CONJUGACY PROBLEM IN $\mathrm{GL}_2(\mathbf{Z}[\sqrt{-1}])$ AND UNITS OF QUADRATIC EXTENSIONS OF $\mathbf{Q}(\sqrt{-1})$

BY HIRONORI ONISHI

ABSTRACT. A highly efficient procedure for deciding if two given elements of $GL_2(\mathbf{Z}[\sqrt{-1}])$ are conjugate or not will be presented. It makes use of a continued fraction algorithm in $\mathbf{Z}[\sqrt{-1}]$ and gives a fundamental unit of any given quadratic extension of $\mathbf{Q}(\sqrt{-1})$.

- (1) Introduction. A solution to the conjugacy problem in the group $G = \operatorname{GL}_2(\mathbf{Z}[\sqrt{-1}])$ is included in the result of Grunewald [3]. But for a nice group like this there ought to be a simpler solution which makes use of the special nature of G. On the other hand, since G is not an amalgam of simpler groups, we should not expect too easy a solution. In this paper we present a straightforward procedure for deciding if two given elements of G are conjugate or not. It is based on a continued fraction algorithm in the ring $\mathbf{Z}[\sqrt{-1}]$ and a module theoretic consideration. It combines the ideas used in [1 and 2]. As the examples show it is highly efficient. A similar solution can be given for the group $\operatorname{GL}_2(\mathcal{O})$, where \mathcal{O} is the ring of integers of any imaginary quadratic field, but in order to fix our attention we shall deal with the case when $\mathcal{O} = \mathbf{Z}[i]$, $i = \sqrt{-1}$.
- (2) Actually what we solve is the similarity problem for the 2×2 matrices over $\mathcal{O} = \mathbf{Z}[i]$; given two such matrices A and B the problem is to decide if there is an $R \in \mathrm{GL}_2(\mathcal{O})$ such that $RAR^{-1} = B$. Our solution gives an explicit R if there is one. It also gives an effective characterization of the centralizer

$$Z(A) = \{R \in \operatorname{GL}_2(\mathcal{O}) | RA = AR\}$$

for a given A, so that we can find all $R \in GL_2(\mathcal{O})$ such that $RAR^{-1} = B$. The characterization of Z(A) is obtained by finding a fundamental unit of an order in a quadratic extension of $F = \mathbf{Q}(i)$; our method generates a fundamental unit.

- (3) Given 2×2 matrices A and B over \mathcal{O} , call $A \sim B$ similar if $RAR^{-1} = B$ for some $R \in \mathrm{GL}_2(\mathcal{O})$. If $A \sim B$, then A and B have the same characteristic polynomial f over \mathcal{O} . Given a monic quadratic polynomial f over \mathcal{O} , let M(f) denote the set of 2×2 matrices over \mathcal{O} whose characteristic polynomials are equal to f. In deciding if $A \sim B$, we may assume that A and $B \in M(f)$ for some f. When f is reducible over F, deciding if $A \sim B$ is easy and we discuss it in the Appendix.
 - (4) Assume that f is irreducible over F. Put

$$f(t) = t^2 - qt + r, \qquad \Delta = q^2 - 4r.$$

Received by the editors March 2, 1984. 1980 Mathematics Subject Classification. Primary 20G30; Secondary 10A32. Given

$$A = \left(egin{array}{cc} a & c \ b & d \end{array}
ight) \in M(f),$$

put $\lambda=(q+\sqrt{\Delta})/2$, where $\mathrm{Im}(\sqrt{\Delta})>0$ or $\sqrt{\Delta}>0$. The number λ is an eigenvalue of A. Put

$$\phi(A) = \alpha = (\lambda - d)/b = (a - d + \sqrt{\Delta})/2b.$$

Since f is irreducible, $bc \neq 0$. The column vector $(\alpha, 1)^T$ is an eigenvector of A belonging to λ and $A\alpha = \alpha$ (under the projective action of A on C).

(5) Put $K = F(\sqrt{\Delta})$. Given $\xi \in K$, let ξ' denote its conjugate over F. Given $A \in M(f)$, if $\alpha = \phi(A)$ then

$$A = \begin{pmatrix} \alpha & \alpha' \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda' \end{pmatrix} \begin{pmatrix} \alpha & \alpha' \\ 1 & 1 \end{pmatrix}^{-1}.$$

Thus the map $\phi: M(f) \to K$ is injective (for a given f). For any $R \in \mathrm{GL}_2(\mathcal{O})$,

$$RAR^{-1} = \left(R\begin{pmatrix}\alpha & \alpha'\\1 & 1\end{pmatrix}\right)\begin{pmatrix}\lambda & 0\\0 & \lambda'\end{pmatrix}\left(R\begin{pmatrix}\alpha & \alpha'\\1 & 1\end{pmatrix}\right)^{-1}.$$

Thus by injectivity of ϕ on M(f), we have $\phi(RAR^{-1}) = R\phi(A)$. Given α and $\beta \in K - F$, call $\alpha \sim \beta$ if $R\alpha = \beta$ for some $R \in \mathbf{GL}_2(\mathcal{O})$. From the discussion above, we see that, given A and $B \in M(f)$,

$$A \sim B$$
 iff $\phi(A) \sim \phi(B)$.

Thus the problem is transformed to this: Given α and $\beta \in K - F$, decide if $\alpha \sim \beta$.

(6) Given α and $\beta \in K$, let $\langle \alpha, \beta \rangle$ denote the module over \mathcal{O} generated by α and β . In this paper, by a *module* we shall mean a finitely generated full module over \mathcal{O} contained in K. Every module is of the form $\langle \alpha, \beta \rangle$ and (α, β) is a basis of this module over \mathcal{O} . For example, if $\alpha \in K - F$, then $\langle \alpha, 1 \rangle$ is a module. Given modules U and V, call $U \sim V$ similar if $U = \lambda V$ for some $\lambda \in K^{\times}$.

(7) Given α and $\beta \in K - F$, put $U = \langle \alpha, 1 \rangle$ and $V = \langle \beta, 1 \rangle$. Then

$$\alpha \sim \beta$$
 iff $U \sim V$.

In fact, if $\alpha \sim \beta$, say $R\alpha = \beta$, $R \in GL_2(\mathcal{O})$, then $R\binom{\alpha}{1} = \lambda\binom{\beta}{1}$ for some $\lambda \in K^{\times}$ and hence $U = \lambda V$, i.e., $U \sim V$. Going backward we get the converse. Thus the problem is now transformed to the following: Given modules U and V, decide if $U \sim V$.

- (8) Let $U = \langle \alpha, \beta \rangle$ be a module. An element $\xi = x\alpha + y\beta$ of U, where it is understood that x and $y \in \mathcal{O}$, is called *primitive* if (x,y) = 1, i.e., x and y are coprime. The primitiveness of an element of U does not depend on the choice of a basis (α, β) of U. A member of a basis is primitive. It is easy to see that if ρ is a primitive element of U, then $U = \langle \sigma, \rho \rangle$ for some $\sigma \in U$. A module U is called normalized if 1 is a primitive element of U so that $U = \langle \alpha, 1 \rangle$ for some $\alpha \in K F$. Given modules U and V, call $U \equiv V$ if U = cV for some $c \in F^{\times}$.
- (9) For any module U, there is a unique normalized module V such that $U \equiv V$. PROOF. $U \cap \mathcal{O}$ is a nonzero fractional ideal of \mathcal{O} and hence $U \cap \mathcal{O} = (b)$ for some $b \in F^{\times}$ and b has to be a primitive element of U. Thus $U = \langle \alpha, b \rangle$ for

some α . $V=b^{-1}U=\langle \alpha b^{-1},1\rangle$ is normalized and $U\equiv V$. To see the uniqueness, suppose that U and V are normalized modules such that $U\equiv V$, say U=cV, $c\in F^{\times}$, $U=\langle \alpha,1\rangle$, and $V=\langle \beta,1\rangle$. Then $\langle \alpha,1\rangle=\langle c\alpha,c\rangle$ and hence there is an $R\in \mathrm{GL}_2(\mathcal{O})$ such that $R\binom{\alpha}{1}=c\binom{\beta}{1}$. Since $c\in F$ and $\alpha\notin F$, R has to be of the form

$$R = \left(egin{array}{cc} x & y \ 0 & c \end{array}
ight)$$

with $xc = \det R \in \mathcal{O}^{\times} = \{\pm 1, \pm i\}$. Thus $c \in \mathcal{O}^{\times}$ and U = V.

(10) Given α and $\beta \in K - F$, call $\alpha \equiv \beta$ if

$$\left(egin{array}{cc} arepsilon & c \ 0 & 1 \end{array}
ight)lpha = arepsilonlpha + c = eta$$

for some $\varepsilon \in \mathcal{O}^{\times}$ and $c \in \mathcal{O}$. From the proof of (9), it is clear that, given normalized modules $U = \langle \alpha, 1 \rangle$ and $V = \langle \beta, 1 \rangle$,

$$U = V$$
 iff $\alpha \equiv \beta$.

We assume that, given α and $\beta \in K - F$, recognizing if $\alpha \equiv \beta$ is instantaneous. For example, if

$$\alpha = (e_1 + \sqrt{\Lambda})/2b_1$$
 and $\beta = (e_2 + \sqrt{\Delta})/2b_2$,

where $e_1, b_1, e_2, b_2 \in \mathcal{O}$, then $\alpha \equiv \beta$ iff $\varepsilon b_1 = b_2$ for some $\varepsilon \in \mathcal{O}^{\times}$ and $e_1 \equiv e_2 \pmod{2b_1}$.

(11) Let U be a module. A nonzero element ρ of U is called a *convergent* of U if 0 is the only element ξ of U such that

$$|\xi| < |\rho|$$
 and $|\xi'| < |\rho'|$.

Note that given α and $\beta \in K$, $|\alpha| = |\beta|$ iff $|\alpha'| = |\beta'|$. (This can be easily proved by looking at $\gamma = \alpha/\beta$ and its complex conjugate $\overline{\gamma}$ and their norms.) For any $\lambda \in K^{\times}$, as ρ ranges over the convergents of U, $\lambda \rho$ ranges over the convergents of λU .

(12) Let
$$U = \langle \alpha, \beta \rangle$$
. If $\xi = x\alpha + y\beta \in U$, then $\xi' = x\alpha' + y\beta'$ and $x = (\xi\beta' - \xi'\beta)/(\alpha\beta' - \alpha'\beta)$ and $y = (\alpha\xi' - \alpha'\xi)/(\alpha\beta' - \alpha'\beta)$.

Thus if $|\xi|$ and $|\xi'|$ are bounded, then |x| and |y| are bounded. Thus for any c_1 and $c_2 > 0$, U contains only a finite number of element ξ such that $|\xi| < c_1$ and $|\xi'| < c_2$. This shows that there are convergents of U.

- (13) Let ρ be a convergent of U. Then ρ is a primitive element of U and $U = \langle \sigma, \rho \rangle$ for some σ and $\rho^{-1}U = \langle \sigma \rho^{-1}, 1 \rangle$ is normalized. The normalized module $\rho^{-1}U$ is called a *derived module* of U. Let $\mathcal{D}(U)$ denote the set of all derived modules of U, i.e., $\mathcal{D}(U) = \{\rho^{-1}U | \rho \text{ is a convergent of } U\}$.
- (14) If $V \in \mathcal{D}(U)$, then $U \sim V$. Thus if $\mathcal{D}(U) \cap \mathcal{D}(V) \neq \emptyset$, then $U \sim V$. Conversely, suppose $U \sim V$, say $\lambda U = V$, $\lambda \in K^{\times}$. The relation $\lambda \rho = \sigma$ establishes a one-to-one correspondence between the convergents ρ of U and the convergents σ of V and $\rho^{-1}U = \sigma^{-1}V$. Thus $\mathcal{D}(U) = \mathcal{D}(V)$. In particular, given modules U and V, either $\mathcal{D}(U) = \mathcal{D}(V)$ or $\mathcal{D}(V) \cap \mathcal{D}(V) = \emptyset$ according as $U \sim V$ or not.
- (15) By an argument similar to the one given in [2], we can show that $\mathcal{D}(U)$ is a finite set for any module U and such an argument indicates how to find all members

of $\mathcal{D}(U)$. In this paper we shall accomplish this by means of a continued fraction algorithm, which is more efficient.

- (16) Given a module U, let \mathcal{O}_U denote its coefficient ring; \mathcal{O}_U consists of $\omega \in K$ such that $\omega \xi \in U$ for all $\xi \in U$. \mathcal{O}_U is a module and $\mathcal{O} \subset \mathcal{O}_U \subset \mathcal{O}_K$, where \mathcal{O}_K is the ring of integers of K. If $U \sim V$, then $\mathcal{O}_U = \mathcal{O}_V$. Given $\lambda \in K^{\times}$, $\lambda U = U$ iff $\lambda \in \mathcal{O}_{L}^{\times}$. If $\lambda \in \mathcal{O}_{L}^{\times}$, then as ρ ranges over the convergents of U, so does $\lambda \rho$.
- (17) Given convergents ρ and σ of U, call $\rho \simeq \sigma$ if $\lambda \rho = \sigma$ for some $\lambda \in \mathcal{O}_U^{\times}$. We have $\rho \simeq \sigma$ iff $\rho^{-1}U = \sigma^{-1}U$. Thus the set $\mathcal{D}(U)$ of derived modules of U is equivalent to the set $\mathcal{C}(U)$ of equivalence classes (under \simeq) of the convergents of U. Given convergents ρ and σ of U, call $\rho \cong \sigma$ if $\varsigma \rho = \sigma$ for some root of unity ς in \mathcal{O}_U^{\times} . A root of unity in \mathcal{O}_U^{\times} is usually a 4th root of unity, i.e., in \mathcal{O}^{\times} , but it could be an 8th root or a 12th root of unity. We assume that given convergents ρ and σ of U, recognizing if $\rho \cong \sigma$ is instantaneous. If $\rho \cong \sigma$, then $|\rho| = |\sigma|$ (and hence $|\rho'| = |\sigma'|$). But since ρ and σ are not necessarily integers, it is possible that $\rho \not\cong \sigma$ and $|\rho| = |\sigma|$ (cf. Example 3 and (35)).
- (18) Our main objective in the rest of the paper is to show that $\mathcal{C}(U)$ is finite and to see how we can systematically obtain a complete set of representatives of the equivalence classes in $\mathcal{C}(U)$. We are going to develop a continued fraction algorithm for these purposes. We start with a simplest version. Such an algorithm has an independent interest of its own (cf. [4, pp. 181–188]).
- (19) Given $\alpha \in \mathbb{C}$, let $[\alpha]$ denote the element $p \in \mathcal{O}$ such that αp is in the square

$$-\frac{1}{2} < x \le \frac{1}{2}$$
 and $-\frac{1}{2} < y \le \frac{1}{2}$

of the complex plane. Given $\alpha \in \mathbf{C}$, put $\alpha_0 = \alpha$ and having defined α_n for some $n \geq 0$, put $p_n = [\alpha_n]$ and $\alpha_{n+1} = 1/(\alpha_n - p_n)$ provided $\alpha_n \neq p_n$, i.e., $\alpha_n \notin \mathcal{O}$. Note that $|\alpha_n| \geq \sqrt{2}$ for n > 0. It is easily verified that $\alpha_n \in \mathcal{O}$ for some $n \geq 0$ iff $\alpha \in F$.

(20) Given $\alpha \in \mathbb{C}$, let p_n be as in (19) and put

$$P_n = \begin{pmatrix} p_n & 1 \\ 1 & 0 \end{pmatrix}, \quad A_0 = I \quad \text{and} \quad A_n = P_0 P_1 \cdots P_{n-1}.$$

Then we verify that

$$A_n = \begin{pmatrix} a_n & a_{n-1} \\ b_n & b_{n-1} \end{pmatrix},$$

where a_n and b_n are given by the recursions $a_0 = 1$, $a_1 = p_0$, $a_{n+1} = a_n p_n + a_{n-1}$, $b_0 = 0$, $b_1 = 1$, $b_{n+1} = b_n p_n + b_{n-1}$. Since $\det P_n = -1$, $\det A_n = (-1)^n$. In particular, $(a_n, b_n) = 1$.

(21) From the definition of α_n and p_n in (19), we have

$$P_n^{-1}\alpha_n = \alpha_{n+1}$$
 and $P_n^{-1} {\alpha_n \choose 1} = \alpha_{n+1}^{-1} {\alpha_{n+1} \choose 1}$.

Thus

$$A_n^{-1}\alpha = \alpha_n$$
 and $A_n^{-1} {\alpha \choose 1} = (\alpha_1 \cdots \alpha_n)^{-1} {\alpha_n \choose 1}$.

By looking at the second component of the second equality above, we get that $a_n - b_n \alpha = (-1)^n / (\alpha_1 \cdots \alpha_n)$. Since $|\alpha_n| \ge \sqrt{2}$ for n > 0, it follows that $|a_n - b_n \alpha| \le 1$

 $1/\sqrt{2^n}$. In particular, for $\alpha \notin F$,

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\alpha\quad\text{and}\quad\lim_{n\to\infty}b_n=\infty.$$

(22) LEMMA. With α_n and b_n as above for $\alpha \notin F$, $|b_n/(\alpha_1 \cdots \alpha_n)| < \sqrt{2} + 1$ for all n > 0.

PROOF. By looking at the second component of the equality

$$(\alpha_1 \cdots \alpha_n) {lpha \choose 1} = A_n {lpha_n \choose 1},$$

we get that $\alpha_1 \cdots \alpha_n = b_n \alpha_n + b_{n-1}$, and hence

$$|b_n/(\alpha_1\cdots\alpha_n)|=|\alpha_n+b_{n-1}/b_n|^{-1}.$$

Call n > 0 good if $|b_n| > |b_{n-1}|$. Since $b_0 = 0$ and $b_1 = 1$, n = 1 is good. (It can be shown that all n > 0 are good but we do not need this. In any case since $b_n \to \infty$, there are infinitely many good n's.) If n is good, then

$$|\alpha_n + b_{n-1}/b_n| \ge |\alpha_n| - |b_{n-1}/b_n| > \sqrt{2} - 1,$$

and hence

$$|b_n/(\alpha_1 \cdots \alpha_n)| < 1/(\sqrt{2} - 1) = \sqrt{2} + 1.$$

Suppose n is bad. Take the largest good k < n. Then since $n, n - 1, \ldots, k + 1$ are bad, $|b_n| \le |b_{n-1}| \le \cdots \le |b_k|$, and hence

$$\left|\frac{b_n}{\alpha_1\cdots\alpha_n}\right| = \left|\frac{b_k}{\alpha_1\cdots\alpha_k}\right| \left|\frac{b_n}{b_k\alpha_{k+1}\cdots\alpha_n}\right| < \left(\sqrt{2}+1\right) \left|\frac{b_n}{b_k}\right| \le \sqrt{2}+1.$$

(23) THEOREM (PERIODICITY). Given $\alpha \in \mathbb{C} - F$, $\alpha_{k+1} = \alpha_k$ for some k and l with l > 0 iff α is quadratic over F.

PROOF. Suppose $\alpha_{k+l} = \alpha_k$, l > 0. Then with $A = P_k \cdots P_{k+l-1} = A_k^{-1} A_{k+l}$, $\alpha_k = A \alpha_{k+l} = A \alpha_k$. Thus α_k is quadratic over F. Since $\alpha = A_k \alpha_k$, α is quadratic over F also.

Conversely, suppose α is quadratic over F, say $d\alpha^2 - e\alpha + c = 0$, where $d, e, c \in \mathcal{O}$ and $dc \neq 0$. Put $C = \begin{pmatrix} e & -2c \\ 2d & e \end{pmatrix}$. Then $C\alpha = \alpha$. Since $\alpha = A_n\alpha_n$, $A_n^{-1}CA_n\alpha_n = \alpha_n$. Computing

$$C_n = A_n^{-1} C A_n = \begin{pmatrix} e_n & -2c_n \\ 2d_n & -e_n \end{pmatrix}$$

modulo $\pm I$, we get that

$$d_n = da_n^2 - ea_n b_n + cb_n^2$$
 and $c_n = -d_{n-1}$.

Put $a_n = b_n \alpha + \delta_n$ and substitute this into the expression for d_n above. We get that $d_n = (2d\alpha - e)b_n\delta_n + d\delta_n^2$. By (21) and (22), $|b_n\delta_n| < \sqrt{2} + 1$ and $\delta_n \to 0$ as $n \to \infty$. Thus d_n are bounded by a constant (depending only on α). Then so are c_n . Since $e_n^2 - 4d_n c_n = e^2 - 4dc$, e_n are bounded also. Since $d_n \alpha_n^2 - e_n \alpha_n + c_n = 0$ and d_n , e_n , c_n are bounded, we conclude that there are only a finite number of distinct α_n . Thus $\alpha_{k+l} = \alpha_k$ for some k and l with l > 0 (cf. [4, p. 185] for another proof).

(24) Let α be quadratic over F and suppose $\alpha_{k+l} = \alpha_k$, l > 0. Then $|\alpha_n - \alpha'_n| \ge \sqrt{2} - 1$ for all $n \ge k$.

PROOF. Let the notations be as in (23) and put $\Delta = e^2 - 4dc$. Then $\alpha_n = (e_n + \sqrt{\Delta})/2d_n$ for all $n \geq 0$ (with $d_0 = d$, $e_0 = e$ and $c_0 = c$) and hence $\alpha_n - \alpha'_n = \sqrt{\Delta}/d_n$. Since $2d\alpha - e = \sqrt{\Delta}$, $d_n = \sqrt{\Delta}b_n\delta_n + d\delta_n^2$. Since $|b_n\delta_n| < \sqrt{2} + 1$ and $\alpha_n = \alpha_{n+ml}$ for all $n \geq k$ and $m \geq 0$ and $\delta_n \to 0$ as $n \to \infty$, we get that $|d_n| \leq (\sqrt{2} + 1)|\sqrt{\Delta}|$ for all $n \geq k$ and hence

$$|\alpha_n - \alpha'_n| = |\sqrt{\Delta}/d_n| \ge 1/(\sqrt{2} + 1) = \sqrt{2} - 1.$$

(25) Given $\alpha \in K - F$, put $U = \langle \alpha, 1 \rangle$. By means of the simple continued fraction algorithm developed above, we can find a unit $\lambda \in \mathcal{O}_U^{\times}$ such that $|\lambda| > 1$. In fact, compute α_n until we get $\alpha_{k+l} \equiv \alpha_k$, l > 0, and consider $U_n = \langle \alpha_n, 1 \rangle$. Since $A_n \in \operatorname{GL}_2(\mathcal{O})$ and $A_n\binom{\alpha_n}{1} = (\alpha_1 \cdots \alpha_n)\binom{\alpha}{1}$, $U_n = (\alpha_1 \cdots \alpha_n)U$. In particular, $U_n \sim U$ and $\mathcal{O}_{U_n} = \mathcal{O}_U$. Put $\lambda = \alpha_{k+1} \cdots \alpha_{k+l}$. Then $|\lambda| > 1$ and $\lambda U_k = U_{k+l} = U_k$ and hence $\lambda \in \mathcal{O}_U^{\times}$. (But λ may not be a fundamental unit of \mathcal{O}_U .)

(26) Given a module U, the norms (over F) of the convergents of U are bounded. PROOF. We may assume that $U = \langle \alpha, 1 \rangle$. Let ρ be a convergent of U. If $|\rho| > 1$, then take $\lambda \in \mathcal{O}_U^{\times}$ such that $|\lambda \rho| \le 1$ (cf. (25)). Then $\sigma = \lambda \rho$ is a convergent of U such that $|\sigma| \le 1$. Since $|N\lambda| = 1$, $|N\sigma| = |N\rho|$. Thus we may assume that $|\rho| \le 1$. Let a_n and b_n be as in (20) for α and consider the elements $\xi_n = a_n - b_n \alpha$ of U. Since $\xi_n = (-1)^n (\alpha_1 \cdots \alpha_n)^{-1}$ (cf. (21)) and $|\alpha_n| \ge \sqrt{2}$, ξ_n decreases to 0. Take n > 0 such that

$$|\xi_n| < |\rho| \le |\xi_{n-1}| = |\xi_n| |\alpha_n|.$$

Since $\xi_n \in U$ and ρ is a convergent of U, $|\rho'| < |\xi'_n|$. Thus $|N\rho| < |N\xi_n| |\alpha_n|$. Since only a finite number of α_n are distinct, $|\alpha_n|$ are bounded. On the other hand, $N\xi_n = (N\alpha_1 \cdots N\alpha_n)^{-1}$. With the notations as in (23), $d_n\alpha_n^2 - e_n\alpha_n + c_n = 0$, and hence $N\alpha_n = c_n/d_n$. Since $c_n = -d_{n-1}$, $N\alpha_1 \cdots N\alpha_n = (-1)^n dd_n^{-1}$. Thus $N\xi_n = (-1)^n d_n d^{-1}$ and these are bounded. (A modification of the argument used in (11) of [2] gives another proof of this result via Minkowski Theorem.)

(27) Given $c_2 > c_1 > 0$, the number of convergents of U such that $c_2 > |\rho| > c_1$ is finite.

PROOF. Choose $c_0 > 0$ such that $|N\rho| < c_0$ for all convergents ρ of U (cf. (26)). Let ρ be a convergent of U such that $c_2 > |\rho| > c_1$. Since $|\rho| |\rho'| < c_0$, $|\rho'| < c_0 |\rho|^{-1} < c_0 c_1^{-1}$. Since there are only a finite number of elements ξ of U such that $|\xi| < c_2$ and $|\xi'| < c_0 c_1^{-1}$ (cf. (12)), we get the result.

(28) THEOREM. For every module U, the set C(U) is finite (cf. (17)).

PROOF. Take $\lambda \in \mathcal{O}_U^{\times}$ such that $|\lambda| > 1$. Given a convergent ρ of U, take $n \in \mathbb{Z}$ such that $|\lambda|^{n-1} < |\rho| \le |\lambda|^n$. Then $|\lambda|^{-1} < |\rho\lambda^{-n}| \le 1$. Since $\rho\lambda^{-n} \simeq \rho$, we get the result by (27).

(29) We now turn to the problem of finding a complete set of representatives of the equivalence classes in $\mathcal{C}(U)$, where $U=\langle \alpha,1\rangle$. First of all, we have to find a convergent of U to get started. Let $\alpha=(e+\sqrt{\Delta})/2b\in K$, where $b,e\in\mathcal{O}$. If $\xi=y\alpha-x\in U$, then $y=(b/\sqrt{\Delta})(\xi-\xi')$. Thus if $|\xi|<1$ and $|\xi'|<1$, then $|y|<2|b|/|\sqrt{\Delta}|$. In particular, if $2|b|\leq |\sqrt{\Delta}|$, then y=0 and 1 must be a convergent of U.

- (30) Suppose $2|b|/|\sqrt{\Delta}| > 1$ but not too large (cf. (32)). Let y range, in some convenient order, over the nonzero elements of \mathcal{O} in the first quadrant (including the real axis but not the imaginary axis) such that $|y| \leq 2|b|/|\sqrt{\Delta}|$. For each y, choose $x \in \mathcal{O}$ such that $|y\alpha x| \leq 1$ and compute $|y\alpha' x|$. If $|y\alpha' x| \geq 1$ for all y and x, then 1 is a convergent of U.
 - (31) Assume that for some y as in (30), there is an $x \in \mathcal{O}$ such that

$$|y\alpha - x| < 1$$
 and $|y\alpha' - x| < 1$.

For each y for which such an x exists, choose x such that $|y\alpha'-x|$ is least. There are at most two choices for such x, and if so, they differ by 1 or i, and choose the one of smaller modulus for the sake of definiteness. List the elements $\xi = y\alpha - x$ thus chosen as $\xi_1, \xi_2, \ldots, \xi_r$ so that $|\xi_1| \geq |\xi_2| \geq \cdots \geq |\xi_r|$. If there is an ambiguity in this order, i.e., if two or more ξ_i have the same modulus, then order them according to the given ordering of y's. If $|\xi_1'| \leq |\xi_j'|$ for all j > 1, then ξ_1 is a convergent of U. Suppose $|\xi_1'| > |\xi_j'|$ for some j > 1. Then take the first such j and consider the list ξ_j, \ldots, ξ_r and repeat, i.e., if $|\xi_j'| \leq |\xi_k'|$ for all k > j, then ξ_j is a convergent of U, etc.

(32) In case $2|b|/|\sqrt{\Delta}|$ is large, the method of finding a convergent of U described in (30) and (31) is tedious and unsatisfactory. This is where the result of (24) comes to the rescue. Compute α_n as in (19) until we get $\alpha_{k+l} = \alpha_k$, l > 0, and consider $\beta = \alpha_k$ and $V = \langle \beta, 1 \rangle$. With the notations as in (23) and (24),

$$2|d_k|/|\sqrt{\Delta}| = 2/|\beta - \beta'| \le 2\left(\sqrt{2} + 1\right).$$

Thus we can find a convergent σ of V as in (29), (30) and (31) without much trouble. (It is likely that 1 is a convergent of V.) Let

$$A_k = \begin{pmatrix} a_k & a_{k-1} \\ b_k & b_{k-1} \end{pmatrix}$$

be as in (20) for α and put $\gamma = a_k - b_k \alpha$. Then $U = \langle \alpha, 1 \rangle = \langle b_{k-1} \alpha - a_{k-1}, \gamma \rangle = \gamma \langle \beta, 1 \rangle = \gamma V$. Thus $\gamma \sigma$ is a convergent of U.

(33) We now have a way to find a convergent $\rho_1=p-q\alpha$ of $U=\langle\alpha,1\rangle$. If $\rho_1=1$, then put $Q_1=I$. In any case, find r and $s\in\mathcal{O}$ such that ps-qr=1 and put $Q_1=\binom{p-r}{q-s}$. Although it does not matter how we find such r and s, one definite way to find them is to apply the simple continued fraction algorithm to the "rational" element $\beta=p/q\in F^\times$. Compute a_n and b_n as in (20) for β . Then we arrive at $k\geq 0$ such that $qa_k-pb_k=\varepsilon\in\mathcal{O}^\times$. Put $r=\varepsilon^{-1}a_k$ and $s=\varepsilon^{-1}b_k$. Put $\alpha_1=Q_1^{-1}\alpha$ and $U_1=\langle\alpha_1,1\rangle$. Since $Q_1^{-1}\binom{\alpha}{1}=\rho_1\binom{\alpha_1}{1}$,

$$Q_1 inom{lpha_1}{1} =
ho_1^{-1} inom{lpha}{1} \quad ext{and} \quad U_1 =
ho_1^{-1} U.$$

Since ρ_1 is a convergent of U, 1 is a convergent of U_1 .

(34) LEMMA. If 1 is a convergent of $U = \langle \alpha, 1 \rangle$ and $\xi = y\alpha - x$ is a primitive element of U such that $|\xi| \leq 1$ and $|y| \geq 2$, then U contains a nonzero element β such that $|\beta| < 1$ and $|\beta'| < |\xi'|$.

PROOF. Let $\xi = y\alpha - x$ be a primitive element of U such that $|\xi| \leq 1$ and $|y| \geq 2$. Choose $p \in \mathcal{O}$ such that $|\alpha - p| < 1$ and $|\alpha' - p|$ is least. Since 1 is a

convergent of U, $|\alpha' - p| > 1$. Choose $\varepsilon \in \mathcal{O}^{\times}$ such that $\beta = \varepsilon(\alpha - p)$ is in the first quadrant. Consider the half-planes

$$H_1: \operatorname{Re}(z) \leq \frac{1}{2}, \quad H_2: \operatorname{Im}(z) \leq \frac{1}{2}, \quad H_3: \operatorname{Re}(z) + \operatorname{Im}(z) \leq 1.$$

By the choice of p we have the following implications:

If $|\beta - 1| < 1$, then $\beta' \in H_1$.

If $|\beta - i| < 1$, then $\beta' \in H_2$.

If $|\beta - 1 - i| < 1$, then $\beta' \in H_3$.

Let $A: |z| \ge 1$. Since β is in the first quadrant and $|\beta| < 1$, there are five cases:

- (i) $|\beta 1| < 1$ and $|\beta i| < 1$: put $B = A \cap H_1 \cap H_2$.
- (ii) $|\beta 1| \ge 1$ and $|\beta 1 i| < 1$: put $B = A \cap H_2 \cap H_3$.
- (iii) $|\beta 1| \ge 1$ and $|\beta 1 i| \ge 1$: put $B = A \cap H_2$.
- (iv) $|\beta i| \ge 1$ and $|\beta 1 i| < 1$: put $B = A \cap H_1 \cap H_3$.
- (v) $|\beta i| \ge 1$ and $|\beta 1 i| \ge 1$: put $B = A \cap H_1$.

Since ξ is primitive, (x,y)=1. Since $|\xi|\leq 1$, $|\alpha-xy^{-1}|\leq |y|^{-1}$. Put $r=|p-xy^{-1}|$. The inequality

$$|z - \varepsilon p| \ge |y| |z - \varepsilon x y^{-1}| = |yz - \varepsilon x|$$

on z defines a disk D of radius $r\sqrt{|y|}/(|y|-1)$ with the center c on the line through εp and εxy^{-1} so that εxy^{-1} is between εp and c and $|\varepsilon xy^{-1} - c| = r/(|y|-1)$. Since $|y| \geq 2$, in any of the five cases above, if B is defined as indicated, then we see that $(B + \varepsilon p) \cap D = \emptyset$. Since $\varepsilon \alpha' \in B + \varepsilon p$,

$$|\beta'| = |\varepsilon\alpha' - \varepsilon p| < |y\alpha' - x| = |\xi'|.$$

- (35) Although it is possible for U to have two convergents ρ and σ such that $|\rho| = |\sigma|$ and $\rho \not\cong \sigma$, if ρ , σ and τ are convergents of U such that $|\rho| = |\sigma| = |\tau|$, $\rho \not\cong \sigma$ and $\rho \not\cong \tau$, then $\sigma \cong \tau$. In fact, by considering $\rho^{-1}U$, we may assume that $\rho = 1$. Let σ and τ be convergents of U such that $|\sigma| = |\tau| = 1$, $\sigma \not\cong 1$ and $\tau \not\cong 1$. Put $\sigma = y\alpha x$. If $|y| \geq 2$, then there is $\beta \in U$ such that $\beta \neq 0$, $|\beta| < 1$ and $|\beta'| < |\sigma'| = 1$ by (34), which contradicts that 1 is a convergent of U. Thus we may assume that $\sigma = \alpha x$ or $\sigma = (1+i)\alpha x$. Similarly, we may assume that $\tau = \alpha y$ or $\tau = (1+i)\alpha y$ for some $y \in \mathcal{O}$. Since $|\sigma| = |\tau| = 1$, if $\sigma \neq \tau$, then we get that $\alpha \in \mathcal{O}$ or $\alpha \in \mathcal{O} + \zeta$ for some 12th root of unity ζ . Since $\alpha \notin \mathcal{O}$, we get that σ and τ are 12th roots of unity, and hence $\sigma \cong \tau$.
- (36) Having chosen a convergent ρ_1 of $U = \langle \alpha, 1 \rangle$, we are going to choose convergents ρ_2, ρ_3, \ldots of U so that $|\rho_1| \geq |\rho_2| \geq |\rho_3| \geq \ldots$, $\rho_n \not\cong \rho_{n+1}$ for any n > 0, at most two ρ_n 's have the same modulus, and if ρ is a convergent of U such that $|\rho_i| \geq |\rho| > |\rho_j|$ for some j > i > 0, then $\rho \cong \rho_n$ for some n, $\max\{1, i-1\} \leq n < j$. (The possibility that $\rho \cong \rho_{i-1}$ occurs only if $|\rho_{i-1}| = |\rho_i| = |\rho|$ and i > 1.)
- (37) Suppose we have found convergents ρ_1, \ldots, ρ_n of $U = \langle \alpha, 1 \rangle$ satisfying the conditions stated in (36). We have done so for n = 1 (in which case the various conditions are vacuous). Moreover, assume that we have matrices $A_1, \ldots, A_n \in \operatorname{GL}_2(\mathcal{O})$ of determinant 1 such that with $A_n = \begin{pmatrix} a_n & c_n \\ b_n & d_n \end{pmatrix}$, $\rho_n = a_n b_n \alpha$. For n = 1, $A_1 = Q_1$. (The meanings of a_n , b_n and A_n are now different from those in (20).) Put $\alpha_n = A_n^{-1} \alpha$ and $U_n = \langle \alpha_n, 1 \rangle$. Since $A_n^{-1} \begin{pmatrix} \alpha \\ n \end{pmatrix} = \rho_n \begin{pmatrix} \alpha_n \\ 1 \end{pmatrix}$,

$$A_n { \alpha_n \choose 1} = \rho_n^{-1} { \alpha \choose 1}$$
 and $U_n = \rho_n^{-1} U$.

Since ρ_n is a convergent of U, 1 is a convergent of U_n .

(38) To find ρ_{n+1} , choose $p \in \mathcal{O}$ such that $|\alpha_n - p| \leq 1$ and $|\alpha'_n - p|$ is least. There are at most two choices for such p, and if so, choose the one of smaller modulus. If n > 1 and $|\rho_n^{-1}\rho_{n-1}| = 1$, then make sure that $|\alpha_n - p| < 1$. Choose $\varepsilon \in \mathcal{O}^{\times}$ such that

$$\left|\alpha_n - p - \frac{\varepsilon}{1+i}\right| \le \frac{1}{\sqrt{2}}$$
 and $c = \left|\alpha'_n - p - \frac{\varepsilon}{1+i}\right|$ is least

and put

$$\sigma_{n+1} = \begin{cases} p - \alpha_n & \text{if } \sqrt{2}c \ge |\alpha'_n - p|, \\ (1+i)p + \varepsilon - (1+i)\alpha_n & \text{if } \sqrt{2}c < |\alpha'_n - p|, \end{cases}$$

and then put $\rho_{n+1} = \rho_n \sigma_{n+1}$.

- (39) To see that ρ_{n+1} produced in (38) is a next desired convergent of U, we claim that, if ξ is a primitive element of U_n such that $|\xi| \leq 1$ and $|\xi'| < |\sigma'_{n+1}|$, then $\xi \cong 1$ or $\xi \cong \rho_n^{-1}\rho_{n-1}$ (only if n > 1 and $|\rho_{n-1}| = |\rho_n|$). In fact, let ξ be such an element, say $\xi = y\alpha_n x$. If $|y| \geq 2$, then there is $\beta = \alpha_n q \in U_n$ such that $|\beta| < 1$ and $|\beta'| < |\xi'|$ by (34). Since $|\xi'| < |\sigma'_{n+1}| \leq |\alpha'_n p|$, this contradicts the choice of p in (38). Thus |y| < 2, and we may assume that $\xi = \alpha_n x$ or $\xi = (1+i)\alpha_n x$. First suppose that $\xi = \alpha_n x$. If $|\xi| < 1$, then $|\xi'| \geq |\alpha'_n p|$ by the choice of p. But since $|\alpha'_n p| \geq |\sigma'_{n+1}|$, this is impossible. Thus $|\xi| = 1$. Suppose $\xi \not\cong 1$. If n = 1 or n > 1 and $|\rho_{n-1}| > |\rho_n|$, then since $|\xi'| < 1$, $\xi \cong \alpha_n p$ by the choice of p and $p_n = 1$. Then since $|p_n| = 1$, this is impossible. Thus $p_n = 1$ and $p_n = 1$. Then since $|p_n| = 1$ and $|p_n = 1| = 1$ and $|p_n = 1| = 1$. Then since $|p_n| = 1$ and $|p_n = 1| = 1$ and $|p_n = 1| = 1$. Then since $|p_n| = 1$ and $|p_n = 1| = 1$ and $|p_n = 1| = 1$. Then since $|p_n| = 1$ and $|p_n = 1| = 1$ and $|p_n = 1| = 1$. Then since $|p_n| = 1$ and $|p_n = 1| = 1$. Then it contradicts the choice of $p_n = 1$ in the proves the claim.
- (40) Let ξ be any element of U_n such that $|\xi| < |\sigma_{n+1}|$ and $|\xi'| < |\sigma'_{n+1}|$. If $\xi \neq 0$, then we may assume that ξ is primitive. Since $|\sigma_{n+1}| \leq 1$, $|\xi| = 1$ by (39), which is absurd. Thus $\xi = 0$ and σ_{n+1} is a convergent of U_n and hence ρ_{n+1} is a convergent of U. Clearly, $|\rho_n| \geq |\rho_{n+1}|$. Since $1 \not\cong \sigma_{n+1}$, $\rho_n \not\cong \rho_{n+1}$. If n > 1 and $|\rho_{n-1}| = |\rho_n|$, then $1 > |\sigma_{n+1}|$ and $|\rho_n| > |\rho_{n+1}|$. Let ρ be a convergent of U such that $|\rho_i| \geq |\rho| > |\rho_j|$, $0 < i < j \leq n+1$. To see $\rho \cong \rho_k$ for some k, $\max\{1, i-1\} \leq k < j$, we may assume that $|\rho_n| \geq |\rho| > |\rho_{n+1}|$. Then $\xi = \rho_n^{-1}\rho$ is a convergent of U_n such that $1 \geq |\xi| > |\sigma_{n+1}|$. Since ξ is a convergent, $|\xi'| < |\sigma'_{n+1}|$. Thus by (39), $\xi \cong 1$ or $\xi \cong \rho_n^{-1}\rho_{n-1}$, and hence $\rho \cong \rho_n$ or $\rho \cong \rho_{n-1}$. This completes the proof that ρ_{n+1} is a next desired convergent of U.

(41) Put

$$Q_{n+1} = \begin{pmatrix} p & -1 \\ 1 & 0 \end{pmatrix}$$
 or $\begin{pmatrix} p & r \\ 1+i & 1 \end{pmatrix}$

according as $\sigma_{n+1} = p - \alpha_n$ or $p - (1+i)\alpha_n$, where r = (p-1)/(1+i). Note that in the second case, since (p, 1+i) = 1, 1+i divides p-1 and $r \in \mathcal{O}$. In either case, det $Q_{n+1} = 1$. $(Q_{n+1}$ is rarely of the second type.) Put

$$A_{n+1} = A_n Q_{n+1}$$
 and $\alpha_{n+1} = Q_{n+1}^{-1} \alpha_n = A_{n+1}^{-1} \alpha$.

Since $Q_{n+1}^{-1} {\binom{\alpha_n}{1}} = \sigma_{n+1} {\binom{\alpha_{n+1}}{1}},$

$$A_{n+1}^{-1}\binom{\alpha}{1} = Q_{n+1}^{-1}A_n^{-1}\binom{\alpha}{1} = \rho_nQ_{n+1}^{-1}\binom{\alpha_n}{1} = \rho_{n+1}\binom{\alpha_{n+1}}{1},$$

and hence $\rho_{n+1} = a_{n+1} - b_{n+1}\alpha$.

(42) We now have a way to generate a sequence of convergents $\rho_1, \rho_2, \rho_3, \ldots$ of $U = \langle \alpha, 1 \rangle$ satisfying the conditions stated in (36). Moreover, corresponding to these convergents, we have matrices $Q_1, Q_2, Q_3, \ldots \in \operatorname{GL}_2(\mathcal{O})$ of determinant 1 such that, for each n > 0, if

$$A_n = \begin{pmatrix} a_n & c_n \\ b_n & d_n \end{pmatrix} = Q_1 \cdots Q_n,$$

then $\rho_n = a_n - b_n \alpha$ so that, with $\alpha_n = A_n^{-1} \alpha$, $A_n \binom{\alpha_n}{1} = \rho_n^{-1} \binom{\alpha}{1}$ and $U_n = \langle \alpha_n, 1 \rangle = \rho_n^{-1} U \in \mathcal{D}(U)$.

(43) Since $\mathcal{D}(U)$ is finite by (28), $U_{l+1} = U_k$ for some $l \geq k > 0$. Let l be the least such integer. Then we claim that k = 1. In fact, put $\lambda = \rho_k \rho_{l+1}^{-1}$. Since $\rho_k^{-1}U = U_k = U_{l+1} = \rho_{l+1}^{-1}U$, $U = \lambda U$ and $\lambda \in \mathcal{O}_U^{\times}$. Since $|\rho_k| \geq |\rho_{l+1}|$, $|\lambda| \geq 1$. Since $\lambda \in \mathcal{O}_K$, if $|\lambda| = 1$, then λ is a root of unity and $\rho_k \cong \rho_{l+1}$. Thus $|\lambda| > 1$. Given a convergent ρ of U, choose $n \in \mathbb{Z}$ such that $|\rho_k| |\lambda|^n \geq |\rho| > |\rho_k| |\lambda|^{n-1}$. Then

$$|\rho_k| \ge |\rho \lambda^{-n}| > |\rho_k \lambda^{-1}| = |\rho_{l+1}|.$$

Thus $\sigma = \rho \lambda^{-n}$ is a convergent of U such that $|\rho_k| \geq |\sigma| > |\rho_{l+1}|$, and hence $\rho = \sigma \cong \rho_n$ for some n, $\max\{1, k-1\} \leq n \leq l$. In particular, taking $\rho = \rho_1$, we get that $\rho_1 = \rho_n$, and hence $U_1 = U_n$ for some $n \leq l$. Thus n = k = 1 by the choice of l

(44) Let l be the least integer > 0 such that $U_{l+1} = U_1$, or equivalently $\rho_{l+1} \simeq \rho_1$ or $\alpha_{l+1} \equiv \alpha_1$. In choosing a convergent σ_{l+2} of U_{l+1} to get ρ_{l+2} , since $U_{l+1} = U_1$, it would be nice if we can choose $\sigma_{l+2} = \sigma_2$ so that the sequence $\rho_1, \rho_2, \rho_3, \ldots$ looks like

$$\rho_1, \ldots, \rho_l, \lambda \rho_1, \ldots, \lambda \rho_l, \lambda^2 \rho_1, \ldots,$$

where $\lambda = \rho_{l+1}\rho_1^{-1} \in \mathcal{O}_U^{\times}$. If $|\rho_l| > |p_{l+1}|$ or $1 > |\sigma_2|$, then we can choose $\sigma_{l+2} = \sigma_2$. But suppose $|\rho_l| = |\rho_{l+1}|$ and $1 = |\sigma_2|$. Then $\sigma_2 \cong \rho_{l+1}^{-1}\rho_l$ by (35) and we cannot choose σ_2 as σ_{l+2} . This anomaly can be easily remedied by skipping ρ_l . This amounts to taking $\sigma_l \sigma_{l+1}$ as σ_l , $Q_l Q_{l+1}$ as Q_l and l-1 as l. If this is done, then we can take σ_2 as σ_{l+2} . This situation is well illustrated by Example 3 in the Appendix. The least integer l > 0 such that $U_{l+1} = U_1$ (after the adjustment above if applicable) is called the *period* of U or of α . From the discussion in (43), we get the following theorem.

(45) THEOREM. If l is the period of U, then $\{\rho_1, \ldots, \rho_l\}$ is a complete set of representatives of the equivalence classes in C(U) or equivalently

$$\mathcal{D}(U) = \{U_1, \dots, U_l\}, \qquad U_n = \langle \alpha_n, 1 \rangle.$$

(46) THEOREM. If l is the period of U, then $\lambda_0 = \rho_{l+1}\rho_1^{-1}$ is a fundamental unit of \mathcal{O}_U^{\times} , i.e., every $\lambda \in \mathcal{O}_U^{\times}$ is uniquely of the form $\lambda = \lambda_0^n \zeta$, where $n \in \mathbf{Z}$ and ζ is a root of unity.

PROOF. Given $\lambda \in \mathcal{O}_U^{\times}$, choose $n \in \mathbf{Z}$ such that

$$|\rho_1| \ge |\rho_1 \lambda \lambda_0^{-n}| > |\rho_1| |\lambda|^{-1} = |\rho_{l+1}|.$$

Since $\rho_1 \lambda \lambda_0^{-1} \simeq \rho_1$, $\rho_1 \lambda \lambda_0^{-n} \cong \rho_1$ and $\lambda \lambda_0^{-n} = \varsigma$ is a root of unity. The uniqueness is clear.

- (47) Here is a summary of the procedure for deciding if $A \sim B$ for given A and $B \in M(f)$. First compute $\alpha = \phi(A)$ and α_n as in (33) and (42) until we get $\alpha_{l+1} \equiv \alpha_1$ for the first time. Next compute $\beta = \phi(B)$ and β_1 for β as in (33). Then $A \sim B$ iff $\beta_1 \equiv \alpha_n$ for some $n, 1 \leq n \leq l$.
- (48) Given A and $B \in M(f)$, suppose that $A \sim B$ so that $\beta_1 \equiv \alpha_n$, $1 \leq n \leq l$, as in (47), say $\beta_1 = \varepsilon \alpha_n + c$, $\varepsilon \in \mathcal{O}^{\times}$, $c \in \mathcal{O}$. Compute A_n for $\alpha = \phi(A)$ and $B_1 (= Q_1)$ for $\beta = \phi(B)$ and put

$$R_1 = B_1 \begin{pmatrix} \varepsilon & c \\ 0 & 1 \end{pmatrix} A_n^{-1}.$$

Then $R_1 \in GL_2(\mathcal{O})$ and $R_1\alpha = \beta$, and hence $R_1AR_1^{-1} = B$.

- (49) Given A, put $Z(A) = \{R \in \operatorname{GL}_2(\mathcal{O}) | RA = AR \}$, the centralizer of A in $\operatorname{GL}_2(\mathcal{O})$. Z(A) is a subgroup of $\operatorname{GL}_2(\mathcal{O})$. If $R_1AR_1^{-1} = B$, then the coset $R_1Z(A)$ consists of those $R \in \operatorname{GL}_2(\mathcal{O})$ such that $RAR^{-1} = B$.
 - (50) If $\alpha = \phi(A)$ and $U = \langle \alpha, 1 \rangle$, then Z(A) is canonically isomorphic to \mathcal{O}_U^{\times} .

PROOF. Let $R \in Z(A)$. Since $R\alpha = \alpha$, $R\binom{\alpha}{1} = \lambda\binom{\alpha}{1}$ for some $\lambda \in K^{\times}$. Then $U = \langle \alpha, 1 \rangle = \langle \lambda \alpha, \lambda \rangle = \lambda U$ and hence $\lambda \in \mathcal{O}_U^{\times}$. This defines a map $R \mapsto \lambda$: $Z(A) \to \mathcal{O}_U^{\times}$, and it is clear that it is a homomorphism. Suppose $\lambda = 1$ for the image λ of $R \in Z(A)$. Then $R\binom{\alpha - \alpha'}{1 - 1} = \binom{\alpha - \alpha'}{1 - 1}$, and hence R = I. Thus the map is injective. Let $\lambda \in \mathcal{O}_U^{\times}$. Then $U = \lambda U = \langle \lambda \alpha, \lambda \rangle$, and hence there is an $R \in \mathrm{GL}_2(\mathcal{O})$ such that $R\binom{\alpha}{1} = \lambda\binom{\alpha}{1}$. Then $R\alpha = \alpha$ and $R \in Z(A)$. Thus the map $R \mapsto \lambda$ is onto \mathcal{O}_U^{\times} .

(51) Let l be the period of $\alpha = \phi(A)$, say $\alpha_{l+1} = \varepsilon \alpha_1 + c$, $\varepsilon \in \mathcal{O}^{\times}$, $c \in \mathcal{O}$. Put $R_0 = A_{l+1} \binom{\varepsilon - c}{0} A_1^{-1}$. Then $R_0 \in GL_2(\mathcal{O})$ and

$$R_0\binom{\alpha}{1} = \rho_1^{-1}A_{l+1}\begin{pmatrix} \varepsilon & c \\ 0 & 1 \end{pmatrix}\binom{\alpha_1}{1} = \rho_1^{-1}A_{l+1}\binom{\alpha_{l+1}}{1} = \rho_1^{-1}\rho_{l+1}\binom{\alpha}{1} = \lambda_0\binom{\alpha}{1}.$$

Since λ_0 , together with a root of unity ζ , generates \mathcal{O}_U^{\times} by (46), in view of (50), R_0 together with an element of order 4, 8 or 12 corresponding to ζ , generates Z(A).

(52) As a final remark, let us apply our method to find a fundamental unit of \mathcal{O}_K , $K=F(\sqrt{\Delta})$, where $\Delta\in\mathcal{O}$, $\Delta\neq0,\pm1$, Δ is square-free in \mathcal{O} . Put $\pi=1-i$ and

$$\alpha = \begin{cases} \sqrt{\Delta} & \text{if } \Delta \equiv 0 \; (\operatorname{mod} \pi) \; \text{or } \Delta \equiv \pm i \; (\operatorname{mod} 2), \\ (1 + \sqrt{\Delta})/\pi & \text{if } \Delta \equiv \pm 1 + 2i \; (\operatorname{mod} 4), \\ (1 + \sqrt{\Delta})/2 & \text{if } \Delta \equiv 1 \; (\operatorname{mod} 4), \\ (1 + \sqrt{-\Delta})/2 & \text{if } \Delta \equiv -1 \; (\operatorname{mod} 4). \end{cases}$$

Then $\mathcal{O}_K = \langle \alpha, 1 \rangle$. The proof of this is a straightforward exercise and is left to the reader. Clearly \mathcal{O}_K is the coefficient ring of the module \mathcal{O}_K . Thus by finding the convergents of \mathcal{O}_K we get a fundamental unit of \mathcal{O}_K via (46).

Appendix. Reducible case.

(1) We shall summarize the results for the case when the characteristic polynomial f is reducible over F. Since the proofs are straightforward, we shall omit them. Put $f(t) = (t - e_1)(t - e_2)$, where e_1 and $e_2 \in \mathcal{O}$.

(2) Given $A \in M(f)$, we can find $R \in GL_2(\mathcal{O})$ such that

$$RAR^{-1} = \begin{pmatrix} e_1 & a \\ 0 & e_2 \end{pmatrix},$$

where a is in the first quadrant (including the real axis but not the imaginary axis).

- (3) Suppose $e_1 = e_2 = e$. If a and b are in the first quadrant and $\begin{pmatrix} e & a \\ 0 & e \end{pmatrix} \sim \begin{pmatrix} e & b \\ 0 & e \end{pmatrix}$, then a = b.
- (4) Let $A = \begin{pmatrix} e & a \\ 0 & e \end{pmatrix}$. If a = 0, then $Z(A) = \operatorname{GL}_2(\mathcal{O})$. If $a \neq 0$, then Z(A) is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$.

 (5) Assume $e_1 \neq e_2$. Put $e = e_1 e_2$. Given $a \in \mathcal{O}$, we can find $R \in \operatorname{GL}_2(\mathcal{O})$
- such that

$$R\begin{pmatrix} e_1 & a \\ 0 & e_2 \end{pmatrix} R^{-1} = \begin{pmatrix} e_1 & r \\ 0 & e_2 \end{pmatrix},$$

where (i) r = 0, (ii) r/e = (1+i)/2 or (iii) $0 < \text{Re}(r/e) \le \frac{1}{2}$ and $0 \le \text{Im}(r/e) < \frac{1}{2}$.

- (6) If a/e and b/e are in the quarter square in the sense of (5) for r/e and $\begin{pmatrix} e_1 & a \\ 0 & e_2 \end{pmatrix} \sim \begin{pmatrix} e_1 & b \\ 0 & b_2 \end{pmatrix}$, then a=b.
 - (7) Let a/e be as in (6) and $A = \begin{pmatrix} e_1 & a \\ 0 & e_2 \end{pmatrix}$. Then Z(A) is generated by
 - (i) $\binom{i \quad 0}{0 \quad i}$, $\binom{i \quad 0}{0 \quad 1}$ if a/e = 0,
 - (ii) $\binom{i \ 0}{0 \ i}$, $\binom{1 \ 1}{0 \ -1}$ if a/e = 1/2,
 - (iii) $\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & i \end{pmatrix}$ if a/e = (1+i)/2, (iv) $\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$ otherwise.

EXAMPLE 1.

$$A = \begin{pmatrix} 16 + 33i & 17 + 67i \\ 11 + 14i & 15 + 30i \end{pmatrix}, \qquad B = \begin{pmatrix} 26 + 61i & 1 + 51i \\ 7 & 5 + 2i \end{pmatrix}.$$

The characteristic polynomial of A and B is $f(t) = t^2 - (31 + 63i)t + 1$ and its discriminant is $\Delta = -3012 + 3906i$.

$$\alpha = \phi(A) = \frac{1 + 3i + \sqrt{\Delta}}{2(11 + 14i)}, \qquad \beta = \phi(B) = \frac{21 + 59i + \sqrt{\Delta}}{2(7)}.$$

Computing Q_n and $\alpha_n = Q_n^{-1} \alpha_{n-1}$ for α , we get

$$egin{aligned} Q_1 &= I, & lpha_1 &= lpha, \ Q_2 &= egin{pmatrix} 2 & -1 \ 1 & 0 \end{pmatrix}, & lpha_2 &= rac{43 + 53i + \sqrt{\Delta}}{2(25 - 17i)}, \ Q_3 &= egin{pmatrix} 2i & -1 \ 1 & 0 \end{pmatrix}, & lpha_3 &= rac{25 + 47i + \sqrt{\Delta}}{2(17 - 4i)}, \ Q_4 &= egin{pmatrix} 3i & -1 \ 1 & 0 \end{pmatrix}, & lpha_4 &= rac{-1 + 55i + \sqrt{\Delta}}{2(13 - 56i)}, \end{aligned}$$

$$egin{aligned} Q_5 &= \left(egin{array}{ccc} -1 & -1 \ 1 & 0 \end{array}
ight), & lpha_5 &= rac{-25+57i+\sqrt{\Delta}}{2(29-5i)}, \ Q_6 &= \left(egin{array}{ccc} -1+2i & -1 \ 1 & 0 \end{array}
ight), & lpha_6 &= rac{-13+69i+\sqrt{\Delta}}{2(-5-20i)}, \ Q_7 &= \left(egin{array}{ccc} -1 & -1 \ 1 & 0 \end{array}
ight), & lpha_7 &= rac{23+31i+\sqrt{\Delta}}{2(11+14i)} \equiv lpha_1. \end{aligned}$$

On the other hand, $\beta_1 = \beta$ and this is not \equiv to any α_n . Thus $A \nsim B$. Note that computation gives

$$Q_2=egin{pmatrix} 4+8i & -1 \ 1 & 0 \end{pmatrix}, \qquad eta_2=rac{35+53i+\sqrt{\Delta}}{2(51-7i)}$$

for β and the next convergent of $\langle \beta_2, 1 \rangle$ after 1 is $(1+i)\beta_2 - i$ (cf. (38) and (41)). EXAMPLE 2.

$$A = \begin{pmatrix} 16 + 33i & 17 + 67i \\ 11 + 14i & 15 + 30i \end{pmatrix}, \qquad B = \begin{pmatrix} 72 + 85i & -5 - 29i \\ 176 - 7i & -41 - 22i \end{pmatrix}.$$

This A is the same as in Example 1 and the characteristic polynomial of B is the same as that of A.

$$\beta = \phi(B) = \frac{113 + 107i + \sqrt{\Delta}}{2(176 - 7i)}, \quad B_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \beta_1 = \frac{-113 - 107i + \sqrt{\Delta}}{2(5 + 29i)}$$

for β , and we recognize that $\beta_1 \equiv \alpha_5$, in fact, $\beta = -i\alpha_5 + (-3+i)$. Thus $A \sim B$. Now compute (cf. (42))

$$A_5 = Q_1 Q_2 Q_3 Q_4 Q_5 = \begin{pmatrix} 15 - i & 14 + 3i \\ 7 - 2i & 7 \end{pmatrix},$$

$$R_1 = B_1 \begin{pmatrix} -i & -3 + i \\ 0 & 1 \end{pmatrix} A_5^{-1} = \begin{pmatrix} 7 - 2i & -15 + i \\ 19 - 20i & -47 + 32i \end{pmatrix}.$$

We have $R_1AR_1^{-1}=B$. Noting $\alpha_7=\alpha_1+1$, we compute (cf. (51))

$$A_7 = \begin{pmatrix} -16 - 33i & -1 - 34i \\ -11 - 14i & -4 - 16i \end{pmatrix},$$

$$R_0 = A_7 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A_1^{-1} = \begin{pmatrix} -16 - 33i & -17 - 67i \\ -11 - 14i & -15 - 30i \end{pmatrix} = -A.$$

Thus Z(A) is generated by A and iI and we get all $R \in \mathrm{GL}_2(\mathcal{O})$ such that $RAR^{-1} = B$. In view of (50), the eigenvalue of A, $\lambda = (31 + 63i + \sqrt{\Delta})/2$, is a fundamental unit of \mathcal{O}_U , where $U = \langle \alpha, 1 \rangle$.

EXAMPLE 3.

$$A = \begin{pmatrix} 1+4i & -5i \\ 2+4i & -3-i \end{pmatrix},$$
 $f(t) = t^2 - (-2+3i)t + (-19-3i), \qquad \Delta = 71,$

$$Q_1 = I, \quad \alpha_1 = \alpha = \frac{4 + 5i + \sqrt{\Delta}}{2(2 + 4i)}, \quad A_1 = I.$$

 $\sigma = \alpha_1 - 1$ is a convergent of U_1 such that $|\sigma| = 1$ and $\sigma \not\cong 1$. Take $\sigma_2 = \sigma$ (cf. (38)).

$$Q_2=egin{pmatrix} 1&-1\ 1&0 \end{pmatrix},\quad lpha_2=rac{3i+\sqrt{\Delta}}{2(-2+4i)},\quad A_2=Q_2.$$

 $\sigma = \alpha_2$ is a convergent of U_2 such that $|\sigma| = 1$ and $\sigma \not\cong 1$. But since $\sigma_2^{-1} = -\sigma$, $\sigma_3 \neq \sigma$.

$$Q_3 = egin{pmatrix} -i & -1 \ 1 & 0 \end{pmatrix}, \quad lpha_3 = rac{8+i+\sqrt{\Delta}}{2}, \quad A_3 = egin{pmatrix} -1-i & -1 \ -i & -1 \end{pmatrix}, \ Q_4 = egin{pmatrix} 8 & -1 \ 1 & 0 \end{pmatrix}, \quad lpha_4 = rac{8-i+\sqrt{\Delta}}{2(-2-4i)}, \quad A_4 = egin{pmatrix} -9-8i & 1+i \ -1-8i & 1 \end{pmatrix}.$$

 $\sigma = \alpha_4 - i$ is a convergent of U_4 such that $|\sigma| = 1$ and $\sigma \not\cong 1$. Take $\sigma_5 = \sigma$.

$$Q_5 = egin{pmatrix} i & -1 \ 1 & 0 \end{pmatrix}, \quad lpha_5 = rac{-3i + \sqrt{\Delta}}{2(2-4i)}, \quad A_5 = egin{pmatrix} 9 - 8i & 9 + 8i \ 8 & 1 + 8i \end{pmatrix}.$$

 $\sigma = \alpha_5$ is a convergent of U_5 such that $|\sigma| = 1$ and $\sigma \not\cong 1$. But since $\sigma_5^{-1} = -\sigma$, $\sigma_6 \neq \sigma$,

$$Q_6 = egin{pmatrix} 1 & -1 \ 1 & 0 \end{pmatrix}, \quad lpha_6 = rac{4-5i+\sqrt{\Delta}}{2(-5i)}, \quad A_6 = egin{pmatrix} 18 & -9+8i \ 9+8i & -8 \end{pmatrix}, \ Q_7 = egin{pmatrix} i & -1 \ 1 & 0 \end{pmatrix}, \quad lpha_7 = rac{6+5i+\sqrt{\Delta}}{2(-3-3i)}, \quad A_7 = egin{pmatrix} -9+26i & -18 \ -16+9i & -9-8i \end{pmatrix}.$$

 $\sigma = \alpha_7 + 1$ is a convergent of U_7 such that $|\sigma| = 1$ and $\sigma \not\cong 1$. Take $\sigma_8 = \sigma$.

$$Q_8 = \left(egin{array}{ccc} -1 & -1 \ 1 & 0 \end{array}
ight), \quad lpha_8 = rac{i+\sqrt{\Delta}}{2(3-3i)}, \quad A_8 = \left(egin{array}{ccc} -9-26i & 9-26i \ 7-17i & 16-9i \end{array}
ight).$$

 $\sigma = \alpha_8$ is a convergent of U_8 such that $|\sigma| = 1$ and $\sigma \not\cong 1$. But since $\sigma_8^{-1} = -\sigma$, $\sigma_9 \neq \sigma$.

$$Q_9 = \begin{pmatrix} i & -1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_9 = \frac{6+5i+\sqrt{\Delta}}{2(-5)}, \quad A_9 = \begin{pmatrix} 35-35i & 9+26i \\ 33-2i & -7+17i \end{pmatrix},$$

$$Q_{10} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \alpha_{10} = \frac{4-5i+\sqrt{\Delta}}{2(4+2i)}, \quad A_{10} = \begin{pmatrix} -26+61i & -35+35i \\ -40+19i & -33+2i \end{pmatrix}.$$

 $\sigma = \alpha_{10} + i$ is a convergent of U_{10} such that $|\sigma| = 1$ and $\sigma \not\cong 1$. Take $\sigma_{11} = \sigma$.

$$Q_{11} = \left(egin{array}{ccc} -i & -1 \ 1 & 0 \end{array}
ight), \quad lpha_{11} = rac{-3i + \sqrt{\Delta}}{2(-4+2i)}, \quad A_{11} = \left(egin{array}{ccc} 26 + 61i & 26 - 61i \ -14 + 42i & 40 - 19i \end{array}
ight).$$

We note that $\alpha_{11} \equiv \alpha_1$; $\alpha_{11} = -i\alpha_1 + i$. Since $|\sigma_{11}| = 1$ and $|\sigma_2| = 1$, $\sigma_2 \cong \sigma_{11}^{-1}$ (cf. (44)). Thus we take $\sigma_{10}\sigma_{11}$ as σ_{10} and take $Q_{10}Q_{11}$ as Q_{10} :

$$Q_{10} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -i & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1+i & 1 \\ -1 & -1 \end{pmatrix}, \qquad \alpha_{10} = \frac{-3i+\sqrt{\Delta}}{2(-4+2i)},$$
$$A_{10} = \begin{pmatrix} 26+61i & 26-61i \\ -14+42i & 40-19i \end{pmatrix}.$$

Since $\alpha_{10} = -i\alpha_1 + i$,

$$R_0 = A_{10} \begin{pmatrix} -i & i \\ 0 & 1 \end{pmatrix} A_1^{-1} = \begin{pmatrix} 61 - 26i & -35 - 35i \\ 42 + 14i & -2 - 33i \end{pmatrix},$$

and Z(A) is generated by R_0 and iI.

EXAMPLE 4. $\Delta = 71$, $K = F(\sqrt{71})$. Since $71 \equiv -1 \pmod{4}$, with $\alpha = (1 + \sqrt{-71})/2$, $\mathcal{O}_K = \langle \alpha, 1 \rangle$ (cf. (52)). Compute Q_n , α_n and A_n . (In this computation, we encounter convergents σ of some U_n such that $|\sigma| = 1$ and $\sigma \not\cong 1$.)

$$\begin{split} Q_1 &= I, & \alpha_1 = \alpha, & A_1 = I, \\ Q_2 &= \begin{pmatrix} 4i & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_2 = \frac{-1 + 8i + \sqrt{-71}}{2(2 - 4i)}, & A_2 = Q_2, \\ Q_3 &= \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_3 = \frac{-3 + \sqrt{-71}}{2(2 + 4i)}, & A_3 = \begin{pmatrix} -1 - 4i & -4i \\ -1 & -1 \end{pmatrix}, \\ Q_4 &= \begin{pmatrix} i & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_4 = \frac{-5 + 4i + \sqrt{-71}}{2(-5i)}, & A_4 = \begin{pmatrix} 4 - 5i & 1 + 4i \\ -1 - i & 1 \end{pmatrix}, \\ Q_5 &= \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_5 = \frac{5 + 6i + \sqrt{-71}}{2(-3 + 3i)}, & A_5 = \begin{pmatrix} -3 + 9i & -4 + 5i \\ 2 + i & 1 + i \end{pmatrix}, \\ Q_6 &= \begin{pmatrix} -i & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_6 = \frac{1 + \sqrt{-71}}{2(-3 - 3i)}, & A_6 &= \begin{pmatrix} 5 + 8i & 3 - 9i \\ 2 - i & -2 - i \end{pmatrix}, \\ Q_7 &= \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_7 &= \frac{5 + 6i + \sqrt{-71}}{2(-5)}, & A_7 &= \begin{pmatrix} -2 - 17i & -5 - 8i \\ -4 & -2 + i \end{pmatrix}, \\ Q_8 &= \begin{pmatrix} -i & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_8 &= \frac{-5 + 4i + \sqrt{-71}}{2(-4 + 2i)}, & A_8 &= \begin{pmatrix} -22 - 6i & 2 + 17i \\ -2 + 5i & 4 \end{pmatrix}, \\ Q_9 &= \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_9 &= \frac{-3 + \sqrt{-71}}{2(-4 - 2i)}, & A_9 &= \begin{pmatrix} -20 + 11i & 22 + 6i \\ 2 + 5i & 2 - 5i \end{pmatrix}, \\ Q_{10} &= \begin{pmatrix} -i & -1 \\ 1 & 0 \end{pmatrix}, & \alpha_{10} &= \frac{-1 + 8i + \sqrt{-71}}{2(i)}, & A_{10} &= \begin{pmatrix} 33 + 26i & 20 - 11i \\ 7 - 7i & -2 - 5i \end{pmatrix}, \\ \end{split}$$

 $\alpha_{10} \equiv \alpha_1$; $\alpha_{10} = -i\alpha_1 + (4+i)$. Since $\rho_1 = 1$, $\rho_{10} = (33+26i) - (7-7i)\alpha$ is a fundamental unit of \mathcal{O}_K (cf. (46)).

REFERENCES

- H. Appelgate and H. Onishi, Continued fractions and the conjugacy problem in SL₂(Z), Comm. Algebra 9 (1981), 1121-1130.
- 2. ____, Periodic expansion of modules and its relation to units, J. Number Theory 15 (1982), 283-294.
- 3. F. Grunewald, Solution of the conjugacy problem in certain arithmetic groups, Word Problems. II (S. Adjan, W. Boone and G. Higman, eds.), North-Holland, Amsterdam, 1979.
- 4. O. Perron, Die Lehre den Kettenbruchen. Band I, Teubner Verlagsgesellschaft, Stuttgart, 1954

DEPARTMENT OF MATHEMATICS, CITY COLLEGE OF NEW YORK, NEW YORK 10031