FIXED POINTS AND CONJUGACY CLASSES OF REGULAR ELLIPTIC ELEMENTS IN Sp(3, Z)

BY

MINKING EIE AND CHUNG - YUAN LIN

ABSTRACT. In this paper, we obtain 13 isolated fixed points (up to a $Sp(3, \mathbb{Z})$ -equivalence) and 86 conjugacy classes of regular elliptic elements in $Sp(3, \mathbb{Z})$. Hence the contributions from regular elliptic conjugacy classes in $Sp(3, \mathbb{Z})$ to the dimension formula computed via the Selberg trace formula can be computed explictly by the main theorem of [4 or 5].

Introduction. In [6 and 7], E. Gottschling studied the fixed points and their isotropy groups of finite order elements in $Sp(2, \mathbb{Z})$. He finally obtained six $Sp(2, \mathbb{Z})$ -inequivalent isolated fixed points as follows:

$$(1) Z_1 = \operatorname{diag}[i, i],$$

(2)
$$Z_2 = \operatorname{diag}[\rho, \rho], \qquad \rho = e^{\pi i/3},$$

(3)
$$Z_3 = \operatorname{diag}[i, \rho],$$

$$(4) Z_4 = \frac{i}{\sqrt{3}} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix},$$

(5)
$$Z_5 = \begin{bmatrix} \eta & (\eta - 1)/2 \\ (\eta - 1)/2 & \eta \end{bmatrix}, \quad \eta = \frac{1}{3} + \frac{2\sqrt{2}i}{3},$$

(6)
$$Z_6 = \begin{bmatrix} \omega & \omega + \omega^{-2} \\ \omega + \omega^{-2} & -\omega^{-1} \end{bmatrix}, \quad \omega = e^{2\pi i/5}.$$

The isotropy subgroups at Z_i (i = 1, 2, 3, 4, 5, 6) are groups of order 16, 36, 12, 12, 24 and 5, respectively.

By the argument of [9], these fixed points can be obtained from symplectic embeddings of

$$Q(i) \oplus Q(i), \quad Q(\rho) \oplus Q(\rho), \quad Q(i) \oplus Q(\rho),$$

 $Q(e^{\pi i/6}), \quad Q(e^{\pi i/4}), \quad Q(e^{2\pi i/5}),$

into $M_4(Q)$. In this paper, we shall combine the reduction theory of symplectic matrices [2, 3] with the arguments of [8, 9] and obtain all Sp(3, **Z**)-inequivalent isolated fixed point and conjugacy classes of regular elliptic elements in Sp(3, **Z**). A table for all representatives and their centralizer in Sp(3, **Z**)/ $\{\pm 1\}$ of regular elliptic conjugacy classes in Sp(3, **Z**) is given.

Received by the editors January 24, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10D20; Secondary 10D05.

1. Notations and basic results. Let \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the ring of integers, the fields of rational, real and complex numbers, respectively. The real symplectic matrices of degree n,

$$\operatorname{Sp}(n,\mathbf{R}) = \left\{ M \in M_{2n}(\mathbf{R}) \middle| {}^{t}MJM = J, J = \begin{bmatrix} 0 & E_{n} \\ -E_{n} & 0 \end{bmatrix} \right\},\,$$

act on the generalized half space H_n defined by

$$H_n = \{ Z \in M_n(\mathbb{C}) | Z = {}^tZ, \operatorname{Im} Z > 0 \}.$$

Here $M_{2n}(\mathbf{R})$ is the $2n \times 2n$ matrix ring over \mathbf{R} , $M_n(\mathbf{C})$ is the $n \times n$ matrix ring over \mathbf{C} , E_n is the identity of $M_n(\mathbf{C})$ and 'Z is the transpose of Z.

A point Z_0 in H_n is called an isolated fixed point of Sp(3, **Z**) if there exists $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ in Sp(3, **Z**) such that Z_0 is the unique solution of the equation,

$$AZ + B = Z(CZ + D), \qquad Z \in H_n.$$

An element M of $Sp(3, \mathbb{Z})$ is regular elliptic if M has an isolated fixed point (see [4]). Now suppose M is a regular elliptic element of $Sp(3, \mathbb{Z})$; then by the discreteness of $Sp(3, \mathbb{Z})$ and the property that $Sp(3, \mathbb{Z})$ acts transitively on H_3 , we conclude that

- (1) M is an element of finite order,
- (2) M is conjugate in Sp(3, \mathbb{R}) to $\begin{bmatrix} A & B \\ -B & A \end{bmatrix}$ with $A + Bi = \text{diag}[\lambda_1, \lambda_2, \lambda_3], \lambda_i$ (i = 1, 2, 3) root of unity and $\lambda_i \lambda_i \neq 1$ for all $i, j, j \neq 1$
 - (3) the centralizer of M in $Sp(3, \mathbb{Z})$ is a group of finite order.

By property (1), we see that the minimal polynomial of M is a product of different cyclotomic polynomials as follow: $X^2 + 1$, $X^2 - X + 1$, $X^2 + X + 1$, $X^4 + 1$, $X^4 - X^2 + 1$, $X^4 + X^3 + X^2 + X + 1$, $X^4 - X^3 + X^2 - X + 1$, $X^6 - X^3 + 1$, $X^6 + X^3 + 1$, $X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$, $X^6 - X^5 + X^4 - X^3 + X^2 - X + 1$.

For our convenience, we identify $Sp(n_1, \mathbf{R}) \times Sp(n_2, \mathbf{R})$ as a subgroup of $Sp(n_1 + n_2, \mathbf{R})$ via the embedding

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} P & Q \\ R & S \end{bmatrix} \rightarrow \begin{bmatrix} A & 0 & B & 0 \\ 0 & P & 0 & Q \\ C & 0 & D & 0 \\ 0 & R & 0 & S \end{bmatrix}.$$

Also, we consider the unitary group U(n) as a maximal compact subgroup of $Sp(n, \mathbf{R})$ via the identification $A + Bi \rightarrow \begin{bmatrix} A & B \\ -B & A \end{bmatrix}$.

2. Reducible cases. For each regular elliptic element M in $Sp(3, \mathbb{Z})$, the ring Q(M) is isomorphic to a direct sum of cyclotomic fields which have degree at most 6 since M is a semisimple element. The summand must be equal to one of the following:

$$Q[e^{\pi i/2}], \quad Q[e^{2\pi i/3}], \quad Q[e^{\pi i/4}], \quad Q[e^{2\pi i/5}],$$

$$Q[e^{\pi i/6}], \quad Q[e^{2\pi i/7}], \quad Q[e^{2\pi i/9}].$$

Now suppose the characteristic polynomial P(X) of M is reducible over $\mathbb{Z}[X]$; then we obtain the following ten possible fixed points for M simply from fixed points of regular elliptic elements of $SL_2(\mathbb{Z})$ and $Sp(2, \mathbb{Z})$.

1.
$$Z_{01} = \operatorname{diag}[i, i, i], \qquad 2. \qquad Z_{02} = [\rho, \rho, \rho],$$
3.
$$Z_{03} = \operatorname{diag}[\rho, i, i], \qquad 4. \qquad Z_{04} = [i, \rho, \rho],$$
5.
$$Z_{05} = \begin{bmatrix} i & 0 & 0 \\ 0 & \eta & (\eta - 1)/2 \\ 0 & (\eta - 1)/2 & \eta \end{bmatrix}, \qquad \eta = \frac{1}{3} + \frac{2\sqrt{2}i}{3},$$
6.
$$Z_{06} = \frac{i}{\sqrt{3}} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix},$$
7.
$$Z_{07} \begin{bmatrix} i & 0 & 0 \\ 0 & \omega & \omega + \omega^{-2} \\ 0 & \omega + \omega^{-2} & -\omega^{-1} \end{bmatrix}, \qquad \omega = e^{2\pi i/5},$$
8.
$$Z_{08} = \begin{bmatrix} \rho & 0 & 0 \\ 0 & \eta & (\eta - 1)/2 \\ 0 & (\eta - 1)/2 & \eta \end{bmatrix},$$
9.
$$Z_{09} = \frac{i}{\sqrt{3}} = \begin{bmatrix} 1 + \overline{\rho} & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix},$$
10.
$$Z_{10} = \begin{bmatrix} \rho & 0 & 0 \\ 0 & \omega & \omega + \omega^{-2} \\ 0 & \omega + \omega^{-2} & -\omega^{-1} \end{bmatrix}.$$

Let G_i (i=01, 02, 03, 04, 05, 06, 07, 08, 09, 10) be the isotropy group of $Sp(3, \mathbb{Z})/\{\pm 1\}$ at Z_i (i=01, 02, 03, 04, 05, 06, 07, 08, 09, 10), respectively. Then a direct calculation shows that the order of G_i ($i=01, 02, \ldots, 10$) are 192, 648, 96, 144, 96, 48, 20, 144, 72, 30, respectively. By considering conjugacy classes in G_i ($i=01, 02, \ldots, 10$), we get 72 conjugacy classes of regular elliptic elements of $Sp(3, \mathbb{Z})$ as shown in the table.

Now we shall show that every regular elliptic element with reducible characteristic polynomial is conjugate in $Sp(3, \mathbb{Z})$ to one of these 72 conjugacy classes. First we need

LEMMA 1. Suppose $M \in Sp(n, \mathbb{Z})$ with characteristic polynomial P(X) satisfying (1) P(X) is a product of two relative prime polynomials $P_1(X)$ and $P_2(x)$ with integral coefficients of degrees $2n_1$ and $2n_2(n_1 + n_2 = n)$, respectively,

(2)
$$P_i(X) = X^{2n_i}P_i(1/X), i = 1, 2.$$

Then there exists $R \in \operatorname{Sp}(n,Q)$ such that $R^{-1}MR = M_1 \times M_2 \in \operatorname{Sp}(n_1,Q) \times \operatorname{Sp}(n_2,Q)$. Furthermore, the characteristic polynomial of M_1 (resp. M_2) is $P_1(X)$ (resp. $P_2(X)$).

PROOF. (See Lemmas 1 and 2 of [2].)

LEMMA 2. Let $M \in Sp(n, \mathbb{Z})$. Suppose that there exists $R \in Sp(n, \mathbb{Q})$ such that

$$R^{-1}MR = \begin{bmatrix} A & 0 & B & * \\ * & {}^{\prime}U & * & * \\ C & 0 & D & * \\ 0 & 0 & 0 & U^{-1} \end{bmatrix}.$$

Then there exists $\tilde{R} \in Sp(n, \mathbb{Z})$ such that $\tilde{R}^{-1}M\tilde{R}$ has the same form as $R^{-1}MR$.

PROOF. (See Satz 2 of [3].)

THEOREM 1. Suppose M is a regular elliptic element of $Sp(3, \mathbb{Z})$ with a reducible characteristic polynomial P(X). Then M is conjugate in $Sp(3, \mathbb{Z})$ to an element of $\bigcup_{i=0}^{10} G_i$.

PROOF. Here we only prove three special cases, other cases follow with similar arguments.

(1) $P(X) = (X^2 + 1)^3$. A representative of M in U(3) is diag[i, i, i]. Thus M is conjugate in $Sp(3, \mathbf{R})$ to $J = \begin{bmatrix} 0 & E \\ -E & 0 \end{bmatrix}$, i.e. there exists $L \in Sp(3, \mathbf{R})$ such that $M = L^{-1}JL$. With the Iwasawa decomposition of $Sp(3, \mathbf{R})$, we can write

$$L = \begin{bmatrix} A & B \\ -B & A \end{bmatrix} \begin{bmatrix} U & S^t U^{-1} \\ 0 & {}^t U^{-1} \end{bmatrix}, \quad A + Bi \in U(3).$$

Since J commutes with $\begin{bmatrix} A & B \\ -B & A \end{bmatrix}$, it follows

$$M = \begin{bmatrix} U & S'U^{-1} \\ 0 & {}^{t}U^{-1} \end{bmatrix}^{-1} J = \begin{bmatrix} U & S^{t}U^{-1} \\ 0 & {}^{t}U^{-1} \end{bmatrix}.$$

This forces $U, U^{-1}, S \in GL(3, \mathbb{Z})$. Hence M is conjugate in $Sp(3, \mathbb{Z})$ to $J = \begin{bmatrix} 0 & E \\ -E & 0 \end{bmatrix}$.

- (2) $P(X) = (X^2 X + 1)^3$. A representative of M in U(3) is diag $[\rho, \rho, \rho]$ or diag $[\rho^2, \rho^2, \rho^2]$. On the other hand, $Q(M) \cong Q(\rho)$ as fields and the class number of $Q(\rho)$ is 1 by Theorem 11.1 in Chapter 11 of [10]. Hence the number of conjugacy classes of regular elliptic elements with $X^2 X + 1$ as minimal polynomial is 2 by [8 or 9]. Thus M is conjugate in Sp(3, \mathbb{Z}) to $\begin{bmatrix} E E \\ E \end{bmatrix}$ or $\begin{bmatrix} E E \\ E \end{bmatrix}^2$.
- (3) $P(X) = (X^2 + 1)(X^4 + X^3 + X^2 + X + 1)$. Note that M can be represented in U(3) as

e[1/2, 2/5, 4/5] or e[1/2, 4/5, 8/5] or e[1/2, 6/5, 2/5] or e[1/2, 8/5, 6/5]. (e[a, b, c] stands for $[e^{\pi i a}, e^{\pi i b}, e^{\pi i c}]$.

In particular, M^5 can be represented in U(3) as diag[i, 1, 1] or [-i, 1, 1] and has characteristic polynomial $(X^2 + 1)(X - 1)^4$. By Lemmas 1 and 2, there exists $R \in \text{Sp}(3, \mathbb{Z})$ such that

$$R^{-1}M^{5}R = \begin{bmatrix} 0 & 0 & 1 & * \\ * & E_{2} & * & * \\ -1 & 0 & 0 & * \\ 0 & 0 & 0 & E_{2} \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 0 & -1 & * \\ * & E_{2} & * & * \\ 1 & 0 & 0 & * \\ 0 & 0 & 0 & E_{2} \end{bmatrix}$$

which is conjugate in $Sp(3, \mathbb{Z})$ to

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \times E_4 \quad \text{or} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times E_4.$$

Hence we may assume

$$R^{-1}M^5R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \times E_4 \text{ or } \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times E_4.$$

Note that the isolated fixed point of $R^{-1}MR$ is contained in the set of fixed points of $R^{-1}M^5R$, i.e. the set

$$Z = \begin{bmatrix} i & 0 & 0 \\ 0 & z_2 & z_{23} \\ 0 & z_{23} & z_3 \end{bmatrix}, \quad \text{Im } Z > 0.$$

Now it is easy to see that the isolated fixed point of $R^{-1}MR$ is $(SL_2(\mathbf{Z}) \times Sp(2, \mathbf{Z}))$ -equivalent to Z_{07} and M is conjugate in $Sp(3, \mathbf{Z})$ to an element of G_{07} . Q.E.D.

In the sections following, we shall determine conjugacy classes of regular elliptic elements of orders 9 and 7.

3. Symplectic embeddings of $Q(e^{2\pi i/9})$ and $Q(e^{2\pi i/7})$. For our convenience, we denote $e^{2\pi i/9}$ by ζ . Note that $Q(\zeta)$ is the splitting field of the cyclotomic polynomial $X^6 + X^3 + 1$ and contains the total real number field $Q(\zeta + \zeta^{-1})$ which is the splitting field of $X^3 - 3X + 1$. By a symplectic embedding of $Q(\zeta)$ into $M_6(Q)$, we mean an injection from $Q(\zeta)$ into $M_6(Q)$ such that ζ is mapped into a symplectic matrix M and $Q(\zeta) \cong Q(M)$ as fields [9].

LEMMA 3. Let M be an element of Sp(3, **Z**) of order 9. Then M is conjugate in Sp(3, **R**) to one of the following: $[\zeta, \zeta^4, \zeta^7]$, $[\zeta, \zeta^2, \zeta^4]$, $[\zeta, \zeta^2, \zeta^5]$, $[\zeta, \zeta^5, \zeta^7]$, $[\zeta^2, \zeta^4, \zeta^8]$, $[\zeta^2, \zeta^5, \zeta^8]$, $[\zeta^4, \zeta^7, \zeta^8]$, $[\zeta^5, \zeta^7, \zeta^8]$.

PROOF. The minimal polynomial of M is $X^6 + X^3 + 1$ which can be factored into

$$(X - \zeta)(X - \zeta^{2})(X - \zeta^{4})(X - \zeta^{5})(X - \zeta^{7})(X - \zeta^{8})$$

$$= [X^{2} + (\zeta + \zeta^{-1})X + 1][X^{2} - (\zeta^{2} + \zeta^{-2})X + 1][X^{2} - (\zeta^{4} + \zeta^{-4})X + 1].$$

Hence M is conjugate in $Sp(3, \mathbb{R})$ to

$$\begin{bmatrix} \cos\theta & \pm\sin\theta \\ \mp\sin\theta & \cos\theta \end{bmatrix} \times \begin{bmatrix} \cos2\theta & \pm\sin2\theta \\ \mp\sin2\theta & \cos2\theta \end{bmatrix} \times \begin{bmatrix} \cos4\theta & \pm\sin4\theta \\ \mp\sin4\theta & \cos4\theta \end{bmatrix}, \qquad \theta = \frac{2\pi}{9}.$$

Note that the above eight elements of $Sp(3, \mathbf{R})$ are represented by the prescribed elements in U(3) as in our lemma.

LEMMA 4. The number of conjugacy classes of regular ellliptic elements of order 9 in $Sp(3, \mathbf{Z})$ is 8.

PROOF. The ideal class number of $Q(\zeta)$ is 1 by Theorem 11.1 of [9], hence the number of conjugacy classes of regular elliptic elements of order 9 is given by $[E_0: N(E)]$, where

E: the group of units in $Q(\zeta)$,

 E_0 : the group of units in $Q(\zeta + \zeta^{-1})$,

$$N(E) = \{ u\bar{u} | u \in E \},\$$

according to the argument of [8 or 9].

The group of units for cyclotomic fields is determined in Chapter 8 of [10]. Applying this to our case, we get $[E_0: N(E)] = 8$ when the cyclotomic field is $Q(\zeta)$.

There are two conjugacy classes of elements of order 9 appearing in the isotropy group G_{02} of $Z_{02} = \text{diag}[\rho, \rho, \rho]$. Indeed, if we let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ with

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$C = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

then it is a direct verification to show that

- (1) M is an element of order 9.
- (2) M can be represented in U(3) as $[\zeta, \zeta^4, \zeta^7]$ or $[\zeta^2, \zeta^8, \zeta^5]$,
- (3) $M^3 = \begin{bmatrix} 0 & -E \\ E & -E \end{bmatrix}$ has an isolated fixed point at Z_{02} .

Now we begin to look for the other six conjugacy classes of regular elliptic elements of order 9 in $Sp(3, \mathbb{Z})$.

THEOREM 2. Suppose α , β , γ are distinct roots of the equation $X^3 - 3X + 1 = 0$ (or more precisely, $\alpha = 2\cos 2\pi/9$, $\beta = 2\cos 4\pi/9$, $\gamma = 2\cos 8\pi/9$),

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad \Omega = \frac{1}{3} \begin{bmatrix} -3 + \alpha + \alpha^2 & -3 + \beta + \beta^2 & -3 + \gamma + \gamma^2 \\ -1 + \alpha^2 & -1 + \beta^2 & -1 + \gamma^2 \\ 1 + \alpha & 1 + \beta & 1 + \gamma \end{bmatrix},$$

and

$$M = \begin{bmatrix} A & E \\ -E & 0 \end{bmatrix},$$

then

(1) M is an element of order 9 in $Sp(3, \mathbb{Z})$ and has an isolated fixed point at

$$Z_{11} = -\frac{1}{2}A + i\Omega\left(E - \frac{1}{4}{}^{t}\Omega A^{2}\Omega\right)^{1/2}{}^{t}\Omega,$$

- (2) M is conjugate in Sp(3, \mathbb{R}) to $[\zeta, \zeta^2, \zeta^4]$ of U(3),
- (3) the centralizer of M in $Sp(3, \mathbb{Z})/\{\pm 1\}$ is a group of order 9.

PROOF. (1) Since the characteristic polynomial of M is $X^6 + X^3 + 1$, it follows that M is an element of order 9 in Sp(3, \mathbb{Z}). Note that $\frac{1}{3}{}^{\prime}[-3 + \alpha + \alpha^2, -1 + \alpha^2, 1 + \alpha]$ is the normalized eigenvector of A corresponding to the eigenvalue α . It follows that ${}^{\prime}\Omega A\Omega = \operatorname{diag}[\alpha, \beta, \gamma]$ and

$$\left(E - \frac{1}{4} \Omega A \Omega\right)^{1/2} = \text{diag}\left[\left(1 - \alpha^2/4\right)^{1/2}, \left(1 - \beta^2/4\right)^{1/2}, \left(1 - \gamma^2/4\right)^{1/2}\right].$$

Now it is a direct verification to show that $AZ_{11} = Z_{11}A$ and $Z_{11}^2 + AZ_{11} + E = 0$. Thus $Z_{11} = -\frac{1}{2}A + i\Omega(E - \frac{1}{4}\Omega A^2\Omega)^{1/2}\Omega$ is a fixed point of M. But M has exactly one fixed point by Lemma 3, hence Z_{11} is the unique isolated fixed point of M.

(2) Let $R = \begin{bmatrix} \Omega & 0 \\ 0 & \Omega \end{bmatrix}$. Then $R \in \text{Sp}(3, \mathbb{R})$ and

$$R^{-1}MR = \begin{bmatrix} \alpha & 1 \\ -1 & 0 \end{bmatrix} \times \begin{bmatrix} \beta & 1 \\ -1 & 0 \end{bmatrix} \times \begin{bmatrix} \gamma & 1 \\ -1 & 0 \end{bmatrix}.$$

Note that $R^{-1}MR$ is conjugate in Sp(3, **R**) to

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \times \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix} \times \begin{bmatrix} \cos 3\theta & \sin 3\theta \\ -\sin 3\theta & \cos 3\theta \end{bmatrix}, \quad \theta = \frac{2\pi}{9},$$

because $\begin{bmatrix} 2\cos\mu & 1\\ -1 & 0 \end{bmatrix}$ is conjugate in $SL_2(\mathbf{R})$ to $\begin{bmatrix} \cos\mu & \sin\mu\\ -\sin\mu & \cos\mu \end{bmatrix}$. This proves our assertion in **(2)**.

(3) Let $C(M, \mathbb{Z})$ be the centralizer of M in $Sp(3, \mathbb{Z})/\{\pm 1\}$. Suppose γ is an element of $C(M, \mathbb{Z})$. Then

$$M(\gamma(Z_{11})) = \gamma(M(Z_{11})) = \gamma(Z_{11}).$$

Since Z_{11} is the only fixed point of M, this forces $\gamma(Z_{11})=Z_{11}$. Note that $\Omega Z_{11}\Omega=R(Z_{11})=\mathrm{diag}[-\bar{\zeta},-\bar{\zeta}^2,-\bar{\zeta}^2]$. Here $R=[0\ \Omega]$ as in (2). From $\gamma(Z_{11}) = Z_{11}$, we get

$$R\gamma R^{-1}({}^{\iota}\Omega Z_{11}\Omega)={}^{\iota}\Omega Z_{11}\Omega.$$

It follows that

$$R\gamma R^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \times \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix}$$

with

$$\begin{cases} -a\bar{\xi} + b = c\bar{\xi}^2 - d\bar{\xi}, & ad - bc = 1, \\ -a'\bar{\xi}^2 + b' = c'\bar{\xi}^4 - d'\bar{\xi}^2, & a'd' - b'c' = 1, \\ -a''\bar{\xi}^4 + b'' = c''\bar{\xi}^8 - d''\bar{\xi}^4, & a''d'' - b''c'' = 1. \end{cases}$$

The general solution of a, b, c, d is given by

$$\begin{cases} a = \cos \theta - \cot \frac{2\pi}{9} \sin \theta, & b = -\sec \frac{2\pi}{9} \sin \theta, \\ c = \sec \frac{2\pi}{9} \sin \theta, & d = \cos \theta + \cot \frac{2\pi}{9} \sin \theta, \end{cases}$$
 $\theta \in \mathbb{R}.$

The characteristic polynomial of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is $X^2 - 2\cos\theta X + 1$, hence $2\cos\theta$ is an algebraic integer of degree 1 or 3. On the other hand, the fact that y is an element of finite order implies $e^{i\theta}$ is a root of unity. Now we have the following cases:

Case I. If $2\cos\theta$ is an algebraic integer of degree 3, then the characteristic polynomial of γ is an irreducible polynomial of degree 6. Since M satisfies this case, the characteristic polynomial of γ is $X^6 + X^3 + 1$ or $X^6 - X^3 + 1$. This leads to the fact that $\theta = 2\pi/9$ or $4\pi/9$ or $8\pi/9$ and γ is one of the following elements: $\pm M$, $\pm M^2$, $\pm M^4$, $\pm M^5$, $\pm M^7$, $\pm M^8$.

Case II. If $2\cos\theta = \pm 1$, then γ is an element of order 3. Then $\gamma = \pm M^3$ or $\pm M^6$ by a direct calculation.

Case III. If $2\cos\theta = \pm 2$, then $\gamma = \pm E_6$.

Case IV. If $2\cos\theta = 0$, then

$$\gamma = R^{-1} \left\{ \begin{bmatrix} -\cot \eta & -\sec \eta \\ \sec \eta & \cot \eta \end{bmatrix} \times \begin{bmatrix} -\cot 2\eta & -\sec 2\eta \\ \sec 2\eta & \cot 2\eta \end{bmatrix} \times \begin{bmatrix} -\cot 4\eta & -\sec 4\eta \\ \sec 4\eta & \cot 4\eta \end{bmatrix} \right\} R$$

with $\eta = 2\pi/9$. Such a γ is not an integral matrix.

By the above discussion, we conclude $C(M, \mathbb{Z})$ is a group of order 9 generated by *M*.

TABLE. Regular elliptic conjugacy classes of Sp(3, **Z**) Here e[a, b, c] stands for diag[$e^{\pi ia}$, $e^{\pi ib}$, $e^{\pi ic}$], $P_1(X) = X^4 + X^3 + X^2 + X + 1$ and $P_2(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$.

No.	Representative in $U(3)$	Minimal polynomial	Order of centralizer	No. of conjugates in isotropy group
1	e[1/2, 1/2, 1/2]	$X^2 + 1$	192	1
2	e[1/2, 1/4, 5/4]	$(X^2+1)(X^4+1)$	16	12
3	e[1/2, 3/4, 7/4]	$(X^2+1)(X^4+1)$	16	12
4	e[1/6, 5/6, 9/6]	$X^6 + 1$	6	32
5	e[1/3, 1/3, 1/3]	X^2-X+1	648	1
6	e[2/3,1/3,1/3]	$X^4 + X^2 + 1$	216	3
7	e[4/3,1/3,1/3]	X^4+X^2+1	216	3
8	• , , , , ,	X^4+X^2+1	216	3
9		$X^2 + X + 1$	648	1
10	e[5/3,2/3,2/3]	$X^4 + X^2 + 1$	216	3
11	e[1/3, 1/3, 4/3]	$X^4 + X^2 + 1$	36	18
12	e[2/3, 2/3, 5/3]	$X^4 + X^2 + 1$	36	18
13	e[1/3, 1/6, 7/6]	$X^4 + X^2 + 1$	36	18
14	e[2/3, 1/6, 7/6]	$X^4 + X^2 + 1$	36	18
15	•	$X^4 + X^2 + 1$	36	18
16	• , , , , , .	$X^4 + X^2 + 1$	36	18
17		$X^6 + X^3 + 1$	9	72
18	• , , , , .	$X^6 + X^3 + 1$	9	72
19	. , , , , , .	$(X^2 - X + 1)(X^2 + 1)$	•	1
20	. , , , , , .	$(X^2 + X + 1)(X^2 + 1)$	•	1
21	• , , , , .	$(X^2 + X + 1)(X^2 + 1)$	•	1
22	• , . , . , •	$(X^2 - X + 1)(X^2 + 1)$,	1
23		$(X^2 - X + 1)(X^4 + 1)$	•	4
24	• , , , , , •	$(X^2 + X + 1)(X^4 + 1)$		4
25		$(X^2 - X + 1)(X^4 +$		4
26 27	•	$(X^2 + X + 1)(X^4 + 1)(X^2 + 1)(X^2 - X + 1)$		4 1
28		$(X^2 + 1)(X^2 - X + 1)(X^2 + 1)(X^2 - X + 1)$		1
28 29		$(X^2 + 1)(X^2 - X + 1)(X^2 - $		1
30		$(X + 1)(X - X + 1)(X^2 + X + 1)(X^2 + X + 1)(X + X + $		1
31	•	$(X + 1)(X + X + 1)(X^{2} + X^{2} + 1)(X^{4} + X^{$		2
32		$(X^2 + 1)(X^4 + X^2 + 1)(X^4 + X^2$		2
33		$(X^2 + 1)(X^4 + X^2 + 1)(X^4 + X^2$		2
		$(X^2 + 1)(X^4 + X^2 + 1)(X^4 + X^2$		2
35		• • • • • • • • • • • • • • • • • • • •		6
36	• • • • •	` '`		6
37	• • • • •			6
38	• • • • •			6
39			16	6
40	-, , , , -	• • • • • • • • • • • • • • • • • • • •	16	6
41		• • • • • • • • • • • • • • • • • • • •		2
42	. , , , , , .			2
	- · · · · ·		•	

No.	Representative in $U(3)$	Minimal polynomial	Order of centralizer	No. of conjugates in isotropy group
43	e[1/2, 2/5, 4/5]	$(X^2+1)P_1(X)$	20	1
44	e[1/2,4/5,8/5]	$(X^2+1)P_1(X)$	20	1
45	e[1/2,6/5,2/5]	$(X^2+1)P_1(X)$	20	1
46	e[1/2, 8/5, 6/5]	$(X^2+1)P_1(X)$	20	1
47	e[3/2, 2/5, 4/5]	$(X^2+1)P_1(-X)$	20	1
48	e[3/2,4/5,8/5]	$(X^2+1)P_1(-X)$	20	1
49	e[3/2,6/5,2/5]	$(X^2+1)P_1(-X)$	20	1
50	e[3/2, 8/5, 6/5]	$(X^2 + 1)P_1(-X)$	20	6
51	e[1/3, 1/4, 3/4]	$(X^2 - X + 1)(X^4 + 1)$	•	6
52 53	e[2/3, 1/4, 3/4]	$(X^2 - X + 1)(X^4 + 1)(X^2 + X + 1)(X^4 + 1)$,	6
54	e[4/3, 1/4, 3/4] e[5/3, 1/4, 3/4]	$(X^2 + X + 1)(X + 1)$ $(X^2 + X + 1)(X^4 + 1)$,	6
55	e[3/3, 1/4, 3/4] e[1/3, 1/3, 2/3]	(X + X + 1)(X + 1) $X^4 + X^2 + 1$	36	4
56	e[2/3, 1/3, 2/3]	$X^4 + X^2 + 1$	36	4
57	e[1/3, 2/5, 4/5]	$(X^2 - X + 1)P_1(X)$	30	1
58	e[2/3,2/5,4/5]	$(X^2 + X + 1)P_1(X)$	30	1
59	e[4/3,2/5,4/5]	$(X^2 + X + 1)P_1(X)$	30	1
60	e[5/3, 2/5, 4/5]	$(X^2 - X + 1)P_1(X)$	30	1
61	e[1/3,4/5,8/5]	$(X^2-X+1)P_1(X)$	30	1
62	e[2/3,4/5,8/5]	$(X^2+X+1)P_1(X)$	30	1
63	e[4/3,4/5,8/5]	$(X^2+X+1)P_1(X)$	30	1
64	e[5/3,4/5,8/5]	$(X^2-X+1)P_1(X)$	30	1
65	e[1/3,6/5,2/5]	$(X^2-X+1)P_1(X)$	30	1
66	e[2/3,6/5,2/5]	$(X^2 + X + 1)P_1(X)$	30	1
67	e[4/3,6/5,2/5]	$(X^2 + X + 1)P_1(X)$	30	1
68	e[5/3,6/5,2/5]	$(X^2 - X + 1)P_1(X)$	30 30	1 1
69 70	e[1/3,8/5,6/5] e[2/3,8/5,6/5]	$(X^2 - X + 1)P_1(X)$ $(X^2 + X + 1)P_1(X)$	30	1
71	e[4/3, 8/5, 6/5]	$(X^2 + X + 1)P_1(X)$ $(X^2 + X + 1)P_1(X)$	30	1
72	e[5/3,8/5,6/5]	$(X^2 - X + 1)P_1(X)$	30	1
73	e[2/9,4/9,8/9]	$X^6 + X^3 + 1$	9	1
74	e[4/9, 8/9, 16/9]	$X^6 + X^3 + 1$	9	1
75	e[8/9, 16/9, 14/9]	$X^6 + X^3 + 1$	9	1
76	e[10/9, 2/9, 4/9]	X^6+X^3+1	9	1
77	e[14/9, 10/9, 2/9]	X^6+X^3+1	9	1
78	e[16/9, 14/9, 10/9]	X^6+X^3+1	9	1
79	e[2/7,4/7,6/7]	$P_2(X)$	7	1
80	e[4/7, 8/7, 12/7]	$P_2(X)$	7	1
81	e[6/7, 12/7, 4/7]	$P_2(X)$	7	1
82	e[8/7,2/7,10/7]	$P_2(X)$	7	1
83	e[10/7, 6/7, 2/7]	$P_2(X)$	7	1
84 85	e[12/7, 10/7, 8/7] e[2/7, 4/7, 8/7]	$P_2(X)$	7 7	1 3
86	e[6/7, 12/7, 10/7]	$P_2(X)$	7	3
ου	e[U/ 1, 12/ 1, 1U/ 1]	$P_2(X)$,	3

With the same argument, we get the following result by simply replacing the role of $e^{2\pi i/9}$ by $e^{2\pi i/7}$.

LEMMA 5. Let M be an element of Sp(3, **Z**) of order 7. Then M is conjugate in Sp(3, **R**) to one of the following $(v = e^{2\pi i/7})$:

$$[v, v^2, v^3], [v, v^2, v^4], [v, v^4, v^5], [v, v^3, v^5], [v^2, v^3, v^6], [v^2, v^4, v^6], [v^4, v^5, v^6], [v^3, v^5, v^6].$$

LEMMA 6. The number of conjugacy classes of regular elliptic elements of order 7 in $Sp(3, \mathbf{Z})$ is 8.

THEOREM 3. Suppose α , β , γ are distinct roots of the equation $X^3 + X^2 - 2X + 1$ (or more precisely, $\alpha = 2\cos 2\pi/7$, $\beta = 2\cos 4\pi/7$, $\gamma = 2\cos 6\pi/7$),

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}, \quad \Omega' = \begin{bmatrix} \frac{\alpha + \alpha^2}{1 + 3\alpha} & \frac{\beta + \beta^2}{1 + 3\beta} & \frac{\gamma + \gamma^2}{1 + 3\gamma} \\ \frac{1 + 2\alpha}{1 + 3\alpha} & \frac{1 + 2\beta}{1 + 3\beta} & \frac{1 + 2\gamma}{1 + 3\gamma} \\ \frac{\alpha^2}{1 + 3\alpha} & \frac{\beta^2}{1 + 3\beta} & \frac{\gamma^2}{1 + 3\gamma} \end{bmatrix}$$

and

$$M = \begin{bmatrix} B & E \\ -E & 0 \end{bmatrix}.$$

Then

(1) M is an element of order 7 in Sp(3, Z) and has an isolated fixed point at

$$Z_{12} = -\frac{1}{2}B + i\Omega' (E - \frac{1}{4}'\Omega'B^2\Omega')^{1/2}\Omega',$$

- (2) M is conjugate in $Sp(3, \mathbf{R})$ to $[v, v^2, v^3]$,
- (3) the centralizer of M in $Sp(3, \mathbb{Z})/\{\pm 1\}$ is a group of order 7 generated by M.

Note that $[v, v^2, v^4]$ and $[v^3, v^6, v^5]$ are exclusive in the set of all powers of $[v, v^2, v^3]$. To find all representatives for elliptic conjugacy classes of order 7, it suffices to get a representative which is conjugate in Sp(3, **R**) to $[v, v^2, v^4]$.

THEOREM 4. Let B, Ω' be matrices as in Theorem 3,

$$U = \operatorname{diag}[1, 1, -1] \quad and \quad M = \begin{bmatrix} B & E + B \\ -(E + B)^{-1} & 0 \end{bmatrix}.$$

Then

(1) M is an element of order 7 in $Sp(3, \mathbb{Z})$ with isolated fixed point at

$$Z_{13} = -\frac{1}{2}B(B+E) + i\Omega' \left[\left(E - \frac{1}{4} \Omega' B^2 \Omega' \right)^{1/2} \Omega' (B+E) \Omega U \right]' \Omega',$$

- (2) M is conjugate in $Sp(3, \mathbb{R})$ to $[v, v^2, v^4]$,
- (3) the centralizer of M in $Sp(3, \mathbb{Z})/\{\pm 1\}$ is a finite group of order 7 generated by M.

PROOF. Since det(E + B) = 1 and

$$'\Omega'(E+B)\Omega' = \text{diag}\left[1 + 2\cos\frac{2\pi}{7}, 1 + 2\cos\frac{4\pi}{7}, 1 + 2\cos\frac{6\pi}{7}\right]$$

has signature +, +, -, it follows that $M \in Sp(3, \mathbb{Z})$ and M is conjugate in $Sp(3, \mathbb{R})$ to

$$M' = \begin{bmatrix} 2\cos\theta & 1 \\ -1 & 0 \end{bmatrix} \times \begin{bmatrix} 2\cos2\theta & 1 \\ -1 & 0 \end{bmatrix} \times \begin{bmatrix} 2\cos3\theta & -1 \\ 1 & 0 \end{bmatrix}, \quad \theta = \frac{2\pi}{7}.$$

Indeed, if we let $R' = \Omega' \Lambda$ with

$$\Lambda = \operatorname{diag}\left[\left(1 + 2\cos\frac{2\pi}{7}\right)^{-1/2}, \left(1 + 2\cos\frac{2\pi}{7}\right)^{-1/2}, \left(-1 - 2\cos\frac{2\pi}{7}\right)^{-1/2}\right],$$

then $(R')^{-1}MR' = M'$. Hence (1) and (2) follow as a direct calculation. By a similar argument as in (3) of Theorem 2, we get (2).

By Theorems 1, 2, 3 and 4, we obtain the following table for conjugacy classes of regular elliptic elements in $Sp(3, \mathbb{Z})$.

4. Application. Contributions from conjugacy classes of regular elliptic elements in $Sp(n, \mathbb{Z})$ to the dimension formula for Siegel cusp forms of degree n and weight k [4] are given by

$$\sum |C(M,\mathbf{Z})|^{-1} \prod_{i=1}^n \bar{\lambda}_i^k \prod_{i \leq j} (1 - \bar{\lambda}_i \bar{\lambda}_j)^{-1}.$$

Here the summation in M ranges over all conjugacy classes of regular elliptic elements in $Sp(n, \mathbb{Z})$. M is conjugate in $Sp(n, \mathbb{R})$ to $\begin{bmatrix} A & B \\ -B & A \end{bmatrix}$ with $A + Bi = \text{diag}[\lambda_1, \lambda_2, \dots, \lambda_n]$, $\lambda_i \lambda_j \neq 1$ for all i, j and $C(M, \mathbb{Z})$ is the centralizer of M in $Sp(3, \mathbb{Z})$. Applying this formula to the case n = 3, we get all contributions from 86 regular elliptic conjugacy classes in $Sp(3, \mathbb{Z})$.

For the case n = 1 and n = 2, the contribution from a particular regular elliptic conjugacy class appears to be a residue of a generating function at a simple pole. For example, the contribution from the conjugacy class of regular elliptic elements of order 5 in Sp(2, \mathbb{Z}) is given by

$$K = \frac{1}{25} \left[\omega^{-6k} (1 - \omega^{-2}) + \omega^{-2k} (1 - \omega^{-4}) + \omega^{-8k} (1 - \omega^{-6}) + \omega^{-4k} (1 - \omega^{-8}) \right],$$

$$\omega = e^{\pi i/5}.$$

which is precisely the negative of the sum of residues of the function

$$\frac{1}{(1-T^4)(1-T^6)(1-T^{10})(1-T^{12})T^{k+1}}$$

at $T = e^{i\theta}$ with $\theta = \pm \pi/5, \pm 2\pi/5, \pm 3\pi/5, \pm 4\pi/5$ when k is even.

It is easy to see that the total contribution from conjugacy classes of elements of order 2 or 3 in $SL_2(\mathbf{Z})$ is the negative of the sum of residues of the function

$$\frac{1}{(1-T^4)(1-T^6)T^{k+1}}$$

at $T = e^{i\theta}$ with $\theta = \pm \pi/2, \pm \pi/3, \pm 2\pi/3$ when k is even.

Note that

$$\frac{1}{(1-T^4)(1-T^6)}$$
 and $\frac{1}{(1-T^4)(1-T^6)(1-T^{10})(1-T^{12})}$

are well known to be generating functions of dimension formulas for modular forms of degree 1 and degree 2, respectively. It is hopeful to find a generating function of a dimension formula for modular forms of degree 3 by computing contributions from conjugacy classes of regular elliptic elements in Sp(3, **Z**). However, we can write down explictly the conjugacy classes of Sp(3, **Z**) simply by using our results in this paper and reduction theory in [2, 3]. Thus a dimension formula for Siegel cusps forms of degree 3 can be obtained by the Selberg trace formula and results of [5].

REFERENCES

- 1. Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, New York, 1966.
- 2. U. Christian, A reduction theory for symplectic matrices, Math. Z. 101 (1967), 213-244.
- 3. _____, Zur Theorie der symplektischen Gruppen, Acta Arith. 24 (1973), 61-85.
- 4. Minking Eie, Contributions from conjugacy classes of regular elliptic elements in $Sp(n, \mathbb{Z})$ to the dimension formula, Trans. Amer. Math. Soc. 285 (1984), 403-410.
 - 5. _____, Siegel cusp forms of degree two and three, Mem. Amer. Math. Soc. (to appear).
 - 6. E. Gottschling, Über die Fixpunkte der Siegelschen Modulgruppe, Math. Ann. 143 (1961), 111-149.
- 7. _____, Über die Fixpunktuntergruppen der Siegelschen Modulgruppe, Math. Ann. 143 (1961), 399-430.
- 8. H. Midorikawa, On the number of regular elliptic conjugacy classes in the Siegel modular group of degree 2n, Tokyo J. Math. 6 (1983), 25-28.
 - 9. B. Steinle, Fixpunktmannigfaltigkeiten symplektischen Matrizen, Acta Arith. 20 (1972), 63-106.
 - 10. Lawrence C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, 1982.

INSTITUTE OF MATHEMATICS, ACADEMIA SINICA, NANKANG, TAIPEI, TAIWAN, REPUBLIC OF CHINA

DEPARTMENT OF MATHEMATICS, NATIONAL TSING - HUA UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA (Current address of Chuang-Yuan Lin)

Current address (Minking Eie): Sonderforschungsbereich 170, Mathematisches Institut der Georg-August-Universität, Göttingen, Bunsenstrasse 3-5, D-3400 Göttingen, Federal Republic of Germany