MULTIPARAMETER MAXIMAL FUNCTIONS ALONG DILATION-INVARIANT HYPERSURFACES

BY

HASSE CARLSSON, PETER SJÖGREN AND JAN-OLOV STRÖMBERG

ABSTRACT. Consider the hypersurface $x_{n+1} = \prod_{i=1}^{n} x_i^{\alpha_i}$ in \mathbf{R}^{n+1} . The associated maximal function operator is defined as the supremum of means taken over those parts of the surface lying above the rectangles $\{0 \le x_i \le h_i, i = 1, \ldots, n\}$. We prove that this operator is bounded on L^p for p > 1. An analogous result is proved for a quadratic surface in \mathbf{R}^3 .

1. Introduction. Let K be the right circular cone $z^2 = x^2 + y^2$, z > 0, in \mathbb{R}^3 . We fix a generating ray, say $l_0 = \{(t,0,t): t > 0\}$, and consider portions of K bounded by l_0 , a variable generating ray, and a sphere centered at the origin. Thus, we set

$$A_{r\theta} = \{(x, y, z) \in K : 0 < \arg(x + iy) < \theta, \ x^2 + y^2 + z^2 < r^2\}.$$

The area measure on K is $dS = \sqrt{2} dx dy$, and we study mean values

$$m_{r heta}f(x,y,z) = \left(\int_{A_{r heta}} dS
ight)^{-1} \int_{A_{r heta}} f(x-x',y-y',z-z') \, dS(x',y',z').$$

We ask whether $m_{r\theta}f \to f$ a.e. as $r \to 0$ and θ varies freely in $(0, 2\pi]$ when $f \in L^p$. It is well known that to prove such a.e. convergence, one must show that the corresponding maximal function operator

$$M_K f(x, y, z) = \sup_{r, \theta} m_{r\theta} |f|(x, y, z)$$

is bounded on L^p or, at least, of weak type (p,p). When $\theta=2\pi$, it is easy to control $m_{r\theta}|f|$ via the mean of the one-dimensional maximal functions of |f| along all the generating rays. This mean can also be used when θ is large, say $\theta \geq \pi/4$. The corresponding part of M_K is therefore bounded on L^p , p>1. To handle small θ , notice that $A_{r\theta}$ is the disjoint union of sets

$$A'_{r\gamma} = \{(x, y, z) \in K : x, y > 0, \ \gamma/2 < y/x < \gamma, \ r^2/4 < x^2 + y^2 + z^2 < r^2\}.$$

Therefore, we can use $A'_{r\gamma}$ instead of $A_{r\theta}$ when defining M_K .

If we change coordinates by letting

$$x_1=rac{z+x}{\sqrt{2}}, \qquad x_2=rac{z-x}{\sqrt{2}}, \qquad x_3=y,$$

the equation of K becomes $x_3 = \pm \sqrt{2x_1x_2}$, $x_1, x_2 \ge 0$, and we take only the positive sign here. Now $A'_{r\gamma}$ corresponds to

$$A_{r\beta}'' = \{(x_1, x_2, \sqrt{2x_1x_2}) \colon \beta' < x_2/x_1 < \beta, \ r/2 < x_1 + x_2 < r\},\$$

Received by the editors June 27, 1984.

1980 Mathematics Subject Classification. Primary 42B25.

where $\beta = (\sqrt{\gamma^2 + 1} - 1)/(\sqrt{\gamma^2 + 1} + 1)$ is roughly $\gamma^2/4$, and $\beta' \approx \beta/4$. In each such set, $dS/dx_1 dx_2 = (1 + \frac{1}{2}(x_1/x_2 + x_2/x_1))^{1/2}$ is approximately constant. Therefore, when forming means, we can use $dx_1 dx_2$ instead of dS.

We next replace the sets $A''_{r\beta}$ by subsets of K whose projections on the x_1x_2 plane are rectangles; these are more convenient to work with. Since θ , γ , and β are small, $x_1 + x_2$ is roughly x_1 in $A''_{r\beta}$, and x_1 and x_2 are approximately constant there. Thus, we can cover $A''_{r\beta}$ by a small number of disjoint sets of type

$$\{(x_1, x_2, \sqrt{2x_1x_2}): h_1/2 < x_1 < h_1, h_2/2 < x_2 < h_2\}, \qquad h_1, h_2 > 0,$$

whose total measure is not much larger than that of $A_{r\beta}^{"}$. Therefore, $M_K f$ is dominated by the supremum of means over sets of this type or, equivalently, by Mf, where

$$Mf(y_1, y_2, y_3) = \sup_{h_1, h_2 > 0} \frac{1}{h_1 h_2} \int_0^{h_1} dx_1 \int_0^{h_2} dx_2 |f(y_1 - x_1, y_2 - x_2, y_3 - \sqrt{2x_1 x_2})|.$$

This leads us to a more general problem in $\mathbf{R}^{n+1} = \{x = (x', x_{n+1}) \in \mathbf{R}^n \times \mathbf{R}\}$. Let $x_{n+1} = F(x')$ be the equation of a hypersurface, defined at least for $x_1, \ldots, x_n > 0$. Define

$$(1.1) Mf(y) = \sup_{h_1,\dots,h_n>0} \frac{1}{h_1\cdots h_n} \int_0^{h_1} dx_1 \cdots \int_0^{h_n} dx_n |f(y'-x',y_{n+1}-F(x'))|.$$

In [8, Problem 8, p. 1289], Stein and Wainger raised the question of L^p boundedness for such maximal operators. We shall deal mainly with the case

(1.2)
$$x_{n+1} = F(x') = \prod_{i=1}^{n} x_i^{\alpha_i}, \qquad \alpha_i \in \mathbf{R}, \ i = 1, \dots, n.$$

THEOREM 1. If F is as in (1.2), M is well defined and bounded on $L^p(\mathbf{R}^{n+1})$ for all p > 1.

This theorem applies to the maximal function associated with the surface $x_1x_2 = x_3x_4$ in \mathbf{R}^4 , which appears in connection with admissible convergence in the symmetric space $\mathrm{SL}(4,\mathbf{R})/\mathrm{SO}(4,\mathbf{R})$. Sjögren [6] proves admissible convergence in a general symmetric space.

By standard techniques, Theorem 1 implies a convergence result. Assume $\alpha_i \geq 0$ for all i and $\alpha_i > 0$ for some i. If $f \in L^p(\mathbf{R}^{n+1})$, the mean

$$\frac{1}{h_1\cdots h_n}\int_0^{h_1}dx_1\cdots\int_0^{h_n}dx_n\,f(y'-x',y_{n+1}-F(x'))$$

tends to f(y) as $h_1, \ldots, h_n \to 0$, for almost all $y \in \mathbf{R}^{n+1}$.

The Hilbert transform associated with the hypersurface (1.2) and similar surfaces of lower dimension has been studied by Nagel and Wainger [4] and by Vance [11] and Strichartz [10].

Theorem 1 is proved in §2. The method is an adaptation of the known methods for maximal functions along curves, involving Fourier transforms and analytic interpolation as in [8]. Theorem 1 implies that the operator M_K defined above is bounded on L^p , p > 1. However, this boundedness can be proved in a simpler way by means of one-dimensional maximal functions in lacunar directions, as shown in

§3. When n=2, this proof also applies to those surfaces of type (1.2) which are conical, i.e., for which $\alpha_1 + \alpha_2 = 1$. §3 also contains a proof of the following result for a second-degree surface in \mathbb{R}^3 .

THEOREM 2. Let n=2 and $F(x_1,x_2)=ax_1^2+bx_1x_2+cx_2^2$, where $a,b,c\in\mathbf{R}$. Then M is bounded on L^p for p>1.

The proof uses combinations of maximal functions along curves and Theorem 1.

2. Proof of Theorem 1. We first eliminate those α_i which are zero. If $\alpha_i = 0$, then F is independent of x_i . In the mean value in (1.1), we can then estimate the integral

$$\frac{1}{h_i} \int_0^{h_i} |f(y'-x',y_{n+1}-F(x'))| dx_i$$

by means of the one-dimensional maximal function taken in the x_i direction. The remaining integral defines, for each fixed y_i , a maximal function of the same type in a lower-dimensional space. Continuing in this way, we can reduce the problem to the case where no α_i vanishes. We also assume that we are not in the case n = 1, $\alpha_1 = 1$, which is trivial.

We need some notation. As usual, C denotes various constants. Let

$$J = \left\{ j = (j_1, \dots, j_{n+1}) \in \mathbf{Z}^{n+1} \colon j_{n+1} = \sum_{i=1}^n j_i \operatorname{sgn} \alpha_i \right\}.$$

Define $a=(a_1,\ldots,a_{n+1})$ by the conditions $a_1^{|\alpha_1|}=\cdots=a_n^{|\alpha_n|}=a_{n+1}=2$. The surface (1.2) is invariant under the dilations $\delta_j x=(a_1^{j_1}x_1,\ldots,a_{n+1}^{j_{n+1}}x_{n+1})$, provided $j\in J$. The Jacobian of δ_j is $a^j=\prod_{i=1}^{n+1}a_i^{j_i}$. If $j'\in \mathbf{Z}^n$ and $x'=(x_1,\ldots,x_n)\in \mathbf{R}^n$, we set $\delta_{j'}x'=(a_1^{j_1}x_1,\ldots,a_n^{j_n}x_n)$. The dilations λ_j of a measure or a distribution λ in \mathbf{R}^{n+1} are defined by

$$\int arphi \, d\lambda_j = \int arphi(\delta_j x) \, d\lambda$$

for test functions φ . The maximal function operator associated with λ is $M_{\lambda}\varphi = \sup_{i \in J} |\lambda_i * \varphi|$.

We shall dominate Mf by means of $M_{\mu}f$, where μ will be a compactly supported smooth measure on the surface. Let $\psi \in C_0^{\infty}(\mathbf{R}^n)$ be a nonnegative function with support in $\{x' \in \mathbf{R}^n : x_i > 0, i = 1, ..., n\}$ which equals 1 in $R = \{x' \in \mathbf{R}^n : 1 \le x_i \le a_i\}$. Now μ is defined by

$$\int \varphi \, d\mu = \int \varphi(x', F(x')) \psi(x') \, dx', \qquad \varphi \in C(\mathbf{R}^{n+1}).$$

Let $f \geq 0$ be measurable in \mathbf{R}^{n+1} . Then $f(y'-x',y_{n+1}-F(x'))$ is measurable in x' for almost every y. In (1.1) it is enough to consider h_i which are of the form $a_i^{m_i}$, with integers m_1, \ldots, m_n . Then the domain of integration $\{x' \in \mathbf{R}^n \colon 0 \leq x_i \leq h_i\}$ is the union of those sets $\delta_{-j'}R$ for which $j' = (j_1, \ldots, j_n) \in \mathbf{Z}^n$ satisfies $j_i > -m_i$, $i = 1, \ldots, n$. Thus, the mean in (1.1) is bounded by the supremum of the means over $\delta_{-j'}R$. But these last means are dominated by $\mu_j * f$ with $j \in J$ and, thus, by $M_{\mu}f$. Hence, $Mf \leq CM_{\mu}f$, and the following result implies Theorem 1.

PROPOSITION 1. If $f \in L^p(\mathbf{R}^{n+1})$, p > 1, the convolution $\mu_j * f$ is well defined almost everywhere for $j \in J$, and $||M_{\mu}f||_p \leq C||f||_p$.

The L^2 -estimate here can be proved by means of a g-function argument. But for $1 , we need to consider an analytic family of operators. Let <math>\mu^z = G_z * \mu$, $z \in \mathbb{C}$, where the distribution G_z is defined by $\hat{G}_z(\xi) = (1 + |\xi|^2)^{-z/2}$. The following two lemmas will allow analytic interpolation.

LEMMA 1. There exists a $\sigma > 0$ such that when $-\sigma < \operatorname{Re} z < 0$,

$$||M_{\mu^z}f||_2 \le C(z)||f||_2, \qquad f \in \mathcal{S}.$$

LEMMA 2. For 0 < Re z < 1 and each p > 1,

$$||M_{\mu^z}f||_p \le C(z)||f||_p, \qquad f \in \mathcal{S}.$$

Here and in the sequel, C(z) denotes constants which are bounded, for fixed Re z, by a polynomial in |z|.

PROOF OF LEMMA 1. We shall compare μ to a smooth measure ν such that the Fourier transform $\hat{\mu} - \hat{\nu}$ is small near the coordinate hyperplanes. This will allow us to estimate a g-function. Let $0 \le \phi \in C_0^{\infty}(-1,1)$ with $\int \phi \, dx = 1$, and let δ denote the Dirac measure in **R**. Then we set

$$\nu = \mu - \mu * \bigotimes_{i=1}^{n+1} (\delta - \phi).$$

The support of ν is compact, and we claim that ν is a C^{∞} function. Clearly ν is a sum of terms obtained by convolving μ with ϕ in one or more variables. If we convolve μ with ϕ in the (n+1)st variable, we get the C^{∞} function $\psi(x')\phi(x_{n+1}-F(x'))$. Convolution with ϕ in other variables preserves C^{∞} , so those terms where μ is convolved with ϕ in the (n+1)st variable are C^{∞} . Next, consider a term where μ is convolved with ϕ in the ith variable, $i \neq n+1$. Then we solve the equation $x_{n+1} = F(x')$ for x_i and replace x_{n+1} by x_i in the argument just given. Notice that this change of variables introduces a Jacobian in the expression for μ which is C^{∞} in supp μ . Hence, $\nu \in C_0^{\infty}$.

We estimate $\hat{\mu} - \hat{\nu}$ next. Since $\hat{\mu}$ is bounded and $\hat{\phi}(0) = 1$, one has

$$|\hat{\mu}(\xi) - \hat{\nu}(\xi)| \le C|\xi_i|, \qquad i = 1, \dots, n.$$

To estimate $\hat{\mu}$, and thus $\hat{\mu} - \hat{\nu}$, at infinity, we use a version of van der Corput's lemma (see Littman [1]). The determinant of the Hessian $(\partial^2 F/\partial x_i \, \partial x_j)_{i,j=1}^n$ is

$$(-1)^n \left(1 - \sum_{i=1}^n \alpha_i\right) F(x') \prod_{i=1}^n \frac{\alpha_i}{x_i^2}.$$

This expression vanishes only when $\sum_{i=1}^{n} \alpha_i = 1$, and then $\sum_{i=1}^{n-1} \alpha_i \neq 1$, so that the Hessian has rank at least n-1. Therefore, [1] gives $|\hat{\mu}(\xi)| \leq C|\xi|^{-\gamma}$, where $\gamma \geq \frac{1}{2}(n-1)$ and $\gamma \geq \frac{1}{2}$ since we have excluded the case n=1, $\alpha_1=1$. Since $\hat{\nu} \in \mathcal{S}$, we may summarize:

$$|\hat{\mu}(\xi) - \hat{\nu}(\xi)| \le C \min((1+|\xi|)^{-\gamma}, |\xi_1|, \dots, |\xi_n|).$$

Here we can replace each $|\xi_i|$ by $|\xi_i|^{\varepsilon}$ for $0 < \varepsilon < 1$. Estimating the minimum by a geometric mean, one has

$$|\hat{\mu}(\xi) - \hat{\nu}(\xi)| \le C(1 + |\xi|)^{-\gamma/2} \prod_{i=1}^{n} |\xi_i|^{\varepsilon/2n}.$$

Letting $\nu^z = G_z * \nu$, we get

$$|\hat{\mu}^{z}(\xi) - \hat{\nu}^{z}(\xi)| \leq C(1+|\xi|)^{-\gamma/2 - \operatorname{Re} z} \prod_{i=1}^{n} |\xi_{i}|^{\varepsilon/2n}$$

$$\leq C \prod_{i=1}^{n} (1+|\xi_{i}|)^{-(\gamma/2 + \operatorname{Re} z)/n} |\xi_{i}|^{\varepsilon/2n}$$

for Re $z>-\frac{1}{2}\gamma$. If ε is small, the assumptions of the following lemma will be satisfied.

LEMMA 3. If $\lambda \in \mathcal{S}'(\mathbf{R}^{n+1})$ satisfies $|\hat{\lambda}(\xi)| \leq \prod_{i=1}^n \min(|\xi_i|^{\eta}, |\xi_i|^{-\eta})$ for some $\eta > 0$, then for $f \in \mathcal{S}(\mathbf{R}^{n+1})$,

$$||M_{\lambda} f||_2 < C||f||_2, \qquad C = C(\eta, n).$$

PROOF. We have $M_{\lambda}f \leq (\sum_{j \in J} |\lambda_j * f|^2)^{1/2}$, and thus, by Plancherel's theorem,

$$\|M_\lambda f\|_2 \leq \sup_{\xi} \left(\sum_{j\in J} |\hat{\lambda}_j(\xi)|^2
ight)^{1/2} \|f\|_2.$$

We must show that the supremum appearing here is finite. Since $\hat{\lambda}_j(\xi) = \hat{\lambda}(\delta_j \xi)$, we get

$$\sum_{j \in J} |\hat{\lambda}_j(\xi)|^2 \le \prod_{i=1}^n \sum_{j_i \in \mathbf{Z}} \min(|a_i^{j_i} \xi_i|^{2\eta}, |a_i^{j_i} \xi_i|^{-2\eta}) \le C,$$

which proves the lemma.

By this lemma, $M_{\mu^z-\nu^z}$ is bounded on $L^2(\mathbf{R}^{n+1})$, with norm depending only on Re z. To finish the proof of Lemma 1, we must therefore estimate M_{ν^z} . By taking derivatives of $\hat{\nu}^z$ of order n+2, we get

$$|\nu^z(x)| \le C(z)(1+|x|)^{-n-2}$$

because $\hat{\nu} \in \mathcal{S}$. Therefore, M_{ν^z} is dominated by the strong maximal function, and Lemma 1 follows.

PROOF OF LEMMA 2. Let 0 < Re z < 1. The behavior of G_z is well known; see e.g. [7, Chapter V, §3]. One has

$$|G_z(x)| \le C(z) \begin{cases} |x|^{\operatorname{Re} z - n - 1}, & |x| \le 1, \\ |x|^{-N}, & |x| > 1, \end{cases}$$

for any N, which could also be verified directly. Choosing $N=n+1+\operatorname{Re} z,$ we conclude

$$|G_z| \le C(z) \sum_{m \in \mathbf{Z}} 2^{-|m|\operatorname{Re} z + m(n+1)} \chi_{|x| < 2^{-m}},$$

where χ denotes characteristic function. This implies

$$|\mu_j^z * f(x)| = \left| \iint f(x - \delta_j(y + u)) G_z(y) \, dy \, d\mu(u) \right|$$

$$\leq C(z) \sum_{m \in \mathbb{Z}} 2^{-|m| \operatorname{Re} z} \int d\mu(u) \int_{|y| < 2^{-m}} 2^{m(n+1)} |f(x - \delta_j u - \delta_j y)| \, dy.$$

The inner integral here is at most

$$2^{m(n+1)}a^{-j}\int_{|y_i|<2^{-m}a_x^{j_i}}|f(x-\delta_ju-y)|\,dy\leq M_1(u_1,m)\cdots M_{n+1}(u_{n+1},m)f(x).$$

By $M_i(u_i, m)$ we mean the one-dimensional maximal operator

$$M_i(u_i, m)g(t) = \sup_{k \in \mathbb{Z}} 2^m a_i^{-k} \int_{|s| < 2^{-m} a_i^k} |g(t - a_i^k u_i - s)| ds, \qquad g \in L^1_{loc}(\mathbb{R}),$$

acting in the ith variable. Thus,

$$\|M_{\mu^z}f\|_p \le C(z) \sum_{m \in \mathbb{Z}} 2^{-|m|\operatorname{Re} z} \int \|M_1(u_1,m)\cdots M_{n+1}(u_{n+1},m)f\|_p d\mu(u).$$

From Lemma 4 it follows that each $M_i(u_i, m)$ is bounded on L^p , p > 1, with norm at most $C(\max(1, m))^{1/p}$, uniformly for $u \in \text{supp } \mu$. This implies

$$||M_{\mu^z}f||_p \le C(z) \sum_{m \in \mathbb{Z}} 2^{-|m|\operatorname{Re} z} (\max(1,m))^{(n+1)/p} ||f||_p \le C(z) ||f||_p,$$

which ends the proof of Lemma 2.

To state Lemma 4 we take a decreasing sequence $\omega = (\omega_k)_{-\infty}^{+\infty}$ of positive numbers and a sequence $\tau = (\tau_k)_{-\infty}^{+\infty}$ of real numbers. Consider the maximal function

$$M^{\omega, au}g(t) = \sup_{k \in \mathbf{Z}} rac{1}{2\omega_k} \int_{-\omega_k}^{\omega_k} |g(t- au_k-s)| \, ds, \qquad g \in L^1_{\mathrm{loc}}(\mathbf{R}).$$

If the translations τ_k are no larger than the corresponding interval lengths ω_k , then $M^{\omega,\tau}$ is essentially the classical maximal function operator. But one can allow $|\tau_k| \gg \omega_k$ under a condition which compares τ_k to the quantities $\omega_{k'}$, $k' \leq k$.

LEMMA 4. Assume there exists an integer $m \geq 0$ such that for each k the number of l's with $l \geq k$ and $|\tau_l| > \omega_k$ is at most m. Then $M^{\omega,\tau}$ is of weak type (1,1) with constant at most $C \cdot (m+1)$, and $M^{\omega,\tau}$ is bounded on L^p , p > 1, with norm at most $C \cdot (m+1)^{1/p}$, C = C(p).

This lemma is a consequence of Theorem 4 in Nagel and Stein [2]. It can also be proved by means of Lemma 2 in Sjögren [5]. However, we give a direct proof here.

PROOF. Fix $g \in L^1(\mathbf{R})$ and $\alpha > 0$. Let \mathcal{F}_k be the family of all intervals I of length $2\omega_k$ such that $\int_I |g| \, ds > \alpha |I|$. Then

$$\{M^{\omega,\tau}g>\alpha\}\subset\bigcup_{k}\bigcup_{I\in\mathcal{T}_{k}}(I+\tau_{k}).$$

By a standard covering argument, one can find a disjoint subcollection $\{I_n\}_n$ of $\mathcal{F} = \bigcup_k \mathcal{F}_k$ such that each $I \in \mathcal{F}$ is contained in $5I_n$ for some n. We shall show that for each n,

(2.2)
$$\left| \bigcup_{k} \bigcup_{\substack{I \in \mathcal{I}_k \\ I \subset SI_n}} (I + \tau_k) \right| \leq C(m+1)|I_n|.$$

To this end, we fix n and let $k_0 \in \mathbf{Z} \cup \{\pm \infty\}$ be defined by

$$k_0 = \inf\{k \colon 2\omega_k < 5|I_n|\}.$$

We shall divide the range of k in (2.2) into three subsets. Take $k \in \mathbf{Z}$, and let $I \in \mathcal{F}_k$, $I \subset 5I_n$. If $k < k_0$, then $I \in \mathcal{F}_k$ is too long to be contained in $5I_n$. If $k \ge k_0$ and $|\tau_k| \le 5|I_n|/2$, then $I + \tau_k \subset 10I_n$. In the remaining case, $k \ge k_0$, $|\tau_k| > 5|I_n|/2$, one has $|\tau_k| > \omega_{k_0}$. (If $k_0 = -\infty$, we define $\omega_{-\infty}$ as the obvious limit.) By hypothesis, this occurs for at most m values of k. For each such k, we get $I + \tau_k \subset 5I_n + \tau_k$.

By summation we obtain (2.2). Now (2.1), (2.2) imply

$$|\{M^{\omega,\tau}g > \alpha\}| \le C(m+1)\sum |I_n| \le C(m+1)\alpha^{-1}||g||_1,$$

and the weak type (1,1) inequality is proved.

The strong L^p estimate follows by interpolation, since $M^{\omega,\tau}$ is bounded on L^{∞} . This completes the proof of Lemma 4.

PROOF OF PROPOSITION 1. We shall apply the analytic interpolation theorem (see [9, Chapter V, §4]) to Lemmas 1 and 2. First we must linearize the operators. Let N be a natural number and j(x) a measurable mapping of \mathbf{R}^{n+1} into $\{j \in J \colon |j_i| \leq N, \ i=1,\ldots,n\}$. Then $\mu^z_{j(x)} * f(x)$ varies linearly with $f \in \mathcal{S}$. The interpolation theorem requires simple functions. Therefore, we let $\Phi \in C_0^{\infty}$ be nonnegative and satisfy $\int \Phi \, dx = 1$. Consider the mapping

$$T_z g(x) = \mu_{j(x)}^z * \Phi * g(x),$$

which is defined for simple g, since then $\Phi * g \in \mathcal{S}$. By Lemmas 1 and 2, the inequality $||T_zg||_p \leq C(z)||g||_p$ holds for p=2 if $-\sigma < \operatorname{Re} z < 0$ and for p>1 if $0 < \operatorname{Re} z < 1$. Interpolation now yields $||T_0g||_p \leq C||g||_p$, p>1, for simple g.

Given $f \in L^p$, p > 1, we can find functions of type $\Phi * g$ which converge to f in L^p and a.e. A simple limit argument then gives

$$\|\mu_{j(x)} * f(x)\|_p \le C \|f\|_p.$$

Letting $N \to \infty$ and choosing the optimal j(x) for each N, we obtain Proposition 1 and, thus, Theorem 1.

3. Some proofs in \mathbb{R}^3 . We first give a simple proof of Theorem 1 for n=2 in the case $\alpha_1 + \alpha_2 = 1$. Write the integral in (1.1) as a sum of integrals over those subsets where $2^{-m} \leq x_2/x_1 < 2^{-m+1}$. In these integrals, we change variables

through $t = x_1$, $\lambda = 2^m x_2/x_1$. Hence,

$$\begin{split} Mf(y) & \leq \sup_{h_1,h_2>0} \int_{1}^{2} d\lambda \sum_{m \in \mathbf{Z}} \frac{2^{-m}}{h_1 h_2} \\ & \cdot \int_{0}^{\min(h_1,2^m h_2/\lambda)} t |f(y_1-t,y_2-2^{-m}\lambda t,y_3-2^{-\alpha_2 m}\lambda^{\alpha_2} t)| \, dt \\ & \leq \sup_{h_1,h_2>0} \int_{1}^{2} d\lambda \sum_{m \in \mathbf{Z}} \frac{2^{-m}}{h_1 h_2} \min\left(h_1,\frac{2^m h_2}{\lambda}\right)^2 \\ & \cdot \sup_{h>0} \frac{1}{h} \int_{0}^{h} |f(y_1-t,y_2-2^{-m}\lambda t,y_3-2^{-\alpha_2 m}\lambda^{\alpha_2} t)| \, dt \\ & \leq \sup_{h_1,h_2} \int_{1}^{2} \sum_{m \in \mathbf{Z}} \min\left(2^{-m} \frac{h_1}{h_2},2^m \frac{h_2}{h_1}\lambda^{-2}\right) M_{\text{lac}}^{\lambda} f(y) \, d\lambda \\ & \leq C \int_{1}^{2} M_{\text{lac}}^{\lambda} f(y) \, d\lambda, \end{split}$$

where M_{lac}^{λ} denotes the maximal function along the lacunar directions $(1, 2^{-m}\lambda, 2^{-\alpha_2 m}\lambda^{\alpha_2})$, $m \in \mathbf{Z}$. It is shown in [3] that M_{lac}^{λ} is bounded on L^p , p > 1, and the bound is uniform in λ , as seen by linear mappings. An integration in λ now ends the proof.

PROOF OF THEOREM 2. Consider first the case b=0. The two parabolic maximal function operators

$$M_a^1 f(x) = \sup_{h>0} \frac{1}{h} \int_0^h |f(x_1 - s, x_2, x_3 - as^2)| ds$$

and

$$M_c^2 f(x) = \sup_{h>0} \frac{1}{h} \int_0^h |f(x_1, x_2 - s, x_3 - cs^2)| ds$$

are bounded on L^p , p > 1; see [8]. Their composition dominates our operator; in fact, $Mf \leq M_a^1 M_c^2 f$, and the conclusion follows in this case.

Assume now that $b \neq 0$. It is enough to consider h_1, h_2 , with $h_1 < h_2$ in (1.1).

When $c \neq 0$, we write $F = a'(x_1')^2 + c(x_2')^2$, where $x_1' = x_1$ and $x_2' = x_2 + bx_1/2c$. The domain of integration in (1.1) is contained in $R' = \{(x_1', x_2') : 0 < x_1' < h_1, |x_2'| < Ch_2\}$, whose area is 2C times larger. The mean in (1.1) can thus be replaced by that over R', and the case b = 0 applies.

When c = 0, we write $F = x'_1 x'_2$ instead where $x'_1 = x_1$ and $x'_2 = ax_1 + bx_2$. Now we can apply Theorem 1 to the mean over the same rectangle R' as before. This completes the proof of Theorem 2.

REFERENCES

- W. Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770.
- A. Nagel and E. Stein, On certain maximal functions and approach regions, Adv. in Math. 54 (1984), 83-106.
- A. Nagel, E. Stein and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 1060-1062.

- A. Nagel and S. Wainger, L² boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group, Amer. J. Math. 99 (1977), 761– 785.
- P. Sjögren, Fatou theorems and maximal functions for eigenfunctions of the Laplace-Beltrami operator in a bidisk, J. Reine Angew. Math. 345 (1983), 93-110.
- 6. _____, Admissible convergence of Poisson integrals in symmetric spaces, Preprint no. 1985-4, Chalmers Univ. of Technology and Univ. of Göteborg, Göteborg, Sweden.
- 7. E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970.
- 8. E. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
- 9. E. Stein and G. Weiss, *Introduction to Fourier analysis on Euclidean spaces*, Princeton Univ. Press, Princeton, N.J., 1971.
- 10. R. Strichartz, Singular integrals supported on submanifolds, Studia Math. 74 (1982), 137-151.
- J. Vance, L^p-boundedness of the multiple Hilbert transform along a surface, Pacific J. Math. 108 (1983), 221–241.

DEPARTMENT OF MATHEMATICS, CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GÖTEBORG, S-412 96 GÖTEBORG, SWEDEN (Current address of Hasse Carlsson and Peter Sjögren)

INSTITUTE OF MATHEMATICAL AND PHYSICAL SCIENCES, UNIVERSITY OF TROMSØ, P.O. BOX 953, N-9001 TROMSØ, NORWAY (Current address of J.-O. Strömberg)