_E.$$

In the other direction, we first remark that by definition of the extremal function, if $E_1 \subset E_2$, then $L_{E_1}^*(z) \ge L_{E_2}^*(z)$ for all $z \in \mathbb{C}^n$. It is easy to show that the extremal function for a closed ball $B(a, r) = \{z \in \mathbb{C}^n : |z - a| \le r\}$ is

for a closed ball $\overline{B(a,r)} = \{z \in \mathbb{C}^n : |z-a| \le r\}$ is

$$u(z) = \log^{+} \frac{|z-a|}{r} = \max \left(\log \frac{|z-a|}{r}, 0\right);$$

thus, since $E \subset B$, $L_F(z) \ge \log^+ |z|$ for all z. In particular,

$$v_1(z) \equiv L_E(z)/\log 2 \ge 1$$
 for $|z| = 2$.

If we let $v_2(z) \equiv U_E(B(0,2), z) + 1$, then $v_1 = v_2 = 0$ on E; also, since $(dd^c v_1)^n$ is supported in E,

$$\int_{\{v_1 < v_2\}} \left(dd^c v_1 \right)^n = 0.$$

Thus by Lemma 2.2, $v_1 \ge v_2$ on B(0,2). Applying Lemma 2.1 to v_1 and $(1-\varepsilon)v_2$, we obtain

$$\frac{1}{(\log 2)^n} \int_{\omega} \phi \, d\tilde{\mu}_E \geqslant (1 - \varepsilon)^n \int_{\omega} \phi (dd^c v_2)^n$$

for $\phi \in C_0^{\infty}(\omega)$ with $\phi \geqslant 0$. Letting $\varepsilon \searrow 0$, we obtain

$$\int_{\omega} \phi \, d\tilde{\mu}_E \geqslant (\log 2)^n \int_{\omega} \phi (\, dd^c v_2)^n.$$

We can apply Theorem 2.1, since B is a Runge domain relative to B(0, 2), to get

$$\int_{\Omega} \phi (dd^{c}v_{2})^{n} \geqslant \left(\min_{z \in \partial B} v_{2}(z) \right)^{n} \int_{\Omega} \phi d\mu_{E}.$$

Thus from (2.5) and the above inequalities, we have

(2.6)
$$\left(\frac{1}{a}\right)^n \int_{\omega} \phi \, d\tilde{\mu}_E \leqslant \int_{\omega} \phi \, d\mu_E \leqslant \left[(\log 2) \left(\min_{z \in \partial B} v_2(z)\right) \right]^{-n} \int_{\omega} \phi \, d\tilde{\mu}_E$$

for all $\phi \in C_0^{\infty}(\omega)$ with $\phi \ge 0$, and the theorem is proved for E satisfying the conditions of Lemma 2.1. The general case follows as in the proof of Theorem 2.1 by choosing a sequence $\{E_k\}$ of compact sets as above which decrease to E. Applying (2.6) to E_k , $\tilde{\mu}_{E_k}$, μ_{E_k} , $a_k \equiv \|L_{E_k}\|_B$, and $v_2^k(z) \equiv U_{E_k}(B(0,2),z) + 1$, and then using the convergence theorems of Bedford and Taylor, the proof is complete.

3. Condition (L^*) and orthogonal polynomials. Given a compact set $E \subset \mathbb{C}^n$ and a nonnegative measure μ with support in E, we say that the pair (E, μ) satisfies condition (L^*) if for each family Φ of polynomials with $\sup_{p \in \Phi} |p(z)| < \infty \mu$ -a.e. on E, and for each $\lambda > 1$, there exists a constant M and a neighborhood U of E such that

$$||p||_U \leq M\lambda^{\deg(p)}$$
 for all $p \in \Phi$.

The condition (L^*) is an important concept in discussing the regularity of a compact set; for example, if there exists a nonnegative measure μ on E such that (E, μ)

satisfies (L^*) , it follows that E is regular. On the other hand, Nguyen Thanh Van and Zeriahi have shown [NZ] that if E is regular, then the pair (E, μ_E) satisfies (L^*) . From Theorem 2.2 and the definition of (L^*) , it follows that, in addition, $(E, \tilde{\mu}_E)$ satisfies (L^*) . We now give an alternate characterization of the condition (L^*) .

THEOREM 3.1. Let $E \subseteq B$ be a regular compact set and let μ be a measure on E. Then (E, μ) satisfies (L^*) if and only if for any Borel set $F \subset E$ with $\mu(F) = \mu(E)$, we have $L_F^* = L_E$.

PROOF. We first assume that (E, μ) satisfies (L^*) . Let $F \subset E$ be a Borel set with $\mu(F) = \mu(E)$. Since $F \subset E$, $L_F^* \geqslant L_E$; to prove the reverse inequality, it suffices to show that $L_F^* \leq 0$ on E. Suppose there exists a point $z_0 \in E$ with $L_F^*(z_0) > 0$. Let $F_0 = \{z \in F: L_F^*(z) = 0\}$. Then $F - F_0$ is a pluripolar set; thus, by a result of Siciak [S2, Theorem 1.6], there exists $v \in L$ with $v = -\infty$ on $F - F_0$. Without loss of generality, we may assume that $v \leq 0$ on E.

We claim that the set $N = \{z \in E: L_F^*(z) > L_F(z)\}$ is not pluripolar. For if it were, then by Proposition 3.11 of [S1], $L_{E-N}^* = L_E$. However, since $L_F^* \le L_E = 0$ on E-N, it follows that $L_F^* \leq L_{E-N}^* = L_E$ in \mathbb{C}^n , contradicting our assumption that $L_F^*(z_0) > 0$. Thus N is not pluripolar and we may assume that $v(z_0) > -\infty$ and $L_F^*(z_0) = 5\delta > 0$. We now choose $\eta > 0$ sufficiently small so that:

(3.1)
(i)
$$0 > \eta v(z_0) > -\delta$$
, and
(ii) $(1 - \eta) L_F^*(z_0) > 4\delta$.

Since L_F^* , $v \in L$, it follows that $(1 - \eta)L_F^* + \eta v \in L$. For $m \in Z^+$ (positive in-

tegers), let $u_m = [(1 - \eta)L_F^* + \eta v] * \chi_{1/m}$, where $\chi_{1/m}$ is a smooth, radially symmetric bump function supported in $|z| \le 1/m$. Then

$$(3.2) u_m \setminus (1 - \eta) L_F^* + \eta v \quad \text{as } m \to \infty;$$

 $u_m \in P(\mathbb{C}^n) \cap C(\mathbb{C}^n)$; furthermore, $u_m \in L$ [S1, Proposition 1.2]. By an approximation theorem [Fe, Proposition 2, Chapter VII], for each m, there exists a sequence of positive integers $\{d_{m_k}\}$ and a family of polynomials $\{p_{m_k}\}$ with $\deg(p_{m_k})=d_{m_k}$ such that

$$u_m(z) = \sup_k \frac{1}{d_{m_k}} \log |p_{m_k}(z)|$$
 for all $z \in E$.

In particular, for each m, we can find a polynomial p_m of degree d_m with

(3.3) (i)
$$(1/d_m)\log|p_m(z)| \le u_m(z)$$
 for all $z \in E$, and (ii) $(1/d_m)\log|p_m(z_0)| > u_m(z_0) - \delta$.

Moreover, by taking powers of p_m if necessary, we may assume that $d_m \nearrow \infty$.

To get a contradiction to the (L^*) condition, we take $\Phi = \{e^{-\delta d_m} p_m\}$. We first show that

$$\sup_{m} e^{-\delta d_{m}} |p_{m}(z)| < \infty \quad \text{for all } z \in F.$$
For $z \in F - F_{0}$, $v(z) = -\infty$; thus $u_{m}(z) \le 0$ for $m \ge m(z)$ by (3.2) so that
$$\sup_{m} e^{-\delta d_{m}} |p_{m}(z)| \le e^{-\delta d_{m}} e^{d_{m} u_{m}(z)}$$

(by (3.3)(i)) is finite. For $z \in F_0$,

$$\begin{aligned} e^{-\delta d_m} \big| p_m(z) \big| &\leq e^{-\delta d_m} e^{d_m u_m(z)} \\ &\leq e^{-\delta d_m} e^{d_m [(1-\eta) L_F^*(z) + \eta v(z)] + d_m \sigma_m}, \end{aligned}$$

where $\sigma_m = \sigma_m(z) \to 0$ as $m \to \infty$ by (3.2). Since $v \le 0$ on E and $L_F^* = 0$ on F_0 , $(1 - \eta)L_F^*(z) + \eta v(z) \le 0$ if $z \in F_0$ and we obtain

$$e^{-\delta d_m}|p_m(z)| \leq e^{-d_m(\delta-\sigma_m)}.$$

Since $\sigma_m \to 0$ as $m \to \infty$, $\delta - \sigma_m$ is eventually positive and thus

$$\sup_{m} e^{-d_m \delta} |p_m(z)| < \infty \quad \text{for } z \in F_0.$$

We show that (L^*) is violated by proving that there is an $\varepsilon > 0$ such that

(3.4)
$$e^{-d_m \delta} |p_m(z_0)| \ge m(1+\varepsilon)^{d_m}$$
 for m sufficiently large.

From (3.3)(ii), (3.2) and (3.1) we obtain

$$\begin{aligned} e^{-d_{m}\delta} |p_{m}(z_{0})| &\geq e^{-d_{m}\delta} e^{d_{m}[u_{m}(z_{0}) - \delta]} \\ &\geq e^{-2d_{m}\delta} e^{d_{m}[(1 - \eta)L_{F}^{*}(z_{0}) + \eta v(z_{0})]} \\ &\geq e^{d_{m}\delta} &\geq (1 + \delta)^{d_{m}} = (1 + \varepsilon)^{d_{m}} ((1 + \delta)/(1 + \varepsilon))^{d_{m}}. \end{aligned}$$

Thus by choosing $\varepsilon < \delta$, we obtain (3.4).

For the converse, we assume that if $F \subset E$ is a Borel set with $\mu(F) = \mu(E)$, then $L_F^* = L_E$. Let Φ be a family of polynomials such that

$$\sup_{p \in \Phi} |p(z)| \equiv M(z) < \infty \quad \mu\text{-a.e. on } E.$$

Let $F = \{z \in E : M(z) < \infty\}$. Then $\mu(F) = \mu(E)$; furthermore, for each positive integer m, if we let $F_m = \{z \in E : M(z) \le m\}$, then $F_m \nearrow F$, and since M(z) is lowersemicontinuous, each F_m is compact. Thus F is a Borel set and hence $L_F^* = L_E$.

Since it is clear that for a polynomial p,

$$\frac{1}{\deg(p)}\log|p(z)|\in L,$$

it follows that for any $p \in \Phi$,

$$(3.5) \qquad \frac{1}{\deg(p)}\log\frac{|p(z)|}{m} \leqslant L_{F_m}(z) \leqslant L_{F_m}^*(z) \quad \text{for all } z \in \mathbb{C}^n.$$

Also, since L_E is continuous, given $\varepsilon > 0$,

$$U_{\varepsilon} = \big\{ z \in \mathbb{C}^n : L_E(z) < \varepsilon \big\}$$

is an open neighborhood of E. The extremal functions $L_{F_m}^*$ decrease pointwise to $L_F^* = L_E$ on \overline{U}_{ϵ} ; thus, by Dini's theorem, the functions $L_{F_m}^*$ converge uniformly to L_E on \overline{U}_{ϵ} and we can find $m_0 = m_0(\epsilon)$ such that

$$L_{F_m}^*(z) < 2\varepsilon \quad \text{for } z \in \overline{U}_{\varepsilon} \quad \text{if } m > m_0.$$

For such m,

$$||p||_{U_{\epsilon}} = \sup_{z \in U_{\epsilon}} |p(z)| \le m(e^{2\epsilon})^{\deg(p)}$$
 for all $p \in \Phi$

by (3.5). Thus (E, μ) satisfies (L^*) .

In the complex plane, Ullman [U1] calls a measure whose support $E = E(\mu)$ is an infinite set, a determined measure if for any Borel subset $F \subset E$ with $\mu(F) = \mu(E)$, the logarithmic capacity C(F) of F equals C(E). Since the function L_E^* is the Green function in one variable, Theorem 3.1 shows that for regular compact sets $E \subset \mathbb{C}$, (E, μ) satisfies (L^*) precisely when μ is determined. The condition that μ has infinite support is a density condition which insures the linear independence of the monomials $\{z^k\}$ in the space $L^2(\mu)$ of square-integrable functions with respect to μ and allows one to construct the orthogonal polynomials $\{p_k\}$ with respect to μ via the Hilbert-Schmidt process. The polynomials $p_k(z) = z^k + \cdots$ are the unique monic orthogonal polynomials of degree k ($k = 0, 1, 2, \ldots$) of minimal $L^2(\mu)$ -norm among all monic polynomials of degree k. If we denote the $L^2(\mu)$ -norm of p_k by N_k , Ullman [U1] has shown that if C(E) > 0 and μ is a determined measure, then

$$\lim_{k \to \infty} \left[\frac{|p_k(z)|}{N_k} \right]^{1/k} = e^{L_E(z)}$$

for z in the unbounded component of C - E except for a set of Lebesgue measure zero in the convex hull of E.

In \mathbb{C}^n , n > 1, let $E \subset B$ be compact and let μ be a measure on E. As a replacement for the monic normalization, we first put an ordering on the monomials $z^{\alpha} \equiv z_1^{\alpha_1} \cdots z_n^{\alpha_n}$. Let $\alpha \colon Z^+ \to (Z^+ \cup \{0\})^n$ be a bijective map on the positive integers such that $|\alpha(k)| \le |\alpha(k+1)|$ for all $k \in Z^+$, where $|\alpha(k)| = \alpha_1 + \cdots + \alpha_n$ if $\alpha(k) = (\alpha_1, \ldots, \alpha_n)$. Under certain conditions on the measure μ and the set E, the sequence of monomials $\{e_k(z) \equiv z^{\alpha(k)}\}$ is linearly independent in the space $L^2(\mu)$ and therefore we can construct orthogonal polynomials $\{A_k\}$ of the form

$$A_k(z) = e_k(z) + \sum_{j=1}^{k-1} a_j e_j(z), \quad a_j \in \mathbb{C},$$

via the Hilbert-Schmidt process. Recall that if $E \subset \mathbb{C}^n$ is compact, the Silov boundary of E with respect to the uniform Banach algebra generated by the restrictions to E of the analytic polynomials in \mathbb{C}^n , denoted S_E , is the smallest closed subset of E such that for any polynomial P, there exists $z_0 \in S_E$ with $||P||_E = |P(z_0)|$.

PROPOSITION 3.1. Let $E \subset \mathbb{C}^n$ be compact and suppose that E is not pluripolar. If μ is a measure on E such that $S_E \subset$ support of μ , then the monomials $\{e_k\}$ are linearly independent in $L^2(\mu)$.

PROOF. By a result of Siciak [S1, Proposition 4.3], since E is not pluripolar, E is unisolvent, i.e., if p is a polynomial satisfying p(z) = 0 for $z \in E$, then $p \equiv 0$ on \mathbb{C}^n .

Suppose there exists a polynomial $p(z) = \sum_{j=1}^k c_j e_j(z)$, $p \neq 0$, with $\int_E |p|^2 d\mu = 0$. Then $||p||_E = M > 0$ and we can find $z_0 \in S_E$ with $|p(z_0)| = M$. By continuity, we can find r > 0 such that |p(z)| > M/2 for $z \in B(z_0, r)$. Since $S_E \subset$ support of μ , $\mu(E \cap B(z_0, r)) > 0$ so that

$$0 = \int_{E} |p|^{2} d\mu \geqslant \int_{E \cap B(z_{0}, r)} |p|^{2} d\mu > \left(\frac{M}{2}\right)^{2} \mu(E \cap B(z_{0}, r)) > 0,$$

which gives a contradiction. Thus $p \equiv 0$ on \mathbb{C}^n , i.e., $c_1 = \cdots = c_k = 0$, and the proposition is proved.

From the work of Nguyen Thanh Van and Zeriahi [NZ], if (E, μ) satisfies (L^*) , then (E, μ) satisfies the density condition in Proposition 3.1 and we may construct the orthogonal polynomials $\{A_k\}$ associated with μ . Set $\nu_k \equiv [\int_E |A_k|^2 d\mu]^{1/2}$. By following the argument used by Zeriahi [Ze], we can now state a \mathbb{C}^n -version of Ullman's theorem.

THEOREM 3.2. Let $E \subset B$ be a regular compact set and let μ be a finite measure on E such that (E, μ) satisfies (L^*) . If $\{A_k\}$ is the sequence of orthogonal polynomials associated to μ and $\{\nu_k\}$ is the corresponding sequence of $L^2(\mu)$ -norms, then:

- (i) $\lim_{k\to\infty} [\|A_k\|_E/\nu_k]^{1/|\alpha(k)|} = 1$, and
- (ii) $\overline{\lim}_{k\to\infty}[|A_k(z)|/\nu_k]^{1/|\alpha(k)|}=e^{L_E(z)}$ for all $z\in\mathbb{C}^n-\hat{E}$, where \hat{E} is the polynomial hull of E.

REFERENCES

- [BT] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
- [CLN] S. S. Chern, J. H. Levine and L. Nirenberg, *Intrinsic norms on a complex manifold*, Global Analysis, Univ. of Tokyo Press, Tokyo, 1969, pp. 119–139.
 - [Fe] J. P. Ferrier, Spectral theory and complex analysis, North-Holland, Amsterdam, 1973.
- [Ho] L. Hormander, An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1973.
- [Le] P. Lelong, Plurisubharmonic functions and positive differential forms, Gordon & Breach, New York, 1969.
 - [Ne] R. Nevanlinna, Analytic functions, Springer-Verlag, Heidelberg, 1970 (translated by Phillip Emig).
- [NZ] Nguyen Thanh Van and A. Zeriahi, Familles de polynomes presque partout bornees, Bull. Soc. Math. 107 (1983), 81-91.
 - [S1] J. Siciak, Extremal plurisubharmonic functions in Cⁿ, Ann. Polon. Math. 319 (1981), 175-211.
- [S2] ______, Extremal plurisubharmonic functions and capacities in Cⁿ, Sophia Kokyuroku Math., Vol. 14, Sophia University, Tokyo, 1982.
- [U1] J. L. Ullman, Orthogonal polynomials for general measures I, Proc. 1983 Tampa Conf. on Rational Approximations and Interpolation (to appear).
 - [U2] _____, private communication.
- [Ze] A. Zeriahi, Capacite, constante de Tchebysheff, et polynomes orthogonaux associes a un compact de Cⁿ, preprint.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506 - 0027